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SUBSHIFTS, ROTATIONS

AND THE SPECIFICATION PROPERTY

Marcin Mazur — Piotr Oprocha

Abstract. Let X = Σ2 and let F : X × S1 → X × S1 be a map given by

F (x, t) = (σ(x), Rx0 (t)),

where (Σ2, σ) denotes the full shift over the alphabet {0, 1} while R0, R1 are

the rotations of the unit circle S1 by the angles r0 and r1, respectivelly. It
was recently proved by X. Wu and G. Chen that if r0 and r1 are irrational,

then the system (X×S1, F ) has an uncountable distributionally δ-scrambled

set Sδ for every positive δ ≤ diam X × S1 = 1. Moreover, each point in Sδ
is recurrent but not weakly almost periodic (this answeres a question from

[Wang et al., Ann. Polon. Math. 82 (2003), 265–272]).

We generalize the above result by proving that if r0−r1 ∈ R\Q and X ⊂ Σ2

is a nontrivial subshift with the specification property, then the system

(X × S1, F ) also has the specification property. As a consequence, there

exist a constant δ > 0 and a dense Mycielski distributionally δ-scrambled
set for (X × S1, F ), in which each point is recurrent but not weakly almost

periodic.

1. Introduction

In the field of the qualitative theory of dynamical systems, the objects of

a special interest are dynamical systems that exhibit any kind of chaotic behav-

ior. Probably the most famous definition of chaos comes from Devaney [6] and

involves such notions as transitivity or sensitivity. In this paper we investigate
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another concept that is known as a distributional chaos and was introduced by

Schweizer and Smı́tal in [18] (under the name “strong chaos”). Roughly speak-

ing, it relates to the complexity of dynamics with a distribution function of

average distances between trajectories of two points (see the next section for

a definition).

The specification property was first introduced by Bowen [4], and it is one of

the strongest mixing properties. On the other hand, rotations of the circle are

examples of the simplest dynamical systems – they are, in fact, isometries and

their dynamics is, in some sense, rigid. However, it is known that skew product

systems involving irrational rotations can lead to surprising examples. Among

the most interesting results in this direction are the constructions from [9], where

irrational rotations on tori are used as a tool to construct a weakly mixing, min-

imal and uniformly rigid skew product system. This shows that simple rota-

tions, when properly controlled (or sufficiently randomized, depending on point

of view), may lead to chaotic systems with mixing properties. In our work we

are going to show that a kind of complicated dynamics, involving the specifi-

cation property, can arise as a consequence of a proper control (in the sense of

a skew product) of two (appropriately chosen) rotations. This result seems to be

somewhat surprising, since on each fiber (i.e., the unit circle) such dynamics is,

in fact, rigid, in the sense that all points never change their relative positions.

The origins of our model can be found in a paper by Falcó [8], who in fact

was inspired by much earlier paper by Afraimovich and Shilnikov, published

in 1974 [1]. In [8], Falcó was interested in describing the set of periods for the

skew product system in the form of (3.1), defined by N rotations and a full

two-sided shift over N symbols. The present paper is motivated by the works of

Wang et al. [19] and Wu and Chen [21]. In [19] there is a question concerning

the existence of an uncountable distributionally scrambled set S (a dynamical

system with a distributional chaos) such that each element of S is a recurrent

point. Wang et. al. formulated a sufficient condition for the existence of such

a set S (moreover, the chaotic set S they obtained by this condition did not

contain almost periodic points). They also presented an example of a class of

“shift directed alternating systems” of irrational rotations of the unit circle (see

Section 3 of the present paper for precise statement), for which they were not

able to verify the introduced condition and hence failed to prove in this case

the presence of a distributional chaos. The discussion was then continued in

[21], where it was shown that the systems considered in [19] actually contain an

uncountable distributionally scrambled set, in which each point is recurrent but

not weakly almost periodic.

In our paper we use the concept of the specification property in order to for-

mulate another global condition, guaranteeing the presence of a distributional
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chaos on a recurrent but not weakly periodic part of the phase space (see Theo-

rem 3.4). Then we show that a large class of skew product systems (containing

these introduced in [19]) exhibits the specification property and, as a by-product,

we provide a more detailed characterization of chaos (and chaotic sets) for the

systems considered in [21] (see Theorem 3.8 and Corollaries 3.11 and 3.12).

2. Preliminaries

In this section we establish a relevant background for further considerations

that involve topological and symbolic dynamics. Specifically, we recall some no-

tions related to the concepts of specification properties and distributional chaos.

From now on the sets of all nonnegative integers, integers, rational numbers and

real numbers are denoted by N, Z, Q and R, respectively, and the unit circle of

the complex plane is denoted by S1.

2.1. Topological dynamics. We say that a pair (X, f) is a dynamical

system, if (X, d) is a compact metric space and f : X → X is a continuous map.

A pair of points (x, y) ∈ X ×X is called distal if

lim inf
n→∞

d(fn(x), fn(y)) > 0.

A point x ∈ X is said to be recurrent if

lim inf
n→∞

d(fn(x), x) = 0,

and weakly almost periodic if for any ε > 0 there exists Nε > 0 such that

#{j : d(x, f j(x)) ≤ ε, 0 ≤ j < nNε} ≥ n

for every positive integer n. By Rec(f) and W(f) we denote the sets of all

recurrent points and all weakly almost periodic points, respectively. Clearly

W(f) ⊂ Rec(f).

For a positive integer n, points x, y ∈ X and a constant t ∈ R we put

Φ(n)
xy (t) =

1

n
#{0 ≤ i < n : d(f i(x), f i(y)) < t},

and then we define the following nondecreasing functions of the variable t:

Φxy(t) = lim inf
n→∞

Φ(n)
xy (t), Φ∗xy(t) = lim sup

n→∞
Φ(n)
xy (t).

Note that Φxy(t) = Φ∗xy(t) = 0 for t ≤ 0 and Φxy(t) = Φ∗xy(t) = 1 for t > diamX.

For any constant δ > 0 we consider the following symmetric relation on X:

DCδ = {(x, y) ∈ X ×X : Φ∗xy(t) = 1 for t > 0, Φxy(δ) = 0},

and we define

DC =
⋃
δ>0

DCδ .
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Note that DC is also a symmetric relation on X. Each member of DC is called

a DC1 pair. A set S ⊂ X is said to be distributionally δ-scrambled (distributio-

nally scrambled), if S×S \∆ ⊂ DCδ (resp. S×S \∆ ⊂ DC), where ∆ denotes

the diagonal in X ×X, i.e. ∆ = {(x, x) : x ∈ X}.
A dynamical system (X, f) is called transitive, if for any nonempty open sets

U, V ⊂ X we can find an integer n > 0 such that fn(U) ∩ V 6= ∅. We say that

(X, f) is weakly mixing, if (X × X, f × f) is a transitive system, and (X, f) is

totally transitive, if the system (X, fn) is transitive for every positive integer n.

The concept of specification was introduced by Bowen in [4] (see also [7]

and [2]). Note that the property which is called “specification” in [7] is the same

as the “strong specification” property considered in [2]. Since we want to use

a weaker version of this condition (which does not assume periodicity of a tracing

point), we decided to follow the terminology of [2].

We say that a dynamical system (X, f) has the strong specification property,

if for any δ > 0 there is a positive integer Nδ such that for any integer s ≥ 2,

any set {y1, . . . , ys} of s points in X, and any sequence 0 = j1 ≤ k1 < j2 ≤ k2 <
. . . < js ≤ ks of 2s integers satisfying jm+1 − km ≥ Nδ for m = 1, . . . , s− 1, we

can find a point x ∈ X such that for each positive integer m ≤ s and all integers

i satisfying jm ≤ i ≤ km, the following conditions hold:

d(f i(x), f i(ym)) < δ,(2.1)

fn(x) = x, where n = Nδ + ks.(2.2)

If (2.1) holds (but not necessarily (2.2)), then we say that (X, f) has the speci-

fication property. Note that if f is surjective, then we can replace (2.1) by the

following condition:

(2.3) d(f i(x), f i−jm(ym)) < δ.

In particular, we see that for any dynamical system generated by a surjective

map, the specification property implies the weak mixing.

2.2. Symbolic dynamics. Endow the set Σ2 = {0, 1}N with the metric d

given by: d(x, y) = 2−k if x 6= y and k = min{i ∈ N : xi 6= yi}, and d(x, y) = 0 if

x = y. Then (Σ2, d) is a compact metric space and the shift map σ : Σ2 → Σ2,

defined by σ(x)i = xi+1, is continuous. The system (Σ2, σ) is called the full shift

(on 2 symbols) and every closed invariant subset of Σ2, i.e. any subsystem of

(Σ2, σ), is called a shift or a subshift. When X is a subshift of (Σ2, σ), we write

σ for σ|X .

By a word we mean any finite sequence w ∈
∞⋃
n=1
{0, 1}n, and by |w| we denote

its length, i.e. the number of symbols in w. Note that in our convention, a word

has at least one symbol, i.e. it cannot be empty. Sometimes it is important to

know the number of occurrences of each symbol in a word w = w1 . . . wn, hence
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it is convenient to put |w|0 = #{i : wi = 0, 1 ≤ i ≤ n} and |w|1 = |w| − |w|0 =

#{i : wi = 1, 1 ≤ i ≤ n}. By L(X) we denote the language of the subshift X, i.e.

L(X) = {x[0,k) : x ∈ X, k > 0}, where x[i,j) = xixi+1 . . . xj−1 for 0 ≤ i < j <∞.

For any n ≥ 1 we write Ln(X) = {x[0,n) : x ∈ X}, and for any word w ∈ L(X)

we define its cylinder set in X, as the set CX [w] = {x ∈ X : x[0,n) = w}, where

n = |w|.
It is not hard to verify that a subshift X has the specification property if

and only if there is an integer k > 0 such that for any two words u,w ∈ L(X)

we can find a word v with |v| = k, such that uvw ∈ L(X). A subshift X is

called transitive, if for every two words u, v ∈ L(X) there is a word s such that

usv ∈ L(X), and X is called synchronized, if it is a transitive subshift and there

exists a word u ∈ L(X) (a synchronizing word) satisfying the following condition:

if a and b are such words that au, ub ∈ L(X), then also aub ∈ L(X). It was

proved in [3] that any subshift with the specification property is synchronized.

Having this result at hand it is easy to see that the specification property is

equivalent to the strong specification property for subshifts.

3. Results

Let (X, f) be a dynamical system on a compact metric space (X, d). The

following lemma was proved in [16] (see also [15]).

Lemma 3.1. If (X, f) has the specification property and a distal pair then

there is δ > 0 such that the set DCδ(f) is residual in X ×X.

We recall that a subset of a topological space Y is called residual, if it contains

a countable intersection of open and dense subsets of Y .

We need the following auxiliary lemma.

Lemma 3.2. Let X be a compact metric space containing at least two points

and let (X, f) be a surjective dynamical system with the specification property.

Then (X, f) has a distal pair and the set X \W(f) is residual in X.

Proof. Since X has at least two points there are nonempty open sets U

and V such that U ∩ V = ∅. Then using the specification property of f and

compactness of X it is not hard to prove that there is a closed set Λ ⊂ U ∪V , an

integer k > 0 and a continuous surjection π : Λ → Σ2 such that fk(Λ) = Λ and

π◦fk = σ◦π. It is known that the full shift contains uncountably many minimal

subsets (see, e.g. [11]), therefore we easily obtain that there are uncountably

many minimal sets for (Λ, fk) and, consequently, at least two different minimal

sets M1,M2 for (X, f). Hence we obtain a distal pair (q1, q2), where qi is any

point in Mi (i = 1, 2).
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Put ε = dist(M1,M2)/10 and define A =
∞⋂
m=1

Am, where Am is the set of

such points x ∈ X, for which there exists a positive integer n satisfying

#{j : d(x, f j(x)) ≤ ε, 0 ≤ j < nm} < n.

Clearly, for every ξ > 0 there is γ > 0 such that the following implication holds:

d(x, y) < γ ⇒ d(f j(x), f j(y)) < ξ for each j = 0, 1, . . . , nm.

In particular, for all points y ∈ X in a sufficiently small neighborhood of x we

have

#{j : d(x, f j(x)) > ε, 0 ≤ j < nm} ≤ #{j : d(y, f j(y)) > ε, 0 ≤ j < nm},

which proves that each set Am is open.

Now establish any integer m > 0. Fix an open set U ⊂ X, a point x ∈ U
and a positive constant δ < ε/2, such that D = B(x, δ) ⊂ U . Then there exists

i ∈ {1, 2} such that dist(D,Mi) > 3ε. Fix any point q ∈ Mi and let N > 0

be provided to δ by the specification property. Then, for j1 = k1 = 0 and

j2 = mN , k2 = (m2 +m)N there exists a point z ∈ X such that d(z, x) < δ and

d(f j(z), f j(q)) < δ for j2 ≤ j ≤ k2. But then we have z ∈ D and furthermore

#{j : d(z, f j(z)) ≤ ε, 0 ≤ j < N(m+ 1)m}

≤ #{j : dist(f j(z),Mi) ≥ ε, 0 ≤ j < N(m+ 1)m} ≤ mN < (m+ 1)N.

This shows that z ∈ Am, proving that Am is dense, and, as a result, the set A is

residual. But A ⊂ X \W(f) completing the proof. �

The next result can be derived from the works of Kuratowski and Mycielski

(see, e.g. [13]). Let us recall that a set M is a Mycielski set, if it is a countable

union of Cantor sets.

Theorem 3.3 (Mycielski). Let Y be a compact metric space without isolated

points and assume that Q is a residual subset of Y × Y . Then there exists

a Mycielski set M dense in Y , such that for any distinct x, y ∈ M we have

(x, y) ∈ Q.

The following theorem, which is one of the main results of the paper, shows

that the specification property implies distributional chaos.

Theorem 3.4. Assume that the system (X, f) has the specification property,

the map f is surjective and X has at least two points. Then there exist a constant

δ > 0 and a dense Mycielski set M , which is distributionally δ-scrambled, and,

additionally, M ⊂ Rec(f) \W(f).
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Proof. By Lemma 3.2 (X, f) has a distal pair. As a consequence, by

Lemma 3.1 there is δ > 0 such that the relation DCδ(f) is residual in X ×X.

Each surjective map with the specification property is transitive, hence the set

of recurrent points Rec(f) is residual in X. By Lemma 3.2 the set X × X \
W(f) ×W(f) is residual in X ×X. It is easy to check that any set containing

at least two points and admitting a weakly mixing map must be perfect. Now

it is enough to apply Theorem 3.3 to the set

R = (DCδ(f) ∩ Rec(f)× Rec(f)) \W(f)×W(f). �

Standing assumption. For the reminder of this paper X ⊂ Σ2 will be

a subshift with the specification property such that #X ≥ 2, and r0 and r1 will be

arbitrary real numbers (in each result we will specify their additional properties,

if necessary).

For any α ∈ R denote by ρα the rotation by the angle α on S1, i.e.

ρα(z) = e2πiαz for every z ∈ S1.

For a compact metric space (X, d) we will also denote by d the product metric

on X × S1, induced by the metric d on X and the Euclidean metric | · | on S1

(we hope it will not lead to any confusion). Define a map F : X × S1 → X × S1

by

(3.1) F (x, t) = (σ(x), Rx0
(t)),

where Rj(z) = ρrj (z) for j = 0, 1 and every z ∈ S1. For simplicity of the

notation, we will write Rv = Rvn ◦ . . . ◦ Rv0 for any word v = v0 . . . vn ∈ L(X)

(vi ∈ {0, 1}).
At first we show the following lemma that supplies some simple consequence

of the specification property in a subshift case.

Lemma 3.5. There exist words u, v, w ∈ L(X) such that u is synchronizing,

|v| = |w|, |v|0 > |w|0, and uvu, uwu ∈ L(X).

Proof. By [3] the shift X is synchronized. Let u be a synchronizing word.

First we claim that there are words p, q such that |q| = |p|+1, |p| > |p|0 > 0 and

upu, uqu ∈ L(X). By the specification property there exists a positive integer

k, such that any two words can be joined by the word of the length k. There

are words a, b, c, d ∈ L(X) with |a| = |b| = |c| = |d| = k, such that ua0b1c1du ∈
L(X) (note that 0, 1 ∈ L(X), since #X ≥ 2). Hence ua0b1c ∈ L(X) and so

we have a word e ∈ L(X) with |e| = k, such that ua0b1ceu ∈ L(X). Now it is

enough to take p = a0b1ce and q = a0b1c1d.

Denote n = |p|+|u| = |up| and take the words v = (pu)np and w = (qu)n−1q.

Then |v| = |w| and, moreover, uvu, uwu ∈ L(X) are also synchronizing words.
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If |up|0 ≥ |uq|0, then

|v|0 = (n+ 1)|up|0 − |u|0 > n|up|0 − |u|0 ≥ n|uq|0 − |u|0 = |w|0.

In the other case we have

|w|0 =n|uq|0 − |u|0 = n|up|0 + n(|uq|0 − |up|0)− |u|0
≥n|up|0 + n− |u|0 > n|up|0 + |up|0 − |u|0 = |v|0.

The proof is finished. �

The proof of Theorem 3.8 is based on the auxiliary lemmas presented below.

Lemma 3.6. Let v, w be words such that |w| = |v| ≥ |v|0 > |w|0 and assume

that r0 − r1 ∈ R \ Q. Then for every δ > 0 we can find m > 0 satisfying the

following condition: for every s, t ∈ S1 there is j ∈ {0, . . . ,m} such that

|Rvjwm−j (t)− s| < δ.

Proof. Put k = |v|0−|w|0 > 0 and fix any δ > 0. Let U1, . . . , Un be a finite

cover of S1 by nonempty open sets with diameters less than δ/2. Since ρk(r0−r1)
is topologically transitive, for each i1, i2 ∈ {1, . . . , n} there is m(i1, i2) such that

ρ
m(i1,i2)
k(r0−r1)(Ui1) ∩ Ui2 6= ∅.

Put m = maxi1,i2∈{1,...,n}m(i1, i2). Then for every s, u ∈ S1 there is j ∈
{1, . . . ,m} such that |ρjk(r0−r1)(u) − s| < δ. But a simple calculation shows

that for any t ∈ S1, if we put u = ρmr1|v|+m(r0−r1)|w|0(t), then for any 0 ≤ j ≤ m
we have

Rvjwm−j (t) = ρjk(r0−r1)(u) = ρjk(r0−r1)(u),

which shows that j is as desired. �

Lemma 3.7. Assume that r0 − r1 ∈ R \ Q. Then for every δ > 0 there is

a constant N > 0 such that for any x ∈ X, p ∈ L(X) and t, s ∈ S1, there is

a word q ∈ LN (X) such that pqx ∈ X and d(FN (qx, t), (x, s)) < δ.

Proof. Fix any δ > 0. Let u, v, w be words provided by Lemma 3.5. Let

m be an integer provided by Lemma 3.6 for δ and the words uv, uw. Let k be an

integer provided by the specification property, so that any two words in L(X)

can be joined together by a word of length k. Put N = 2k+m|uw|+ |u|, and fix

any x ∈ X, p ∈ L(X) and t, s ∈ S1. We claim that there are words a, b ∈ Lk(X)

such that pau ∈ L(X) and ubx ∈ X. To see it, note that there exists a sequence

of words (bn)∞n=1 ⊂ Lk(X) such that ubnx[0,n) ∈ L(X). There are finitely many

different words of length k, hence there is b ∈ Lk(X) such that bn = b for

infinitely many n, and so ubx ∈ X. Let j ∈ {0, . . . ,m} be an integer provided
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by Lemma 3.6 for the points Ra(t), R−1ub (s) ∈ S1. The word u is synchronizing,

hence if we put q = α(uv)j(uw)m−jub, then q ∈ LN (X), pqx ∈ X. Moreover,

d(FN (qx, t), (x, s)) = d((x,Rq(t)), (x, s))

= |Rq(t)− s| = |R−1ub (Rq(t))−R−1ub (s)|

=
∣∣R(uv)j(uw)m−j (Ra(t))−R−1ub (s)

∣∣ < δ.

The proof is completed. �

Now we are ready to prove the main result of this paper.

Theorem 3.8. If r0 − r1 ∈ R \ Q then the system (X × S1, F ) has the

specification property.

Proof. Fix any δ > 0 and let N > 0 be a constant provided by Lemma 3.7.

Let N̂ = N + k, where k is the smallest positive integer, for which the following

condition holds:

x[0,k) = y[0,k) ⇒ d(x, y) < δ for every x, y ∈ X.

Fix any integer n ≥ 2, points (x1, t1), . . . , (xn, tn) ∈ X × S1 and integers 0 =

a1 ≤ b1 < . . . < an ≤ bn with aj+1 − bj ≥ N̂ for all j ∈ {1, . . . , n − 1}. We

are going to apply Lemma 3.7 inductively. At first, we put p1 = (x1)[0,a2−N)

and apply Lemma 3.7 with x = σa2(x2) = (x2)[a2,∞), p = p1, t = Rp1(t1) and

s = R(x2)[0,a2)
(t2), obtaining a word q1 ∈ LN (X) such that z1 = p1q1σ

a2(x2) ∈ X
and

d(FN (q1σ
a2(x2), Rp1(t1)), (σa2(x2), R(x2)[0,a2)

(t2))) < δ.

Let us note that b1 + k ≤ a2 − N̂ + k = a2 −N and, consequently, (z1)[0,b1+k) =

(x1)[0,b1+k). Then, for any j ∈ {a1, . . . , b1} we have d(F j(z1, t1), F j(x1, t1)) < δ,

and

|Rp1q1(t1)−R(x2)[0,a2)
(t2)| ≤ d(F a2(z1, t1), F a2(x2, t2))

= d(FN (q1σ
a2(x2), Rp1(t1)), (σa2(x2), R(x2)[0,a2)

(t2))) < δ.

Now we apply Lemma 3.7 with x = σa3(x3), p = p1q1p2, t = Rp1q1p2(t1) and

s = R(x3)[0,a3)
(t3), where p2 = (x2)[a2,a3−N). That way we obtain q2 ∈ LN (X)

such that z2 = p1q1p2q2σ
a3(x3) ∈ X and

d(FN (q2σ
a3(x3), Rp1q1p2(t1)), (σa3(x3), R(x3)[0,a3)

(t3))) < δ.

Again, since sufficiently long prefix of z2 coincides with a prefix of z1 we obtain

d(F j(z2, t1), F j(x1, t1)) < δ
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for any j ∈ {a1, . . . , b1}. Moreover,

d(F j(z2, t1), F j(x2, t2))

= d(F j−a2(p2q2σ
a3(x3), Rp1q1(t1)), F j−a2(σa2(x2), R(x2)[0,a2)

(t2))) < δ

for any j ∈ {a2, . . . , b2}, because σj−a2(p2q2x3) and σj(x2) have a common prefix

of length at least k and

|Rp1q1(x2)[a2,j)
(t1)−R(x2)[0,j)(t2)| = |Rp1q1(t1)−R(x2)[0,a2)

(t2)| < δ.

Additionally,

|Rp1q1p2q2(t1)−R(x3)[0,a3)
(t3)| = d(F a3(z2, t1), F a3(x3, t3))

= d(FN (q2σ
a3(x3), Rp1q1p2(t1)), (σa3(x3), R(x3)[0,a3)

(t3))) < δ.

Consequently, the point (z2, t1) ∈ X × S1 δ-traces for a1 ≤ j ≤ b1 and

a2 ≤ j ≤ b2 the points (x1, t1), (x2, t2). After finite number of applications

of Lemma 3.7 we obtain a point (zn, t1) ∈ X × S1 satisfying all the condi-

tions required in the definition of the specification property (for the last step we

can take the additional point (xn+1, tn+1) = (x1, t1) together with the integers

an+1 = bn+1 = bn + N̂). �

If r0−r1 ∈ Q, the system (X×S1, F ) does not have the specification property,

because it is not even weakly mixing.

Proposition 3.9. If r0− r1 ∈ Q, then the system (X × S1, F ) is not weakly

mixing.

Proof. Without loss of generality we can assume that 0 ≤ r0 ≤ r1 < 1 and

q := r1 − r0 ∈ [0, r1] ∩ Q. Then there exist an integer n > 0 and a collection

V = {(p0, q0), . . . , (pn, qn)} of open intervals, satisfying the following conditions:

(i) 0 = p0 < q0 < p1 < q1 < . . . < pn < qn < 1,

(ii) qi − pi = qj − pj and pi+1 − qi = pj+1 − qj for each pair of indices i, j ∈
{0, . . . , n}, where for technical reasons we put pn+1 := 1,

(iii) Rq(V ) = V , where V =
⋃n
i=0{e2πiθ : pi < θ < qi} ⊂ S1,

(iv) there is α > 0 such that if we denote V ′ = Rα(V ) then for every θ ∈ R we

have Rθ(V ) ∩ V = ∅ or Rθ(V ) ∩ V ′ = ∅.
Since Rθ is an isometry, to ensure (iv) it is enough to demand in (ii) that q0−p0
is sufficiently small.

Now let us note that regardless of an established sequence in X, we have

guaranteed that under iterations of the map F the set V will always follow in

the same way, i.e.

F k(x, V ) = F k(y, V ) for any k > 0 and x, y ∈ X satisfying σk(x) = σk(y).
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Indeed, by the condition (iii) we obtain

Rr1(V ) = Rr0+q(V ) = Rr0(Rq(V )) = Rr0(V ),

which clearly ensures the above statement. Hence, for every N > 0 we have

FN (X × V ) = X × Rnr0(V ) and, consequently, by the choice of V and V ′, we

see that FN (X × V )∩ (X × V ) = ∅ or FN (X × V )∩ (X × V ′) = ∅ proving that

the system (X × S1, F ) is not weakly mixing. �

But even in the case r0 − r1 ∈ Q our map can still be transitive.

Proposition 3.10. If {r0, r1} ∩ R \ Q 6= ∅ then the system (X × S1, F ) is

totally transitive.

Proof. By Theorem 3.8 we may assume that r0−r1 ∈ Q. Fix any nonempty

open sets U, V ⊂ X × S1 and integer N > 0. Without loss of generality we may

assume that U and V are taken from the base of the product topology, i.e.

U = U1 × U2 and V = V1 × V2. Then, there are words u, v ∈ L(X) such that

their cylinder sets satisfy CX [u] ⊂ U1 and CX [v] ⊂ V1. Since X is a subshift with

the specification property (and hence synchronized), then taking a synchronizing

word w ∈ L(X) we can find words a, b, c ∈ L(X) such that uawbwcv ∈ L(X)

and b contains both symbols 0 and 1. Note that by the specification property we

can control lengths of the words a, b, and c, in particular we may assume that

|ua| = |wb| = |wc| = sN for some integer s > 0. Let us also notice that for any

k > 0 we have αk = ua(wb)kwc ∈ L(X) and αkv ∈ L(X).

Now, take any t ∈ U2. Since Rwb is an irrational rotation by the assumption

and

Rαk
(t) = Rua ◦R(wb)k ◦Rwc(t) = Rkwb ◦Ruawc(t),

we have Rαk
(t) ∈ V2 for some k > 0. Hence, taking any z ∈ X with the prefix

αkv and putting m = |αk| = (k + 2)|wb| = Ns(k + 2), we obtain

(FN )s(k+2)(z, t) = Fm(z, t) ∈ Fm(U1 × U2) ∩ (V1 × V2),

which completes the proof. �

The following statements complete the paper, supplying almost full descrip-

tion of a distributional chaos for the system (X × S1, F ).

Corollary 3.11. Assume that r0 − r1 ∈ R \ Q. Then there is a constant

δ > 0 such that the system (X × S1, F ) has a dense Mycielski set M ⊂ X × S1,

which is distributionally δ-scrambled and, additionally, M ⊂ Rec(F ) \W(f).

Proof. It is enough to combine Theorem 3.4 with Theorem 3.8. �

The proof of the next theorem uses standard techniques (see [14] and [17]),

therefore we omit some details.
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Corollary 3.12. Assume that r0− r1 ∈ Q. Then there is a Cantor set S ⊂
X and a constant γ > 0 such that for any t ∈ S1 the set S×{t} is distributionally

γ-scrambled for the system (X × S1, F ) and S × {t} ⊂ Rec(F ) \W(f).

Proof. Since F acts in the same way on each fibre X × {t}, the proof does

not depend on t ∈ S1. Fix any distal pair (p, q) ∈ X ×X (which exists by the

specification property) and any positive constant γ < infn∈N d(σn(p), σn(q)).

Let w be a synchronizing word and put A = CX [w] × {t}. Note that if we fix

any two disjoint open sets U, V ⊂ CX [w], then there exist arbitrarily long words

u and v of the same length satisfying |u|0 6= |v|0, such that wuw,wvw ∈ L(X),

CX [wu] ⊂ U , and CX [wv] ⊂ V (constructed as in Lemma 3.5).

Since r0 − r1 ∈ Q, there exists k > 0 such that R(wv)k(t) = R(wu)k(t).

Then, taking x, y ∈ U and r, z ∈ V given by x = (wu)k(wu)∞, y = wuap,

r = (wv)k(wu)∞ and z = wvbq, where the words a and b, satisfying |a| = |b|,
are obtained by the specification property, we easily conclude that the relation

DCγ(F ) is a residual subset of A×A (note that Φ∗(x,t)(r,t)(s) = 1 for any s > 0

and Φ(y,t)(z,t)(γ) = 0, and we can use the specification property to construct

a pair that follows close to, alternately, ((x, t), (r, t)) and ((y, t), (z, t)), e.g. see

[17] for more details).

Now, if we put α = (wu)k and β = (wv)k then α∞ and β∞ belong to distinct

periodic orbits. In particular, there are ε > 0 and an integer m > 0, such that

if x ∈ CX [αm] and y ∈ CX [βm] then for any i, j ∈ {0, . . . , |α| − 1} we have

d(σi(x), σj(y)) > ε. Hence, we can find a sequence of positive integers ni such

that

z = αmβn1αn2βn3αn4βn5 . . . ∈ Rec(σ) \W(σ).

But for any s ∈ S1 we have Rα(s) = Rβ(s) and, since Rα is a rotation (rational or

irrational), return times (to any fixed neighbourhood) of points recurrent under

Rα synchronize with return times of any recurrent point (and its neighborhood)

in any dynamical system; it is, so-called, product recurrence (see, e.g. [10] for

more details). In particular, the point (z, t) is recurrent for σ|α| × Rα and, as

a consequence, (z, t) ∈ Rec(F )\W(f) (note that Fn|α|(z, t) = (σ|α|×Rα)n(z, t)).

This proves that the set Rec(F ) \W(f) ∩ A is dense in A. Now, repeating the

argument from the proof of Lemma 3.2, we can verify that Rec(F ) \W(f) is

a Gδ set in A, thus it is residual in A. Then it is easily seen that also the set

DCγ(F ) ∩ (Rec(F ) \W(f))× (Rec(F ) \W(f)) ∩A×A

is residual in A×A. The proof is finished by an application of Theorem 3.3. �

A transitive system with a dense set of periodic points is called Devaney

chaotic, after the definition that appeared in Devaney’s book [6]. It may happen,

however, that a system with the specification property does not have periodic
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points (see, e.g. [12, Example 5.6]). This motivates further considerations on

the density of the set of periodic points for the system (X × S1, F ).

Example 3.13. Assume that r0 and r1 are rationally independent irrational

numbers, i.e. mr0 +nr1 ∈ R \Q for every m,n ∈ Z, where at least one of m,n is

not zero. Then the system (X × S1, F ) does not have periodic points, since on

the second coordinate we always have an irrational rotation of the initial point.

Then a necessary condition for a periodic point to exist, is that there are

positive integers m and n such that mr0 + nr1 ∈ N. Note that if we want

(X × S1, F ) to be additionally transitive, then one of r0, r1 (hence both) has

to be irrational. But then simple calculations yield that r0 − r1 ∈ R \ Q and

so, by Theorem 3.8, we are in the case when the system (X × S1, F ) has the

specification property.

For example, if X is the full shift, r0 ∈ (0, 1) \ Q and r1 = (1 − r0)/2, then

for any word w ∈ X we can find a word v ∈ X such that for any t ∈ S1 the point

((wv)∞, t) is periodic (simply, v must be such word that wv contains twice that

many the symbols 1 as the symbols 0). However, if we keep the same r0 and

r1, but as X we take a subshift with the specification property such that every

occurrence of 1 is separated by at least two occurrences of 0, then the above

assignment for r0 and r1 will not lead to a periodic point for (X × S1, F ).

The above example inspires the following question.

Question 3.14. When does the system (X ×S1, F ) defined by (3.1) possess

a dense set of periodic points?
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