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EXISTENCE OF SOLUTIONS
IN THE SENSE OF DISTRIBUTIONS
OF ANISOTROPIC NONLINEAR ELLIPTIC EQUATIONS
WITH VARIABLE EXPONENT
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ABSTRACT. The aim of this paper is to study the existence of solutions in
the sense of distributions for a strongly nonlinear elliptic problem where
the second term of the equation f is in W_l’?/(')(Q) which is the dual

space of the anisotropic Sobolev Wol’?( ' )(Q) and later f will be in L(Q).

1. Introduction

Let © be a bounded domain of RY (N > 2) with smooth boundary 9. For
the variable vectorial exponent 7' (-) = (po(-),...,pn(-)), we assume that for
i=0,...,N, the functions p;(z) € C;(Q) (defined in Section 2), where

(1.1) po(x) > max{p;(z), i=1,...,N}, foranyx € .
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Our aim is to prove the existence of solutions in the sense of distributions to the
anisotropic nonlinear elliptic problem:

N
- Z Oy, a5(x, u, Vo) + g(z, u, V) + d(z)|u|P° @20 = f in Q,
i=1

u=20 on 0%},

(1.2)

where the right-hand side f is in W—17'(: )(Q) which is the dual space of the
anisotropic Sobolev space I/VO1 Xis )(Q) and later f will be in L(€2). The positive
function d(x) belong to L*(2), and there exists a constant dy > 0 such that
d(z) > dop almost everywhere in €.

We assume that for ¢ = 1,..., N the function a;: @ x R x RV — R is
Carathéodory function (i.e. measurable with respect to = in Q for every (s, &) in
R x RY and continuous with respect to (s, &) in R x RV for almost every x in Q)
which satisfies the following conditions:

(1.3) la;(z,s,&)| < B (K;(z)+ |s|pi(“”)_1 + |§i|p’i(’”)_1) fori=1,..., N,

(1.4)  ai(x, s, )& > algP@® fori=1,...,N,
a;(-, -, -) is strictly monotone, i.e. for all £ = (&1,...,&n) and & = (&1,...,&y)
in RV, we have

(15) (ai(x,s,f) - ai(m,s,fl))(fi - g:) > 07 for 574 7& 523

for almost every x €  and all (s,¢) € R x RY, where K;(-) is a non-negative
function lying in LP:(")(Q) where 1/p;(z) + 1/pi(z) = 1 and o, 8 > 0 are two
positive constants.

Note that, Gwiazda et al. in [17] studied a steady and in [18] a dynamic model
for non-Newtonian fluids under an additional strict monotonicity assumption
on the operator. The authors used Young measure techniques in place of a
monotonicity method. Moreover, a version of the Minty—Browder trick adapted
to the setting of generalized Orlicz spaces was introduced in [27] (see also [19])
in framework of non-Newtonian fluids.

The nonlinear term g(x, s,&) is a Carathéodory function which satisfies

(1.6) g(x,8,&)s >0,
N

(1.7) l9(,5,€)] < b(ls])(e(x) + ) I&

i=1

;Dz‘(m))7

where b(-): RT — RT is a continuous non-decreasing function, and ¢(-): Q —
R* with ¢(-) € L}(Q).

In view of (1.7), the Carathéodory function g(x, u, Vu) does not define a map-
ping from W&’?(')(Q) into its dual, but from W&’?(')(Q) N L*(Q) into L'(2)
(see also [9]).
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In this paper, we prove that g(z,u, Vu) € L}(Q) for u € Wol’?( ' )(Q) solution
in the sense of distribution, in both cases of f € W=17'(:)(Q) and f € L}(Q).

The study of nonlinear elliptic equation involving p-Laplace operator is based
on the theory of standard Sobolev spaces WP (Q) in order to find weak solu-
tions. These spaces consist of functions that have weak derivatives and satisfy
certain integrability conditions. In the case of p(-)-Laplace equations, the nat-
ural setting for this approach is the use of the variable exponent Lebesgue and
Sobolev spaces LP()(€Q) and W™P(*)(Q). These spaces were thoroughly stud-
ied in [12], [28]-[30] and the references therein. Partial differential equations
and variational problems involving p( - )-growth conditions have been extensively
studied in the last decades; see e.g. [1]-[4], [10], [11]. The reason is that they
can model various phenomena arising from the study of elastic mechanics, elec-
trorheological fluids or image restoration (for more details see [25]).

In this paper, the operator involved in (1.2) is more general than the p(-)-
Laplace operator. Thus, the variable exponent Sobolev space W™»( )(Q) is not
adequate to study nonlinear problems of this type. This leads us to seek weak
solutions for problem (1.2) in a more general variable exponent Sobolev space,
the anisotropic variable exponent Sobolev space VVO1 zis )(Q) which was recently
introduced by Mihalescu—Pucci-Raduslescu in [25].

Note that, Benboubker et al. studied in [7] the following problem which is
quite close to (1.2):

—div(a(z,u, Vu) + ¢(u)) + g(x,u, Vu) = in Q,

1.8
(18) u=20 on 092,

where € W=1'()(Q) + L1(Q). In [7] the authors proved among others result,
existence of entropy solutions. Here, our operator is anisotropic and more general
than the one used in [7]. In the case where ¢ = 0, d = 0 and f € L*°(Q) the
authors proved in [23] the existence and uniqueness of a weak energy solution.

We refer the reader to [20] for results on existence of renormalized solutions
of elliptic problems of type

Bz, u) —div(a(z, Vu) + é(u)) > f in Q,

1.9
(1.9) u=20 on 02,

with right-hand side f € L'(Q). The function ¢ is assumed to be locally Lip-
schitz. The vector field a(-|-) is monotone in the second variable and satisfies
a non-standard growth condition described by an z-dependent convex function
that generalizes both LP(*) and classical Orlicz settings. ((z, -) is a maximal
monotone operator. In the case where § = 0 and ¢ = 0, the authors proved in
[16] existence results for the elliptic problem in a generalized Orlicz—Musielak
spaces. For the basic properties of anisotropic Orlicz—Musielak spaces see [15]
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and [26]. We mention that in [26] the author considered an anisotropic parabolic
problem.

Motivated by the papers [3], [23] and the ideas in [7], the main goal of
this paper is to study the existence of solutions in the sense of distributions
for problem (1.2). Indeed, using the Galerkin method we can thereby prove
existence of a weak solution wu, of some approximate problem. In a second
step we show that a subsequence of the approximate solutions u,, converges to
a solution of problem (1.2). In this step we combine truncation techniques and
basic properties of pseudo-monotone operators. We also use some idea devoted
to renormalized solutions for elliptic problem [20].

The remaining part of this paper is organized as follows: Section 2 is devoted
to mathematical preliminaries, including among other things, a brief discussion
of anisotropic variable exponent Sobolev space. In Section 3, some technical
Lemmas are given. The main existence results are stated and proved in Section 4.

2. Preliminaries

As the exponent p;(-) appearing in (1.3), (1.4) and (1.7) depends on the
variable x, we must work with Lebesgue and Sobolev spaces with variable ex-
ponent. For this purpose, in this section, we start by recalling some definitions
of Lebesgue, Sobolev and anisotropic Sobolev spaces with variable exponent
and give some of their properties. Roughly speaking, anistropic Lebesgue and
Sobolev spaces are functional spaces of Lebesgue’s and Sobolev’s type in which
different space directions have different roles.

Let © be a bounded open subset of RY (N > 2), we denote

C+(Q) = {continuous function p(-): Q + R such that 1 < p~ < p* < oo},

where p* = max p(z) and p~ = min p(x).
z€eQ €N
We define the Lebesgue space with variable exponent LP(*)(Q) as the set of

all measurable functions u: Q — R for which the convex modular
Py (u) = / ulP™ da
Q
is finite. If the exponent is bounded, i.e. if p™ < 400, then the expression
||qu(.) =inf{A>0: pp(.)(u/)\) <1}

defines a norm in LP(") (), called the Luxemburg norm.

The space (LPC)(Q), ]| - [l,(.)) is a separable Banach space. Moreover, if
1 <p~ <pt < +oo, then LP()(Q) is uniformly convex, hence reflexive, and its
dual space is isomorphic to LP'(")(Q), where 1/p(z) 4+ 1/p/(z) = 1.
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Finally, we have the Holder type inequality:

1 1
/uvdw < <+ )|U||p(-)||v|p/(~)
Q p

pT
for all w € LP()(Q) and v € L”/(')(Q).
An important role in manipulating the generalized Lebesgue and Sobolev

(2.1)

spaces is played by the modular p,(.) of the space LP()(Q). We have the fol-
lowing result:

PROPOSITION 2.1 (see [14], [28]). If un,u € LPC)(Q), then the following
properties hold true:
(a) llullpc.y <1 (resp. =1, > 1) if and only if p(u) <1 (resp. =1, > 1),
. - +
(b) if [l > 1 then |[ull”,., < plu) < [ull?}., , and
‘ + -
if ullp(.) <1 then ull’,) < p(w) < lul%,. ),
(¢) llunllpc.y = 0 if and only if p(u,) — 0, and
|wnllpc.y = oo if and only if p(un) — oo,
which implies that the norm convergence and the modular convergence are equi-

valent.

Now, we define the variable exponent Sobolev space by
whPC(Q) = {u e LPC)(Q) and |Vu| € LPC)(Q)1,
which is a Banach space equipped with the following norm
ullp(y = lullpcy + IVullpy  for all w € WHPE)(Q).

The space (WLP()(Q), || [l1,5(.)) is a separable and reflexive Banach space.
We denote by Wol’p( )(Q) the closure of C5°(Q) in WP()(Q), and we define
the Sobolev exponent by

Np(-) g
P ()= d N—p() for p(-) <N,
00 for p(-) > N.

PROPOSITION 2.2 (see [13]).

(a) Assuming p(-) € C4(Q) i.e. 1 < p~ < pt < oo, the spaces WP ) (Q)
and Wol’p( )(Q) are separable and reflexive Banach spaces.

(b) If p(-), q(-) are in CL(Q) and q(x) < p*(x) for any x € Q, then the
embedding Wol’p(')(Q) e LIC)(Q) is continuous and compact.

REMARK 2.3. Recall that the definition of these spaces requires only the
measurability of p(-), in this work we do not need to use Sobolev and Poincaré
inequality. Note that the sharp Sobolev inequality is proved for p(-) log-Holder
continuous, while the Poincaré inequality requires only the continuity of p(-),
(see [12], [21]).
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Now, we present the anisotropic Sobolev space with variable exponent which
is used for the study of problem (1.2).
Let po(x),...,pn(z) be N + 1 variable exponents in C(£2). We denote

P() =0l ) on()}, Oppu=u and Dypu= "

oz, fori=1,...,N,

and we define

(2.2) p=min{py,...,py} thenp>1.

The anisotropic variable exponent Sobolev space WwLP )(Q) is defined as follow:
WhPC)(Q) = {u e L?0)(Q), dp,ue LP()(Q), i=1,..., N},

endowed with the norm
N

(2.3) lulli gy =D 10z,ull o) -
i=0

We define also Wol’?( )(Q) as the closure of C§°(f2) in WL )(Q) with respect
to the norm (2.3). The space (W&’?(')(Q), ||u|\1)?(_)) is a reflexive Banach
space (cf. [25]).

LEMMA 2.4. We have the following continuous and compact embeddings:
(a) if p < N then Wol’?(‘)(ﬂ) —— LUQ), for q € [p,p*[, where p* =
(b) if p= N then W&’?(')(Q) —— L1(Q), for all q € [p,+oo],

(c) ifp> N then W7 ()(Q) s Lo(Q) N COQ).

The proof of this lemma follows from the fact that the embedding W, i )(Q)
— WO1 2(Q) is continuous, and in view of the compact embedding theorem for
Sobolev spaces.

PROPOSITION 2.5. The dual OfVVol’ﬁ( )(Q) is denote by W—17'(: )(Q), where

7)) ={pp(), ... PN /i) +1/pi(-) =1, (cf. [8] for the constant ex-

ponent case), and for each F € W’l’?(')(Q) there exists f; € LP:()(Q) for
N

1=0,...,N, such that F' = fo — > Oy, fi. Moreover, for all u € VV&’?(')(Q),

i=1
we have

N
(F,u) = ;/ﬂfﬁwiudw.

We define a norm on the dual space by

N
IF—13 ¢y = D I fillp -
1=0
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3. Some technical lemmas

LEMMA 3.1 (see [22, Theorem 13.47]). Let (uy)n be a sequence in L*(Q) and
u € LY(Q) such that u, — u almost everywhere, u,,u > 0 almost everywhere
and [o up dz — [ udz, then u, — u in L'(S).

LEMMA 3.2 (see [6]). Let g € LP()(Q) and g, € LPU)(Q) with ||gnly.) < C
for 1 < p(z) < oco. If gn(x) = g(x) almost everywhere in 2, then g, — g in
LPC)(Q).

LEMMA 3.3. Let (un)n be a bounded sequence in Wol’ﬁ(')(Q). Ifup, — u in

Wolj(')(fl), then Ti(un) — Tx(u) in W(}’?(‘)(Q), where, for any k >0, Ti(-)
is the truncation function defined by Ty(s) := max{—k, min{k, s}}.

PRrOOF. Since u,, — u in Wol’?(')(Q), we have u, — v in LE(Q2). It fol-
lows that u, — wu almost everywhere in 2, therefore Ty (u,) — Tk(u) almost

everywhere in {). Consequently,

N N
Z/ |0y, T () [P da = Z/ |0, Un [P ) dac
=179 i=1 71

[un|<k}

N
<3 [ 1o,
=1

we deduce that (Tx(un))s is bounded in Wg’?(')(Q), then Ty (uy) — vi, weakly
in Wol’ﬁ( ')(Q), therefore vy, = Ty (u) and we obtain

Pi(®) dp < o0,

Ti(up) — Tio(w) in WEP (@), 0

LEMMA 3.4. Let u € Wol’ﬁ(')(ﬂ) then Ty (u) € Wol’?(')(Q) for all k > 0.
Moreover, we have Ty, (u) — u in Wol’?( ' )(Q) as k — oo.

PRrROOF. We have u € V[fol’y(')(ﬁ)7 it is clear that Ty (u) € Wol’?(')(ﬂ) and

N N
=079 i—0 Y tlul<k}

N

+Z/ |00, T (1) — O, u|P'™) da
i=0 7 {lul>k}
N
= / | T () — u|Po® dx+Z/ |0, [P @) duz.
{lul>k} i=1 7 {lul>k}

Since T (u) — u almost everywhere in Q as k — oo and by using the dominated

convergence theorem, we obtain

N
Ty () — ulPo® da + / |0,
/{|u>k} Zz:; {

Pi®) dy — 0 as k — oo.

[u|>k}
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Finally, [|T)(v) — ully, 5.y = 0 as k — oo. O

LEMMA 3.5. Assuming that (1.3)—(1.5) hold and let (uy), be a sequence in
W&’?(')(Q) such that u, — u in W&’?(')(Q) and

(3.1) / ([P =201, — [P0 =20 (ur, — )
Q

N
+ Z /Q(ai(x, Un, VUy) — (X, U, VU))(Op, U, — Op,u) dz — 0,
i=1

L7(-)

then u,, = u in W (Q) for a subsequence.
PROOF. Let

S = (|Un‘p0(z)72un - |U|p0(z)72u) (un — u)
N
+ Z(ai(x, Uy V) — i (T, Up, VU)) (O, Up, — O, 1)
i=1
thanks to (1.5) we have S,, is a positive function, and by (3.1), S, — 0 in L'()
as n — oo.
Since u, —u in WOI’?( ' )(Q), using the compact embedding we obtain u,, —u
in L2(Q), and since S,, — 0 almost everywhere in {2, there exists a subset B
in Q of measure zero such that for all z € Q\ B: |u(x)] < 00, |0, u(z)| < oo,
K;(z) < 00, up, — u and S, — 0 almost everywhere in Q.
By using (1.3)—(1.4) and some estimates, we obtain
N

Sp(z) = Z(ai(x,un, V) — ai(z,tn, VUu)) (Op, Uy — Oy, u)
i=1
+ (|un|po($)*2un _ \u|p0(‘”)*2u)(un — )
N N

= Zai(;v,un, Vuy)Op, iy + Zai(x,un, Vu)0y,u

i=1 i=1

N N
— Zai(m, Uy VU) O, Uy, — Zai(x,un, Vg )0z, u

i=1 =1

+ |un [PO®) 4 )P — Juy, [Po®) =20 — |u|Po ™) 2y,

N N
>a 00" +a > |0,
=0 =0
N
- BZ(Kl(m) + |un|pi(m)_1 + ‘awiu|pi(x)_1>|ami“n|
i=1

P — [P ] = [P |

N

— B (K@) + [unlP O 4 |01 [P0y, ul
=1
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N
ZQZ
=0

with @ = min(«, 1) and C, depending on x, without dependence on n. (Since
up(z) = u(zx) then (u,(z)), is bounded), we obtain

N
C C C
pi(x) N x _ e "
T) > ; |0, U | (a |0, U pi(z) |02, | |0y, tn pi(z)—1 )7

by the standard argument (0,,uy), is bounded almost everywhere in 2 for all

pi(z)—1 4 |0z, unl),

N
WP = 03T (L 4 10, un

=0

i=0,...,N. (Indeed, if |0;,un| — oo in a measurable subset E C Q which has
a positive measure, then

; > i
nl;rrgo A Sp(x) dz hm Z/ |0, U,
X | a— Ca G Ca dr = oo
T OnunlP @ [0 un| |0, up|P (@) B
which is absurd since S,, — 0 in L'(£2)).
Let & be an accumulation point of (9y,uy), for i = 1,...,N. We have
|€F| < oo and by the continuity of a(z, -, - ), we obtain

(ai(z,u,&") — ai(z,u, Vu))(§§ —0p,u) =0 fori=1,...,N,

thanks to (1.5) we have £* = Vu, the uniqueness of the accumulation point
implies that Vu, — Vu almost everywhere in Q. Since (a;(x,un, Vuy)), is
bounded in L7()(Q) and a;(, wn, V) — a;(2, u, Vu) almost everywhere in €2,
by the Lemma 3.2, we can establish that

a; (@, Un, Vi) = a;(z,u, Vu) in LPC)(Q) fori =1,...,N.
Using (3.1) and the Lemma 3.1, we deduce that
(3.2) [up|Po®) — |u[Po®) in LY(Q),
(3.3) @i (T, Up, Vp )Og,un, — ai(z,u, Vu)dy,u in Ll(Q).
According to the condition (1.4), we have

pi(®) < ai(xvunvvun)axiun fori=1,...,N.

|0y, Un,
Let y!, = (1/a)a;(z, un, Vg )0y, uy and yt = (1/a)a;(z,u, Vu)dy, u, we have
pi(z)

0< y:L +yl - |8331un pile) |a€5zu )

| o

pi(w)) dz,

using Fatou’s Lemma, we get

. . . 1
/ 2y'dx < liminf/ (y,’l +y — —— |0z un — Oz, u
Q n—oo  Jq op; —1
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then

0<— limsup/ |0z, Un — Oz, u pi(x) dz,
Q

n—roo

and since

0 <lim inf/ |0 U, — Ot Pi®) gy <0,
Q

n—oo

i) dp < lim sup/ |0 U, — O, u
Q

n— oo

it follows that

/ |0, Ui — O, uP @ dz — 0 as n — oo,
Q

and finally we obtain d,,u, — 0,,uin LP«(:)(Q) fori = 1,..., N. In view of (3.2)
we deduce that u, — u in Wol’?( ' )(Q) O

4. Main results

4.1. The case of f ¢ W*I’?l(')(Q).

DEFINITION 4.1. In the case of f € W‘l’?l(')(Q), a measurable function u
is said to be a solution in the sense of distributions to the problem (1.2), if

N
Z/ai(a:,u,Vu)&Eivdx—l—/g(m,u,Vu)vda:
= Jo Q

+/ d(z)|u|Po @2y de = / fvde,
Q Q
u€ WOL?(')(Q), g(z,u,Vu) € LY(Q), g(z,u, Vu)u € L1 (Q)

(4.1)

for any v € Wol’ﬁ(')(Q) N L>(9).

THEOREM 4.2. Assuming that (1.3)—(1.7) hold and f € W‘lj/(')(ﬂ). Then
the problem (1.2) has at least one solution in the sense of distributions.
REMARK 4.3. The assumption (1.1) is essential to ensure that |a;(z,u, Vu)|
N
belongs to LP:(*)(Q). In the case of Au = — > 0,,a;(x, Vu) the existence of so-

i=1
lution in the sense of distributions is guaranteed, without using this assumption.

PrOOF OF THE THEOREM 4.2.
Step 1. Approximate problems. We consider the approximate problem:

Aptiy + gn (T, U, V) + d(2)|u, |70 2u,, = f,

4.2
(42 un € WEPO)(Q).

Let us define the operator A,, from WOI’?(')(Q) into its dual W=17'(:)(Q), by

oo
Apv = — Z %ai(as,Tn(v), Vo),
i=1
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and ( )
g x’ 5’5
In(T,8,8) = ——F— 7.
50 = T g, €)1
Note that gn(z,s,§)s 2 0, [gn(z,s,8)| < [g(z,5,§)| and [gn(z,s,£)| < n for all
n € N\ {0}.
We define G, : W&’?(')(Q) — W_lj,(')(Q), by

(Gru,v) :/gn(x,u,Vu)vdx—F/ d(z)|u|Po @2y v dx
o Q

for all u,v € VVO1 ?(')(Q). Thanks to the Holder inequality, we have for all
w,v e Wy s ( )

(4.3) ‘/gn(:c,u, Vu)vdx—F/ d(z)|u|P° @2y dz
o Q

1 1
< (55 + ) dontew Tl

+ oo [P g )01l )

1 1 , 1/(1’6)7
(st (e
Po (po) Q
1/(py)~
+|d||oo( JAES dw+1> >||v|1,7<.>

< (1_ + ,1_> ((n(p6)+.meas(ﬂ) + 1)/ wo)”

Po (o)
T |d||oo( [t o+ 1)1/<p’o>‘))|v||1,m.> < Collollyoc.-

LEMMA 4.4. The operator B,, = A, +G,, from Wol’?( )(Q) into W-17'(: )(Q)

is pseudo-monotone. Moreover, B, is coercive in the following sense:
(Bpv,v)
[[v

— +o00 zf\|v||1;> )—>—|—oof0rv€W1?( )( Q).

Proor oF LEMMA 4.4. Using the Holder’s inequality and the growth con-
dition (1.3) we can show that the operator A, is bounded, and by using (4.3)
we conclude that B,, is bounded.

For the coercivity, we have for any u € Wl B )( Q),
<Bnu7u> < nU, U> <G u U>
N
- Z/ Vu)aLde +/ gn(:c,u, VU)U dx +/ d(l’)|u|p0(w> dx
i=1 Q
N
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with ¢ = min(«, dy), then
(Bru, u)
||U||1,?(.)

It remains to show that B, is pseudo-monotone. Let (u)r be a sequence in
WJ’F(')(Q) such that

— 400 as ||“H1,?(-) — 400.

w in W7 (@),
(4.4) Bpuk = Xn in WL 0)(Q),
lim sup(Bpuk, ur) < (Xn,u).
k—o0

We have to prove that x,, = Bpu and (Bpug, ug) — (Xn,u) as k — +o0.
Firstly, since Wol’?(')(Q) —— LE(Q), then u; — w in LE(Q) for a subse-
quence still denoted (ug ).
The sequence (ug)x is bounded in Wol’?( ) (Q), then by using the growth con-
dition a;(z, T, (uz), V) is bounded in LPi(*)(Q), therefore there exists a func-
tion @7 € LPi()(Q) such that

(4.5) a;(z, Ty (ug), Vug) — @ in L%C)(Q) as k — oo.

Similarly, since (gn (2, uk, Vug))x is bounded in Y (), with p’ is the conjugate
exponent of p, then there exists a function v, € LY (Q) such that

(4.6) Gn(, up, Vug) — 1, in L () as k — co.
For all v € W LPC (Q), we have

(4.7) {xn,v) = lim (Bjug,v)
k—o0
= lim Z/ale ug), Vug) Oy, v dx
Q

k—o0

+klim gn (2, ug, Vug)vdx + hm / |uk|p”(”’) 2up vda
—

N
Z/ ga?amivdx—#/ t/)nvdx+/ d(z)|ulPe @ =2y, v da.
i=17/9 Q Q

By using (4.4) and (4.7), we obtain

(4.8) limsup(B,ug, uk —hmsup{z‘/aZ (x, Tn(ug), Vug) Oy, ug, dx

k—o0 k—o0

—&—/gn(x,uk,Vuk)uk dx+/d(x)|uk|p°(l') dm}
Q Q

N
< Z OOy udr + | pudr+ [ d(z)uP® de,
Q Q Q
i=1



EXISTENCE OF SOLUTIONS IN THE SENSE OF DISTRIBUTIONS 677

thanks to (4.6), and since uy, — u in LE(2), then

(4.9) /gn(x,uk,Vuk)uk dx—>/wnudx,
Q Q

therefore

(4.10) limsup { Z/ a;(z, Tn(uk), Vug)Op, ug d:z:+/
Q

k— oo i—1 Q

N
<> [ onude+ [ d@lu d.
i=1

On the other hand, using (1.5), we have

d(z) |ug P @ dz}

N
Z/Q(ai(w,Tn(uk), Vug) — a;(x, Tn(ur), V) (Op, ur, — Oz, u) da

+/ d(@) (g [~ — [ulP) "2 (ug, — u) da > 0,
Q

then

N

Z/ai(x,Tn(uk),Vuk)ﬁxiukdz+/d(x)|uk\p°(z) dx

i=17% 2
N

> Z/ ai(x,Tn(uk),Vuk)amiudx—i—/ d(z)|ug [P 2 upu da
i=17% Q

N
+Z/ ai(z, Ty (ug), Vu)(Og,up — Oy, u) dz +/ d(z)|uPe @ =2y (uy, — u) da.
=179 Q

In view of Lebesgue dominated convergence theorem, we have T,, (ug) — T, (u) in
LPiC)(Q) then a;(z, T, (ug), Vi) = a;(z, T, (u), Vu) in LPiC)(Q), and by (4.5),
we get

N
likm inf { Z/ a;(x, T, (ug), Vug) Oy, u dx + / d(z) |ug|Po® dm}
i=1"9 Q

—00
N
> [ tonude+ [ )l da,
=179 Q

this implies, thanks to (4.10), that
N

(4.11)  lim {Z/ ai(x,Tn(uk),Vuk)aziukder/ d() Jug [P0 dx}
=179 Q

k— o0
N
:Z/w?@xiudm+/d(aﬁ)|u|p°($) dx.
=179 Q
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By combining (4.8), (4.9) and (4.11), we deduce that (Bjug,ur) — (Xn,u) as
k — 4o00. Now, by (4.11) we obtain

k——+oo

N
lim { ;/Q(ai(x,Tn(uk), Vug) — a;(x, T (ug), Vu) ) (O, ug, — Oy, u) dx

+dy / (\uk|p°($)_2uk _ |u|po(w)—2u)(uk — ) dw} -0
Q

In view of Lemma 3.5, we get ur, — u in Wol’?(‘)(ﬂ) and Oy, ur — Oy, u almost
everywhere in €, then a;(z, T, (ug), V) — a;(x, T, (u), Vu) in LPi()(Q)for
t=1,...,N and g,(z,ug, Vug) = gn(z,u, Vu) in Lpé(')(Q), we deduce that
Xn = Bpu, which completes the proof of Lemma 4.4.

In view of Lemma 4.4, there exists at least one weak solution u,, € Wolj( ' )(Q)
of the problem (4.2), (cf. [24, Theorem 2.7, p. 180]).

Step 2. A priori estimates. Taking u,, as a test function in (4.2), we obtain
N
Z/ a;(z, Tp(up), Vy)Op, uy dx +/ In (X, Up, Vg )y, da

i=1 Q Q2

Po(®) J,. —
+Ad($)|un| dx <f7 un>W71‘?'(.)(Q)’WC},?(W(QV

since g, (x, up, Vuy)u, > 0, using the generalized Holder inequality and (1.4),
we deduce that

N
P .
Sllunlly ¢y —aN —do < E /Q|6miun|pl(m) dw—l—do/Q |t [P0 da
i=1

sﬁx;+@;ﬁﬂ

with ¢ = min(«, dg). Therefore,

pi() L2 =17 Hllunlly g

pi()l[un

(4.12) [unlly,7¢.) < Cr,

with C1 is a constant that does not depend on n. Then there exists a subsequence
still denoted (uy,), such that

U, —~u in Wol’ﬁ(')(Q),

(4.13)
up, — u in LE(Q).

Finally, by using Lemma 3.3 and the Lebesgue dominated convergence theorem,
we conclude for any k& > 0 that

Ty(un) — Ti(uw) in WP (),

(4.14)
Ty (un) — Tp(uw) in LPo()(Q).
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Step 3. The strong convergence of (T (uy))y in Wol’?(')(Q). In the sequel,
we denote by €;(n) i = 1,2,... various functions of real numbers which converge
to 0 as n tends to infinity.

Let ¢k (s) = s.exp(ys?) where v = (b(k)/(2a))?, it is obvious that (see [9,
Lemma 1])

b(k)

- — for all s € R.
o

1
OEY

We set wy, = T (un) — Tk (u). By taking o (w,) as a test function in the approx-

¢l (s)
imate problem (4.2), we obtain

N
Z/ ai(x,Tn(un),Vun)go;c(wn)aziwnda:+/gn(x,un,Vun)gok(wn)dw
=179 Q

_|_/Qd(x)|un|po(a:)—2ungpk(wn)dm: (f, @k(w”»wfl‘?’(->(Q),W§*7<'>(Q)'

It is easy to see that w,, have the same sign that w,, on the set {|u,| > k}, (indeed
if w, > k then w,, = Tk(u,) — Tp(u) = k — T (u) > 0, and similarly, we prove
that w, <0 for u,, < —k). Using (1.6) we get

N
(4.15) Z/ai(x,Tn(un),Vun)go;c(wn)&;iwn dx
i=1 Q
F O gl D), Vi) (n) de
{‘un‘fk}

+ / 4(2)| T 11 P22 T (1, ) () it
{‘un‘gk}

= <f7 (Pk(wn»Wfl,?'( . )(Q),W&’?< . >(Q)

On the one hand, we have
(4.16) /ai(x,Tn(un),Vun)ga%(wn)axiwn dzx
Q
= / ai(x, T (un), VTk(un))‘P;c(wn)(amiTk(un) — 0, Tk (u)) dz
Q
+ / a;(x, Ty, (un ), VTi(tn)) @) (Wn) O, Tie(u) da
{|un|>k}
—/ a;(z, Ty (un), V)@l (wn) O, Ti (u) dz
{lun|>k}

= /Q(ai(x,Tk(un), VT (un)) = ai(@, Ti(un), VTi(1)))$), (wn)

X (Op, T () — Og, Tg(w)) dz

+ / 03 (2, Ti(tn), VT (1)) () (O, T (t0n) — B, Ti (1)) dit
Q
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+ / a;(x, Ty, (un), VTi(tn)) @) (Wn) O, Ti(u) da
{lun|>k}

- / 01 (2, T (1), Vet )y (6) 0, Th (1) .
{lun|>k}

We have Ty (u,) — Ti(u) in LPi()(Q), using the Lebesgue dominated conver-
gence theorem and (1.3), we get a;(x, Tk (un), VIi(uw)) = a;(z, Ty (u), VI (u)) in
LPi()(Q), and since d,, Tk (u, ) tends weakly to d,, Ty (u) in LP()(£2), we obtain

(417) ei(n) = \ / : (@, T (1) V() P () (O, T (ttn) — Oy, T () de

< ¢}, (2k) /Q |ai (@, Tk (un), VT (u))| - [0, Ti(un) — Oz, Ti(u)| dz — 0

as n — oo. Concerning the third term on the right-hand side of (4.16), the
sequence (a;(z, Tk (un), Vi (un)))n is bounded in Lpé(')(Q)7 then, there exists
& € LPi)(Q) such that |a;(z, T (un), VIk(uy))| — & in LPiC)(Q). Also, we
have |am1’Tk(u)|X{‘u"|>k} — |6£1Tk(u)|)({|u‘>k} in Lpl()(Q), it follows that

(4.18) go(n) = ‘/{l - a;(z, Ty (un ), VTk(un)) @) (Wn) O, T (u) do

< ¢l (2k) / s, T (ttn), VT 11)) 10, T ()] iz
{lun|>k}

— @2(2/@)/ &0z, Tr(u)| dz = 0.
{lu|>k}

For the last term on the right-hand side of (4.16), thanks to (4.13) we know that
ai(x, Ty (un), Vuy,) is bounded in LPi()(Q). Then, similarly as in (4.18) we can
prove that

(4.19) es(n) = /{ g Tan), V) )20 i) = 0
wn|>
as n — o0o. By combining (4.16)—(4.19), we get
(4.20) /Q(ai(x,Tk(un), VT (uy)) — ai(z, Tk (uy), VI (u)))
X 01 (wn) (O, T (un) — 0z, Tie(u)) do
= /Q a;(z, Ty (un), Vg ) o (Wi ) O, wn dx + £4(n).
On the other hand, using (1.4) and (1.7) we have

\ [ o T, VIl o) do
{lun|<k}

pi(x))“pk(wn” dx

N
<b(k) /{ oy )+ D10 T
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<b(k) /{ oy @l

N
+ @ Z /Q ai(@, Ti(un), VI (un)) Oz, Ti(un) o (wn)| dz

<b(k) /{ YN

N
+ 20 2 /Q(ai(x,Tk(unm VT(tn)) = ai(@, Ti(tn), VT (1))

(awiTk (un) - 8ziTk (u))h@k (wn)| dx

X

4

o
> 2
INg

/ai(w,Tk(un),VTk(U))(axiTk(un)—3xiTk(U))l<pk(wn)|dfﬁ

25 o ) P 00002 i)
then
(121) ) i[)(ai(z,Tk(un),VTk(un)) — i@, To(un), Vi (1))
(O Ti (1) — O T () o ()| d
| [ ), ST

—b(k) c(x)|pr (wn)| dz
{Jun| <k}

N
b(j)Z/ﬂai(%Tk(un)vak(u))

X (O, Ti(un) — 0, T (u)) ok (wn)| d

=

N
k
_ %2/ a5, Ty (), VT (1)), To () |1 ()|
=179
Firstly, since ¢ (wy,) — 0 weak-x in L*°(Q2), then

(4.22) /{ @l 0

Concerning the third term on the right-hand side of (4.21), thanks to (4.17), we

have

(4.23)

N
Z/Qai(vak(un)vVTk(U))(ax,-Tk(un) = 02, T (w))|pr(wn)| dee
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N
< @k(Qk) Z/Q ‘az('r7Tk(un)’VTk(u))| |8€E1Tk(un) - 8ILT]€(U)| dx — 0

as n — o0o. For the last term of the right-hand side of (4.21), the sequence
(a;(z, Te(un ), Vi (tn)))n is bounded in LPi() (Q), and since 8, Ty (u)|or (wn )] —
0 in LP:(-)(€), it follows that

(4.24) /Qai(:z:,Tk(un), VT (un)) 0, Tr(w) | (wn)| dz — 0.
By combining (4.21)—(4.23) and (4.24), we get
N
(4.25) @ Z /Q(ai(gc, Tk (un), VI (uy)) — ai(z, Ty (un), VITg(w)))
i=1
X (O, Th(un) — O, Ti(w)) |or (wn) | d
2| [ e T T o) de] + sl
{lun|<k}
Concerning the third term on the left-hand side of (4.15), we have
[ @) T o) do
{lun|<k}
= [ )Tl P )
— [T () P22 T () (Th () — Tio(u)) exp(ywy) da
+ / d()| Ty () [P 2T (u) (T () — Tie(u)) exp(ywy) daz
Q
_‘J( oy COITn) P T (Tio) = Tilw) exp() d
= do /Q(|Tk(un)|p°(m)72Tk(un) — [T () [P 2T () ) (T () — T (w)) dac
- eXp(7(2k)2)||dHoo/ T (w) [P~ | T (un) — Ti(w)| da
Q
- eXP(W(Qk)Q)HdHoo/ PO T (un ) — T (u)] dac.

{lun|>k}

In view of the Lebesgue dominated convergence theorem, we have Ty (u,) —
Ti(u) in LPoC)(Q), then the second and the last term on the right-hand side of
the previous inequality tend to zero as n tends to co. Therefore, we get

(4.26) do/Q(|Tk(un)|p°(”’)_2Tk(un) — | T (w) PP 2 T (w)) (T () — T () dax

< AT T ) e+ )
{lunlgk}
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Thanks to (4.20) and (4.25)—(4.26), we obtain
1 N
(421 5> / (ai(@, T(un), VT (un)) — ai(x, Te(un), VTi(1)))
i=17%
X (O, Th () — O, T (w)) d
4o [ (TP 2T ()
Q

— | T () P2 T () (T () — Tio(w)) d

N
< Z/Qai(x,Tn(un),Vun)goﬁc(wn)axiwn dx
i=1

/ (2, T (1), VT (1) o ()
{lun| <k}

" / d(x) | Ty (un) PO Ty (un)pr (wn) dee + £7(n),
D!

S <f7 @k(wn»w,l,y/( . )(Q),W()Lﬁ( . )(Q) + 57(”).

Since pr(wn) = 0k (Tk(un) — Tp(w)) — 0 in Wol’?(')(Q). Then, by letting n
tends to infinity in (4.27), it follows that

N
(4.28) Z /Q(ai(x,Tk(un), VT (uy)) — ai(z, Tk (uy), VI (u)))

i=1

X (O, Th () — O, Tie(w)) da
+ /Q(lTk(un)\p"(z)_QTk(un) = [T (w) [P 2T (w)) (T (un) — Ti(u)) da — 0
as n — 0o. Now using Lemma 3.5, we deduce that
Tio(up) — Ti(w) i WHP ().

In view of (4.12) and by letting k tends to infinity, we get
Up —> U in W(}’?(')(Q),
Vu, = Vu a.e.in Q.

(4.29)

Step 4. Equi-integrability and passage to the limit. Thanks to (4.29), we
have

ai(z, Ty (un), Vun) — aj(z,u, Vu) a.e. in Q,
gn (T, Upn, Vi) — g(z,u, Vu)  ae.in Q,
In (T, U, Vup)u, — g(z,u, Vu)u  a.e. in .
On the other hand, thanks to (4.12) we have

lunlli 5.y < Cu,
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then (a;(z, tn, V,))y is bounded in LPi()(£2), therefore, by Lemma 3.2, we
obtain

ai(z, Tp(un), Vu,) = a;(z,u, Vu) in Lpé(')(Q).
Now, we have to prove that

Gn (T, Up, Vu,) = g(z,u, Vu) in L*(Q).

Using Vitali’s theorem, it is sufficient to prove that g, (x, u,, Vu,,) is uniformly
equi-integrable. Indeed, taking 77 (u, — Th(u,)) as a test function in (4.2), we
obtain

N
(4.30) Z/ ai(z, Tn(up), Vy) Oz, up dx
=1 {

R<|un | <h+1}

+ / (@, Vet )T (1, — T () d
{h<|unl|}

+ / () [ [P 20 T (1t — T ()
{hg‘un‘}
= <f, Tl(un - Th(un))>w—1,?l( . )(Q)’Wolv?( . )(Q)7

since T1 (un, — Th(uy)) and u, have the same sign, then

/ (g (2, V)| da < / 90 (24, Vit ) T (1, — Th (1)) dl
{h+1<|un |} {h<|unl}

< <fa T (un - Th(un)»wfl,?’(-)(Q)’WOL?(~)(Q)
< C||f||—1,?/(~)||T1(un - Th(un))HL?(.) —0
as h — oo, thus, for all > 0, there exists h(n) > 1 such that

(4.31) / 90 (@, V)| dr < 1.
{(h(m)<lunl} 2

On the other hand, for any measurable subset E C €2, we have
N
(4.32) / 19n (2, V)| dz < B(() / (@) + 3 |urunlP @) d
E E P

+ / (G (2, 4m, V)| d
{lun|>h(n)}

In view of (4.29), there exists £(n) > 0 such that

(4.33) b(h(n)) /E (c(w) + EI_V: Ot p"@) do< 3

for all E such that meas(E) < ¢(n). Finally, combining (4.31)—(4.33), we obtain

(4.34) / (g (s 1, V)| i < 1
E
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for all E such that meas(E) < £(n), then we obtain the equi-integrability of
gn(‘ra u’na Vun)
Taking v € W&’?(')(Q) N L>(9Q) as a test function in (4.2), we have

N
Z/ @i(ﬁchn(un)avun)axivdm+/gn(x,un,Vun)vdx
=179 Q@

d npo(r)—2 avdr = , _ )
[ @ 2y de = {£.0)y s oy 7O

By letting n to tend to infinity, we get

N
Z/ ai(x,u,Vu)é)xivd:ch/g(ac,u,Vu)vder/ d(z)|u|P° @2y dx
— /o Q Q

= <fvU>W—1,?'<~>(Q),W01’?<'>(Q)'

Moreover, by taking v = u,, in our approximate problem, we obtain

N
Z/ ai(m7Tn(un),Vun)8xiundx+/gn(m,umVun)undx
=179 @

+/d(x)|un|p°("”) dx:/fundx.
Q Q

Thanks to (4.12), we get

/Q gn(xvu'mvun)un dr < CHf”—l,?’()HunHl,?() <C Cl”f”*LP’(a?) = Ca.

Since g, (x, upn, Vuy)u, > 0, by using Fatou’s Lemma, we deduce that
0< / g(x,u, Vu)udz < Oy,
Q

then g(x,u, Vu)u € L*(2), which completes the proof of Theorem 4.2. O

4.2. The case of f € L'(Q2). In this section, we consider the following
assumptions:

feLll(®),
Jp1, p2 > 0, such that

N
i 5] > py then |g(z, s, )| > p2(|s|1’0<w> 3 |Ei|’”(”))~

i=1

(4.35)
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DEFINITION 4.5. In the case of f € L'(Q), a measurable function u is said
to be solution in the sense of distributions to the problem (1.2), if

N
Z/ ai(x,u,Vu)awivdx—i—/g(x,u,Vu)vdas
— Ja Q

+/ d(z)|u|P @2y de = / fodz,
o Q
u € Wol’?(')(ﬂ)7 g(z,u, Vu) € LY(Q),

(4.36)

for any v € Wol’?(')(Q) N L>(9).

THEOREM 4.6. Let f € L'(Q). assuming that (1.3)—(1.7) and (4.35) hold,
then the problem (1.2) has at least one solution in the sense of distributions.

PROOF OF THE THEOREM 4.6.

Step 1. The approximate problems. Let ( f,,), be a sequence in w17 )(Q)
N LY(2) such that f, — f in L*(Q) with |f,| < |f] and we consider the approxi-
mate problem

Auy, + g, un, Vuy,) + d(x)|un|p0("”)’2un = f, in Q,

4.37
(37 un € WEPO)(Q).

Thanks to Theorem 4.2, there exists at least one solution in the sense of distri-
butions for the approximate problem (4.37).

Step 2. A priori estimates. Taking Ty (uy) as a test function in (4.37), then
N
Z/ ai(xa Un, vun)aszk(un) dx + / g(l‘, Unp, vun)Tk(un) dx

=179 Q

—|—/d(l“)\un\po(z)*zunTk(un)da::/fnTk(un) dz.
Q Q

Thanks to (1.4) and (1.6), we obtain

N
53 / 19, T (1)
i=0 v

N
Pi(®) gy < Z/ @i (xy Up, V)0, T (uy,) dx
i=179

+/ ()| T () [P0 das < k/ \fldz < kO,
Q Q

with ¢ = min(«, dy), then
- k
i(z)
(4.38) ;_0: /Q 00, T (un) |7 d < < 1,

also, we have

(4.39) k lg(x, wp, Vuy,)|dx < k C;.
{lun|>k}
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By combining (4.35), (4.38) and (4.39), for k£ > p1, we deduce that

N N N
Z/ |0, [P1) da = Z/ |0, T (1) [P (®) dx+2/ |0, |71 di
/o =0 /@ i=0 7 {

[un|>k}
k 1
<20+ —/ 19(2, un, Vuy,)| dz
e} P2 J{|un|>k}
k 4

<-Ci14+—=0,.
@ P2

It follows that

N N

P
> N0l =N =13 [ 0
=0 =0

then [lunll;,5(.) < C. We conclude that

Pi() qo < O,

U, —~u in Wol’?(')(Q)7

(4.40)
Up, — u  in LE(Q).

Step 3. The strong convergence of (Tj(uy))n in W&’?(')(Q). Let h> k>0
and wy, = Tog (un — Th(un) + Tk(uy) — T (w)), we set px(s) = s.exp(ys?) where
v = (b(k)/(20))*.

By taking ¢ (w,) as a test function in the approximate problem (4.37), we
obtain

N
Z/ ai(:r,umVun)amiapk(wn)dx—l—/g(x,un,Vun)gok(wn)dx
i=17/% Q

+/mm%w@”%wwum:/hmwmm
Q Q

Let M = 4k + h. Since O,w, = 0 on {|u,| > M} and ¢i(w,) has the same
sign as u, on the set {|u,| > k} (indeed, if u,, > k then u, — Th(u,) > 0 and
Ti(upn) — Ti(u) > 0, it follows that w, > 0.
Similarly, we show that w, < 0 on the set {u, < —k}) we get
N
(1a1) Y /Q 0s(@, Tor (), VT (1)) () Do it
i=1

+/ (2, U, Vg )or (wp) d
{lun|<k}

H[ @ e d < [ fonen)do
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Taking z, = w, — Th(un) + Tk(un) — T (u), we have

(4.42) Z/ a;(z, Trr (un), Vs (un)) @) (wn) O, wn, dz

= Z/{u i a; (2, T (un), VTk(Un)) @k (Wn) (0n, Th () — 0, Tie (1)) dx

N
) ai(@, Tr(un), VTar ()
{‘un|>k}m{‘zn|<2k}

X ‘Pj’c(wn)awi (wn — Th(un) + Tp(un) — T (uw)) dz

N
> Z;/Qai(l‘,Tk(Un),VTk(Un))QD;C(wn)(axiTk(un) — 0,,T(u)) d

N
’ Z /{u [>k} a;(x, T (un), VI (un)) P (wn) O, T (u) da

~ gh(2k) Z S 00 Tt T ) 102 T

{lun|>k}

that is equivalent to

N
Z/{l(ai(x,Tk(un)7VTk(un)) —a;(z, T (un), VTg(u)))

X (0, Ti (un) — Oz, Tie (u)) ¢y (wn) doe

N
< Z/Qai(x’TMm”)’VTM(UW))‘F’;@(Wn)amwn da

N
- Z Aun>k} Cli(:E7 Tk(u")’ VTk(un))W;c(wn)axiTk(u) dx

N
+ 902(%)2/{' - |ai(, Tor (un), VTar (un))| 0, Ti (u) | de

N
- Z /Q ai(xa Tk(un)’ VTk(u))(awiTk(un) - aZiTk(u)) ‘p;e(wn) dz.

Similarly to (4.17) and (4.18), we can prove that the last three terms tends to 0
as n goes to infinity, then

(4.43)

N
> | (el Tufua). 9Ti) = e Ti). VTe(a)

X (0r, Tk (un) — O, Ti (1)) @} (wn) da
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N
< z;/Qai(m,TM(un%VTM(un))%(wn)awiwn dz + es(n).

Also, we can easily prove, as (4.25) and (4.26), that

b(k) N
(4.44) o Z/ ai(z, Tr(un), VI (un)) — ai(x, Tk (urn), VI (w)))
X (O, Th(un) — O, T (w)) ok (wn) | d
> ‘~/{|un|<k} 9(x, Up, Vg ) pp(w,) dz| + £9(n)

and

(4.45)  do /Q(|Tk(un)|p°($)_2Tk(un) = | T (w) P2 Tho(w)) (T (un) — Tio(w) dx

< / d(x)lun|p0(w)_2un90k (wn) dx + e10(n).
{lun|<k}

Thanks to (4.41) and (4.43)—(4.45), we obtain

N
1
(4.46) - Z / (ai(z, Ti(un), VT (upn)) — a;(x, Tr(un), VIi(u)))
25 e
X (O, Th () — On, Tr (w)) dx
+ do / (1T () [P 2T () — [T () [P T ()
Q
X (Ti(un) = Ti(u)) dx
/ fnor(wn) dr +e11(n / for(Tor(u — Th(u))) dr + e12(n),
since f, — f in LY(Q) and ¢r(wn) — @r(Tor(u — Th(u))) weak-* in L>(€Q).
Then by letting h tends to infinity in the previous inequality, we get
(4.47) Z/ ai (2, Tp(un), VT (un)) — ai(z, Tr(uy), VT (u)))
X (O, Tk () — Op, Tk (u)) dz

+do/Q(ITk( )P 72T () — [T (u) P2 T (u)) (T (wn) — Ti(u) daz — 0

as n — oo, using Lemma 3.5, we deduce that Ty (u,) — Ti(u) in Wol’?(')(Q),
in view of (4.42) we have (uy), and u belong to I/Vol’?(‘)(Q)7 and thanks to

Lemma 3.4 we obtain

||un — UHLF(') < ||Un - Tk(“ﬂ)”l,?(-)
+ T (un) = Ty, 5.y + 1 Th(w) —ully 5.y =0,
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as k,n tends to oo, it follows that

Up = U in Wol’?(')(ﬂ),

(4.48)
Vu, = Vu a.e.in Q.

Step 4. The equi-integrability of g(x,u,, Vu,) and passage to the limit.
Thanks to (4.48), we have

a;(x, Upn, V) — a;(x,u, Vu) ace. in €,
g(z,un, Vu,) = g(z,u,Vu) a.e. in Q,

since (a;(x, Up, Viy,))p is bounded in Lpé(')(Q), and using the Lemma 3.2, we
obtain
ai(x7un,vun) — ai(x,u,Vu) in Lp;()(ﬂ)

Now, let E be a measurable subset of 2, for all m > 0 we have

/ |g(x, U, vun)| dr
E

:/ M%MN%WM+/ 192, tn, V)| de
En{|un|<m} En{|un|>m}
N
<bm) [ (e(w) + 30100 Tnlwn)" o+ [ gl V)| da.
E i—1 {lun|>m}

since (O, Tpn(un))n converges strongly in LP¢(*)(Q), then for all ¢ > 0, there
exists d > 0 such that meas(F) < J and

N
(4.49) b(m); /E 10, Ty () [P dz <% and  b(m) / o(z) dz < %

E

On the other hand, using 11 (u, — Tim—1(uy)) as a test function in (4.37) for
m > 1, we obtain

N
Z/ @i(xaunvvun)aziTl(un _Tm—l(un)) dx
=1 Q

+/ (2, Up, Vg ) T1 (U, — Tr—1(uy)) da
Q

+ / () [ [P 200, T (1t — T2 (1)) d = / Py (i — o1 () d,
Q Q

then

/ M%wﬂwwmﬁ/ flda
{|tn|>m} {|ttn|>m—1}

there exists mg > 0 such that

(4.50) / lg(x, up, Vuy,)|de < 7 forallm> mo.
{lun|>m} 3
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Using (4.49) and (4.50), we deduce the equi-integrability of g(z,u,, Vu,). In
view of Vitali’s theorem, we obtain g(z,u,, Vu,) — g(z,u, Vu) in L(Q). By
taking v € Wol’p(z)(Q) N L>(Q) as a test function in (4.37), it is easy to pass to
the limit in

N
Z/@i(ﬂﬁaumvun)azivdx—l-/g(x,un,Vun)vdx
— Jo Q

—i—/d(x)\un\p‘)(x)_zunvdm:/fnvdx
Q Q

to obtain
N
(4.51) Z/ai(w,u,Vu)amivdx—i—/g(xm,Vu)vdx
i=179 @
+/d(w)|u|p0(w)*2uvdx:/fvdx,
Q Q
which completes our proof. O

ExXAMPLE 4.7. A prototype example that is covered by the assumptions
(1.3)~(1.5) and (1.6)—(1.7) respectively is the following anisotropic (po(-),. ..,
pn(-))-problem: set

dz) =1, ai(z,u, Vu) = |0,,u/P" @ 20,u fori=1,....N
and

pi(@)

N
g(z,u,Vu) = uz |0x;
i=0
Then we get the following problem:

A
- O, ulPi ") 20,
> gy )
4.52 N
(4.52) +uz |8, u|P @ 4 [u|P @2y = f in Q,
i=0
u =0 on 0f,

which has at least one solution in the sense of distributions for all f GW’L?,(')(Q),

with
N N
uZ\@xiupi(m) € L'(Q) and |u\22\8x1u
i=0 i=0
Moreover, let f be in L*(Q2). The function g(z,u, Vu) verifies the condition
(4.35), (we assume p; = py = 1). Applying theorem 4.6 allows to conclude

Pi®) ¢ [1Q).

that problem (4.52) has at least one solution in the sense of distributions, with

N
UZ |0, u|P®) € LY(Q).
i=0
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