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ON THE DEGREE FOR ORIENTED QUASI-FREDHOLM MAPS:

ITS UNIQUENESS AND ITS EFFECTIVE EXTENSION

OF THE LERAY–SCHAUDER DEGREE

Pierluigi Benevieri — Alessandro Calamai — Massimo Furi

Abstract. In a previous paper, the first and third author developed a de-

gree theory for oriented locally compact perturbations of C1 Fredholm maps

of index zero between real Banach spaces. In the spirit of a celebrated
Amann–Weiss paper, we prove that this degree is unique if it is assumed to

satisfy three axioms: Normalization, Additivity and Homotopy invariance.

Taking into account that any compact vector field has a canonical orien-
tation, from our uniqueness result we shall deduce that the above degree

provides an effective extension of the Leray–Schauder degree.

1. Introduction

In [6] the first and third author, by means of the celebrated “finite reduction

method” (see [9] and references therein), developed a degree theory for (oriented)

locally compact perturbations of C1 Fredholm maps of index zero between real

Banach spaces, called (oriented) quasi-Fredholm maps for short. Fundamental

for the construction of this degree is the simple notion of orientation that they

introduced in [4], [5] for C1 Fredholm maps of index zero between real Banach

manifolds and the adaptation in [6] of this concept to quasi-Fredholm maps.
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In their celebrated paper [1] of 1973, Amann and Weiss showed that both

the Brouwer degree and the Leray–Schauder degree are uniquely determined by

three properties, namely Normalization, Additivity and Homotopy invariance,

which they considered as axioms. As pointed out in [1], the uniqueness of the

Brouwer degree had been previously established by Führer (see [14] and [15]).

In this paper, following the general spirit of Amann–Weiss, we obtain an anal-

ogous result concerning the degree for oriented quasi-Fredholm maps. Namely,

Theorem 6.1 below, which asserts that there exists at most one integer-valued

map, defined on the class of the admissible pairs, satisfying a specific Normal-

ization property (stated for naturally oriented invertible linear operators) with

the more classical Additivity and Homotopy invariance properties. Actually, our

uniqueness result holds true even if the degree is regarded as a real-valued func-

tion. In fact, the image of such a map must be contained in Z (precisely, it turns

out to coincide with Z).

We point out that several authors extended the validity of the Amann–Weiss

axioms to different degree theories. Let us mention the paper [22] by Nussbaum

about noncompact vector fields, the article [7] by the first and third author

regarding oriented C1 Fredholm maps of index zero between real Banach man-

ifolds, and the paper by the third author with Pera and Spadini [16] about the

fixed point index on differentiable manifolds.

As far as we know, the question of determining a degree for nonlinear Fred-

holm maps of index zero traced back to the pioneering works of Caccioppoli [10]

and Smale [29], who independently defined a modulo 2 degree.

Since the decade of 1970, many authors addressed the problem of defining

an integer-valued degree for Fredholm maps. Among them we cite Elworthy

and Tromba [11], [12] and Fitzpatrick, Pejsachowicz and Rabier [13] who defined

a notion of degree for C2 Fredholm maps between real Banach manifolds. The

definition in [11], [12] was obtained by introducing a concept of orientation for

real Banach manifolds (based on the rather unnatural concept of Fredholm struc-

ture), and the one in [13] by defining, for the first time, a notion of orientation

for Fredholm maps between real Banach manifolds.

Regarding the integer-valued degree in the C1 case, as far as we know, the

first approach was presented by Borisovic, Zvjagin and Sapronov in the survey

paper [9] (see also the papers [18], [32]–[34], [36]). The construction in [9] is based

on a finite-dimensional reduction method developed by Sapronov [28] and which

goes back to Caccioppoli [10]. Such an approach avoids the use of the Sard–Smale

theorem and hence needs only the assumption of C1-differentiability. Yet, in [9]

the crucial concept of orientation for Banach manifolds still relies on Fredholm

structures.
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Later, an integer-valued degree for oriented C1 Fredholm maps of index zero

was introduced in two independent papers: in [26] by Pejsachowicz and Rabier

for maps between Banach spaces and in [4] by the first and third author for

maps between Banach manifolds. Concerning the notions of orientability in [13],

[26] and in [4], we stress that these concepts are not equivalent in the non-flat

framework of Banach manifolds, even if, as shown in [24] by Pejsachowicz, they

agree in Banach spaces. However, regarding the orientation (and not merely

the orientability), the two concepts are not equivalent even in the flat case.

In fact, according to the definition in [4], any orientable map has at least two

different orientations (and exactly two if its domain is connected), but following

the notion in [13] this is not so for a constant map from Rn into itself. Moreover,

we point out that, in [4], thanks to the simplicity of the notion of orientation,

the construction of degree does not require any Leray–Schauder theory, and

the invariance of degree under a homotopy (x, λ) 7→ H(x, λ) holds under the

minimal assumption that H is continuous and continuously differentiable with

respect to the first variable, plus the hypothesis that the partial derivative with

respect to the first variable (x, λ) 7→ ∂1H(x, λ) is an oriented map (in the sense

of Definition 3.5 below).

Recall that a compact vector field is a Fredholm map of index zero only if

it is C1. Hence, a remarkable motivation to consider quasi-Fredholm maps is to

provide a full extension of the Leray–Schauder degree. In [19] Mawhin extended

the Leray–Schauder approach by defining a coincidence degree for compact per-

turbations of a linear Fredholm operator of index zero. As far as we know,

in his paper, a purely algebraic notion of orientation of a non-invertible linear

Fredholm operator of index zero appears for the first time.

Independent definitions of degree for quasi-Fredholm maps have been given

in [35] by Zvyagin and Ratiner (making use of the notion of Fredholm structure),

in [27] by Rabier and Salter (for oriented maps), and in the already mentioned

article [6] that, inexplicably, was kept frozen for too long by the journal (it was

received in December 16, 2003). More recently, a further generalization has been

developed by Väth [31] in the framework of multivalued maps (see also [23]).

In the setting of quasi-Fredholm maps, a crucial point is the lack of a uni-

versally accepted notion of orientation. Here we will follow the simple approach

introduced in [4], [5], [6] and pursued in [31].

As already pointed out, in the very general and quite comprehensive mono-

graph [31], Väth extends the degree for quasi-Fredholm maps in the setting of

multivalued maps. This degree is defined (see [31, Definition 13.1.13]) by means

of three properties which can be thought as axioms, one of them being a finite-

dimensional reduction. However, these properties, from which Väth deduces the
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uniqueness of the degree, are different from the axioms that we consider here,

which are a natural extension of the Amann–Weiss ones.

In the last section of this paper we make use of Theorem 6.1 as well as the

uniqueness result by Amann and Weiss to prove that the degree for oriented

quasi-Fredholm maps introduced in [6] provides an effective generalization of

the Leray–Schauder degree. For this purpose, we show that it is possible to

identify, in a canonical way (related to what in [4], [5], [6] is called the natural

orientation of the identity map), the class of the Leray–Schauder admissible pairs

with a subclass of the pairs which are admissible for the degree of the oriented

quasi-Fredholm maps. With this identification, the restriction of the last degree

to this subclass coincides with the Leray–Schauder degree.

As a final remark, we stress that in [2], [3] we defined a concept of topologi-

cal degree for a special class of oriented noncompact perturbations of nonlinear

Fredholm maps of index zero, called α-Fredholm maps. The definition of these

maps is related to the Kuratowski measure of noncompactness and extends the

degree in [21] by Nussbaum. The α-Fredholm maps are of the type f = g − k,

where we require the noncompact perturbation k to have some suitable property

of relative compactness with respect to the oriented C1 Fredholm map g. While

the degree of an oriented quasi-Fredholm map f is independent of the represen-

tation f = g − k, g being a smoothing map of f , it is not clear if the degree for

α-Fredholm maps depends on the representation. We leave this study to further

investigation.

2. Preliminaries

Let f : X → Y be a continuous map between topological spaces. We recall

that f is said to be compact if its image, Img f := f(X), is relatively compact

in Y . Thus, f is called locally compact if for any x ∈ X there exists a neigh-

bourhood U of x such that the restriction f |U is compact.

Assume now that X and Y are metric spaces and f : X → Y is continuous.

The map f is called completely continuous if it is compact on any bounded subset

of X. The map f is said to be proper if f−1(K) is compact for any compact

subset K of Y and locally proper if any x ∈ X admits a closed neighbourhood in

which f is proper. It is easy to check that f is proper if and only if it is closed

(i.e. it maps closed sets to closed sets) and f−1(y) is compact for any y ∈ Y .

One can verify that (when it makes sense) the sum of a proper map plus

a compact map is a proper map. Thus, adding a locally proper map with a locally

compact map, one gets a locally proper map. By abuse of terminology, if E and

F are Banach spaces and L : E → F is linear, then L is said to be a compact

(linear) operator if it is locally compact or, equivalently (in this special case),

completely continuous. Notice that a compact operator is necessarily bounded.
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Let now E be a real vector space (here no additional structure is needed)

and denote by I the identity on E. Let T be an endomorphism of E which is

a finite dimensional linear perturbation of the identity; that is, the image of the

linear operator K = I−T is contained in a finite dimensional subspace E0 of E.

Thus T maps E0 into itself and, consequently, the determinant of its restriction

T0 : E0 → E0 is well defined. It is easy to check that such a determinant does

not depend on the choice of E0. Thus, it makes sense to define the determinant

of T , det(T ), as the determinant of the restriction of T to any finite dimensional

subspace of E containing the image of K (see [17, § III-4] and references therein).

One can easily check that, as in the case when E is finite dimensional, T is

invertible if and only if det(T ) 6= 0.

Let L(E) be the vector space of the endomorphisms of E and denote by

Ψ(E) the affine subspace of L(E) of the operators that are admissible for the

determinant. Namely,

Ψ(E) =
{
T ∈ L(E) : Img(I − T ) is finite dimensional

}
.

In many cases, a practical method for computing the determinant of an operator

T ∈ Ψ(E) is given by the following result (see [8]).

Proposition 2.1. Let T ∈ L(E) and let E = E1 ⊕ E2. Assume that, with

this decomposition of E, the matrix representation of T is of the type(
I1 U

V S

)
where I1 is the identity operator on E1. If dim(E2) < +∞ (or, more generally,

if S ∈ Ψ(E2) and the operators U and V have finite dimensional image), then

T ∈ Ψ(E) and det(T ) = det(S − V U).

3. Oriented Fredholm maps

In this section we recall the concept of orientability and orientation for Fred-

holm maps of index zero between real Banach spaces introduced by the first

and third author in [4], [5]. The starting point is a concept of orientation for

Fredholm linear operators of index zero between real vector spaces.

Let E and F be real vector spaces (yet, here no additional structure is

needed). Let us recall that a linear operator L : E → F is said to be Fredholm

(see e.g. [30]) if both KerL and coKerL := F/ ImgL have finite dimension. The

index of L is defined as

indL = dim KerL− dim coKerL.

Of course, any linear operator from Rk to Rs is Fredholm of index k − s.
For short, a Fredholm operator of index n will be also called a Φn-operator,

or a Φ-operator if its index is not specified.
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Given a Fredholm operator of index zero L : E → F , a linear operator

A : E → F is called a corrector of L if the following conditions hold:

• the image of A is finite-dimensional,

• L+A is an isomorphism.

Notice that the set of correctors of L is nonempty. This is true, and of crucial

importance in what follows, even when L does not need to be corrected (i.e. when

it is invertible). On the set C(L) of correctors of L one has an equivalence relation

as follows. Let A,B ∈ C(L) be given and consider the following automorphism

of E:

T = (L+B)−1(L+A) = I − (L+B)−1(B −A).

Since the operator K = (L+B)−1(B−A) has finite-dimensional image, T is

a finite dimensional (linear) perturbation of the identity. Thus, as pointed out

in Section 2, its determinant is well defined. We say that A is equivalent to B

or, more precisely, A is L-equivalent to B if

det((L+B)−1(L+A)) > 0.

As shown in [4], this is actually an equivalence relation on C(L) with two

equivalence classes, and this provides a concept of orientation for Fredholm op-

erators of index zero between vector spaces.

Definition 3.1 (Algebraic orientation of a Φ0-operator). Let L : E → F be

a Fredholm linear operator of index zero. An orientation of L is the choice of

one of the two equivalence classes of C(L), and L is oriented when an orientation

is chosen. Any of the two orientations of L is called opposite to the other. If L

is oriented, the elements of its orientation are called the positive correctors of L.

The following notion of natural (and unnatural) orientation of an isomor-

phism will be useful throughout the paper.

Definition 3.2 (Natural algebraic orientation of an isomorphism). An ori-

ented isomorphism L is said to be naturally oriented if the trivial operator is a

positive corrector, and we will refer to this orientation as the natural orientation

of L. Conversely, L is unnaturally oriented if the trivial operator is not a positive

corrector; in this case L assumes the unnatural orientation.

Definition 3.3 (Sign of an oriented Φ0-operator). Let L : E → F be a Φ0-

operator. Its sign is the integer

signL =


+1 if L is invertible and naturally oriented,

−1 if L is invertible and not naturally oriented,

0 if L is not invertible.
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From now on, E and F will denote two real Banach spaces. Any Fredholm

operator between Banach spaces will be assumed to be bounded. Moreover,

L(E,F ) will denote the Banach space of bounded linear operators from E into

F and Φ0(E,F ) will be the open subset of L(E,F ) of the Fredholm operators

of index zero. Given L ∈ Φ0(E,F ), the symbol C(L) now denotes, with a slight

abuse of notation, the set of bounded correctors of L, which is still nonempty.

Of course, the definition of algebraic orientation of L ∈ Φ0(E,F ) can be given

as the choice of one of the two equivalence classes of bounded correctors of L,

according to the above equivalence relation.

In the context of Banach spaces an orientation of a Fredholm operator of

index zero induces an orientation to any sufficiently close operator. Precisely,

consider L ∈ Φ0(E,F ) and a corrector A of L. Suppose that L is oriented with

A positive corrector. Since the set of the isomorphisms of E into F is open in

L(E,F ), then A is a corrector of every T in a suitable neighbourhood W of L in

Φ0(E,F ). Thus, any T ∈W can be oriented by taking A as a positive corrector.

This fact allows us to give the following definition.

Definition 3.4. Let X be a topological space and h : X → Φ0(E,F ) a con-

tinuous map. An orientation of h is a continuous choice of an orientation α(x) of

h(x) for each x ∈ X, where ‘continuous’ means that for any x ∈ X there exists

A ∈ α(x) which is a positive corrector of h(x′) for any x′ in a neighbourhood

of x. A map is orientable when it admits an orientation and oriented when an

orientation is chosen.

It is possible to prove (see [5, Proposition 3.4]) that two equivalent correctors

A and B of a given L ∈ Φ0(E,F ) remain T -equivalent for any T in a neighbour-

hood of L. This implies that the notion of ‘continuous choice of an orientation’

in Definition 3.4 is equivalent to the following one:

for any x ∈ X and any A ∈ α(x), there exists a neighbourhood U of x such that

A ∈ α(x′) for all x′ ∈ U .

According to [5], the notion of continuity in the definition of oriented map

can be regarded as a true continuity by introducing the following topological

space (which is actually a real Banach manifold). Let Φ̂0(E,F ) denote the set

of pairs (L,α) with L ∈ Φ0(E,F ) and α one of the two equivalence classes of

C(L). Given an open subset W of Φ0(E,F ) and an operator A ∈ L(E,F ) with

finite dimensional image, consider the set

O(W,A) = {(L,α) ∈ Φ̂0(E,F ) : L ∈W, A ∈ α}.

The collection of sets obtained in this way is a basis for a topology on

Φ̂0(E,F ) and the natural projection p : (L,α) 7→ L is a double covering of

Φ0(E,F ). Observe also that the family of the restrictions of p to the open
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subsets of Φ̂0(E,F ) in which p is injective is an atlas for a Banach manifold

structure modeled on L(E,F ).

It is easy to check that the following is an alternative definition of orienta-

tion, and has the advantage that many properties of the orientable maps can be

directly deduced from well known results in covering space theory.

Definition 3.5 (Topological orientation for Φ0(E,F )-valued maps). Let

h : X → Φ0(E,F ) be a continuous map defined on a topological space X. An

orientation of h is a lift ĥ of h, that is, a continuous map ĥ : X → Φ̂0(E,F ) such

that pĥ = h. The map h is called orientable when it admits a lift, and oriented

when one of its lifts has been chosen.

According to Definition 3.5, an orientation of h is a continuous map ĥ : X →
Φ̂0(E,F ) of the form ĥ : x 7→ (h(x), α(x)). Thus ĥ is completely determined by

its second component α. For this reason, when it is convenient, we shall merely

call α an orientation of h, which is in the spirit of Definition 3.4.

In order to make clear (as well as formally correct) our axiomatic treatment

of the degree for oriented quasi-Fredholm maps, it is important to recall that,

given any set Y , there exists only one function from the empty set into Y , and

this is called the empty function to Y . This notion derives from the definition of

function f from a set X to a set Y (written f : X → Y ) as a triple f = (X,Y,Γ),

where Γ, the graph of f , is a subset of X × Y with the following property:

(3.1) If x ∈ X then ∃! y ∈ Y, denoted by f(x), such that (x, y) ∈ Γ.

The first set of (X,Y,Γ) is the domain of f and the second is the codomain.

The empty function into Y is the triple (∅, Y, ∅), whose graph is necessarily

empty, as the unique subset of the Cartesian product ∅ × Y . Notice that, for

this triple, (3.1) is satisfied, being a vacuous truth.

One can easily show that if h : X → Φ0(E,F ) is orientable with nonempty

domain, then it admits at least two orientations. If, in addition, X is connected,

then h admits exactly two orientations (one opposite to the other). Of course,

if X is empty, then h admits only one orientation: the empty function ĥ : X →
Φ̂0(E,F ). Moreover, from the theory of covering spaces, one can deduce that

if X is simply connected and locally path connected, then h is orientable (see

e.g. [5]).

As a straightforward consequence of Definition 3.5, if h : X → Φ0(E,F )

is oriented and h′ : Y → X is any continuous map, then the composition hh′

inherits in a natural way an orientation from h. In this case we say that the

two oriented maps, as well as the corresponding orientations, are compatible

among them. This is the case, for example, for the restriction of h to any

subset X ′ of X, since h|X′ is the composition of h with the inclusion X ′ ↪→ X.

In this case, the orientation of h|X′ inherited by h will be called the oriented
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restriction of h to X ′. Another important example occurs when H : X× [0, 1]→
Φ0(E,F ) is an oriented homotopy and λ ∈ [0, 1] is given. In this case the partial

map Hλ = H( · , λ) inherits an orientation from H, being the composition HJλ,

where Jλ(x) = (x, λ). The following theorem shows that, in some sense, the

converse is true. Such a result can be seen as a sort of continuous transport of

an orientation along a homotopy, and it is a straightforward consequence of the

theory of covering spaces (see [5, Theorem 3.14]).

Theorem 3.6 (Orientation transport for Φ0(E,F )-valued maps). Given a ho-

motopy H : X × [0, 1] → Φ0(E,F ), assume that for some λ ∈ [0, 1] the partial

map Hλ = H( · , λ) is oriented. Then, there exists and is unique an orientation

of H which is compatible with (the oriented map) Hλ. In particular, H0 and H1

are either both orientable or both non-orientable.

The following consequence of Theorem 3.6, together with Corollary 3.14, will

be useful in the proof of Proposition 4.3 below.

Corollary 3.7. Let G : X × [0, 1]× [0, 1]→ Φ0(E,F ) be a continuous map.

Assume that the partial map G(0,0) = G( · , 0, 0) is oriented. Then, there exists

and is unique an orientation of G which is compatible with G(0,0).

Proof. Consider the homotopy H : X × [0, 1]→ Φ0(E,F ) given by

H(x, λ) = G(x, λ, 0).

According to Theorem 3.6, H can be, and will be, oriented with the unique

orientation compatible withH0 = G(0,0). Now, denote by Y the productX×[0, 1]

and consider the homotopy K : Y × [0, 1]→ Φ0(E,F ) given by

K(y, µ) = G(x, λ, µ), where we put y = (x, λ).

Observe that K0 = K( · , 0) = H. Hence, again because of Theorem 3.6, K

admits a unique orientation compatible with K0. Consequently, identifying G

with K, we get the assertion. �

Let us now recall the notion of orientability for Fredholm maps of index zero

between real Banach spaces, given in [4], [5].

Recall that, given an open subset Ω of E, a map g : Ω → F is a Fredholm

map if it is C1 and its Fréchet derivative, Dg(x), is a Fredholm operator for all

x ∈ Ω. The index of g at x is the index of Dg(x) and g is said to be of index n

if it is of index n at any point of its domain.

Through this paper, the empty function g : ∅ → F will be regarded as Fred-

holm of index zero. This is formally correct and convenient for us, even if it

seems peculiar. In fact, the assertion “if x ∈ ∅ then Dg(x) is Fredholm of index

zero” is true, being a vacuous truth.
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Hereafter, a nonlinear Fredholm map of index zero will be also called a Φ0-

map. Notice that a Φ0-operator L : E → F is also a Φ0-map, being differentiable

at any x ∈ E with DL(x) = L.

According to a result of Smale (see [29]), a Fredholm map defined on an open

subset of a Banach space is locally proper.

Definition 3.8 (Topological orientation of a Φ0-map). An orientation of

a Fredholm map of index zero g : Ω → F is an orientation of the derivative

Dg : x 7→ Dg(x), in the sense of Definition 3.5. Moreover, g is orientable, or

oriented, if so is Dg.

Observe that, if g : Ω → F in an oriented Φ0-map and V is an open subset

of Ω, then the restriction g|V of g to V inherits, in a natural way, an orientation

from g. This restriction, with the orientation inherited by g, will be called the

oriented restriction of g to V .

Unless otherwise stated, to avoid cumbersome notation, if g is oriented, the

symbol g|V will denote the oriented restriction of g to V . Of course, if V = ∅,
then g|V has only one possible orientation: the empty function

D̂g|∅ : ∅ → Φ̂0(E,F ),

which is the unique lift of Dg|∅ : ∅ → Φ0(E,F ).

We point out that if L : E → F is a Φ0-operator, then it is orientable if

regarded as a Φ0-map; that is, in the sense of Definition 3.8. In fact, at any

x ∈ E, the derivative DL(x) coincides with L, which can be ‘constantly’ oriented

according to Definition 3.1. Unless otherwise stated, for such an operator the

two notions of orientation, the algebraic and the topological, will be identified.

The same convention is assumed even when one considers the restriction L|Ω of

L to any open subset Ω of E.

Definition 3.9 (Natural topological orientation of a diffeomorphism). An

oriented deffeomorphism φ : U → V between two open subsets U ⊆ E and V ⊆ F
is said to be naturally oriented if the trivial operator is a positive corrector of

Dφ(x) for any x ∈ U . We will refer to this orientation as the natural orientation

of φ. Conversely, φ is unnaturally oriented if the trivial operator is not a positive

corrector of Dφ(x) for all x ∈ U ; in this case φ assumes the unnatural orientation.

The following result, in particular, gives a sufficient condition for the ori-

entability of a Φ0-map (see [4]).

Proposition 3.10. Let g : Ω → F be a Fredholm map of index zero. If g

is orientable and Ω is nonempty, then g admits at least two orientations. If, in

addition, Ω is connected, then g admits exactly two orientations (one opposite to

the other). If Ω is empty, then g is orientable and admits only one orientation.

If Ω is simply connected, then g is orientable.
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Let Ω be open in E and let H : Ω× [0, 1]→ F be a continuous map. We say

that H is a homotopy of Φ0-maps or, simply, a Φ0-homotopy if it is continuously

differentiable with respect to the first variable and any partial map Hλ is a Φ0-

map.

Definition 3.11 (Topological orientation of a Φ0-homotopy). An orienta-

tion of a Φ0-homotopyH : Ω×[0, 1]→ F is an orientation of the partial derivative

map

∂1H : Ω× [0, 1]→ Φ0(E,F ), (x, λ) 7→ DHλ(x),

according to Definition 3.5. Moreover, H is orientable, or oriented, if so is ∂1H.

Notice that, if a Φ0-homotopy H : Ω × [0, 1] → F is oriented and λ ∈ [0, 1]

is given, then the partial map Hλ : Ω → F inherits an orientation which is

compatible with H. The following straightforward consequence of Theorem 3.6

shows that the converse is true.

Theorem 3.12 (Orientation transport for Φ0-maps). Let H : Ω× [0, 1]→ F

be a Φ0-homotopy. Given λ ∈ [0, 1], assume that the partial map Hλ is oriented.

Then there exists and is unique an orientation of H which is compatible with Hλ.

Definition 3.13 (Induced orientation). Due to Theorem 3.12, if two maps,

f0 and f1, are joined by a Φ0-homotopy H and f0 is oriented, then f1 can be

oriented according to the unique orientation of H which is compatible with f0.

In this case we shall say that “f1 has the orientation induced by f0 through H”

or simply that “f1 has the orientation directly induced by f0” when H is the

straight-line homotopy (x, λ) 7→ λf1(x) + (1− λ)f0(x).

The following direct consequence of Corollary 3.7 will be useful in the proof

of Proposition 4.3 below.

Corollary 3.14. Let G : Ω× [0, 1]× [0, 1]→ F be C1 and assume that any

G(λ,µ) is Fredholm of index zero. If G(0,0) is oriented, then there exists and is

unique an orientation of G which is compatible with G(0,0).

We conclude this section by showing that the orientation of a Fredholm map

g is related to the orientations of domain and codomain of suitable restrictions

of g. This argument is crucial in the definition of the degree for oriented quasi-

Fredholm maps.

Let g : Ω → F be a Fredholm map of index zero and Z a finite dimensional

subspace of F , transverse to g. We recall that Z is said to be transverse to g at

x ∈ Ω if ImgDg(x) + Z = F . The space Z is transverse to g if it is transverse

at any point of the domain of g.

From classical transversality results, it follows that M = g−1(Z) is a differ-

entiable manifold of the same dimension as Z. Assume that g is orientable. It is
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possible to prove that M is orientable. The proof can be found in [4, Remark 2.5

and Lemma 3.1]. Here, let us show how, given any x ∈ M , an orientation of g

and an orientation of Z induce an orientation on the tangent space TxM of M

at x.

Assume that g is oriented and let Z be oriented too. Consider x ∈ M and

a positive corrector A of Dg(x) with image contained in Z (the existence of such

a corrector is ensured by the transversality of Z to g). Then, orient TxM in such

a way that the isomorphism

(Dg(x) +A)|TxM : TxM → Z

is orientation preserving. As proved in [6], the orientation of TxM does not

depend on the choice of the positive corrector A, but only on the orientations of

Z and Dg(x). With this orientation, we call M the oriented g-preimage of Z.

4. Oriented quasi-Fredholm maps

In this section we recall the concept of orientability and orientation, intro-

duced by the first and third author in [6], for locally compact perturbations of

Fredholm maps of index zero between real Banach spaces.

Let f : Ω → F be a continuous map defined on an open subset of E. For

short, we say that f is a quasi-Fredholm map (or a qF-map) if there exists

a Fredholm map of index zero g : Ω→ F , called a smoothing map of f , such that

the difference k = g − f is a locally compact map.

Notice that, if F = E and f admits the identity among its smoothing maps,

then f is a locally compact vector field.

In what follows, unless otherwise stated, f will denote a quasi-Fredholm map

from an open subset Ω of E to F , and S(f) will stand for the family of smoothing

maps of f .

Remark 4.1. Observe that, if g0 is a smoothing map of f , then any other

element of the family S(f) is obtained by adding to g0 an arbitrary C1 locally

compact map h : Ω→ F . Therefore, S(f) is an affine subspace of the real vector

space C(Ω, F ) of the continuous maps from Ω to F . Precisely, S(f) = g0 +H,

where H is the subspace of C(Ω, F ) consisting of the C1 locally compact maps.

The following definition provides an extension to quasi-Fredholm maps of the

concept of orientability.

Definition 4.2. A quasi-Fredholm map f : Ω→ F is orientable if it has an

orientable smoothing map.

If f is orientable, then any smoothing map of f is orientable. Indeed, given

g0, g1 ∈ S(f), consider the homotopy H : Ω× [0, 1]→ F defined by

(4.1) H(x, λ) = (1− λ)g0(x) + λg1(x).
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Since S(f) is a convex set (see Remark 4.1), H is Φ0-homotopy. Thus, because

of Theorem 3.12, if g0 is orientable, then g1 is orientable as well.

Observe also that, if a given map g0 ∈ S(f) is oriented, then any other

map g ∈ S(f) can be oriented by transporting the orientation of g0 up to g

along the line segment joining g0 with g (i.e. applying Theorem 3.12 to the

straight-line homotopy joining g0 with g). Is it correct to define this collection

of oriented maps an orientation of the family S(f)? The answer is yes if for any

pair of oriented maps of the collection, say g1 and g2, the unique orientation

of the straight-line homotopy joining g1 with g2 which is compatible with g1

(ensured by Theorem 3.12) is compatible also with g2. This, as we shall see,

is a direct consequence of Proposition 4.3 below. Therefore, from now on, by

an orientation of the family S(f) we shall mean that to any map in S(f) is

assigned an orientation with the following property: the orientations of any pair

of smoothing maps of f are compatible with an orientation of the straight-line

homotopy joining these two maps.

To define a notion of orientation of f , consider the set Ŝ(f) of the oriented

smoothing maps of f . We introduce in Ŝ(f) the following equivalence relation.

Given g0, g1 in Ŝ(f), consider, as in formula (4.1), the straight-line homotopy H

joining g0 and g1. We say that g0 is equivalent to g1, g0 ∼ g1 in symbols, if the

unique orientation of H which is compatible with g0 (ensured by Theorem 3.12)

is as well compatible with g1. In other words, according to Definition 3.13, g0

is equivalent to g1 if the second map has the orientation directly induced by the

first one.

For the sake of completeness we give here the proof of Proposition 4.3 below,

that in [6] was omitted.

Proposition 4.3. The above is an equivalence relation in Ŝ(f).

Proof. Reflexivity and symmetry are immediate to be verified. To prove

transitivity, let g0, g1 and g2 belong to Ŝ(f), and suppose g0 ∼ g1 and g1 ∼ g2.

Consider the C1 map G : Ω× [0, 1]× [0, 1]→ F defined as

G(x, λ, µ) = (1− µ)((1− λ)g0(x) + λg1(x)) + µg2(x).

Notice that any partial map G(λ,µ) = G( · , λ, µ) is a convex combination of

g0, g1 and g2. Consequently, because of Remark 4.1, it lies in S(f) and, in

particular, it is Fredholm of index zero. Therefore, according to Corollary 3.14,

we may assume that G is oriented with the unique orientation compatible with

G(0,0) = g0. Let us show that this orientation is compatible with g1 and g2, as

well.

Consider the straight-line homotopy G : Ω× [0, 1]→ F , given by

G(x, λ) = (1− λ)g0(x) + λg1(x) = G(x, λ, 0),
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and orient it with the orientation inherited from G. Because of Theorem 3.12, G

is the unique oriented homotopy compatible with g0. Since g0 ∼ g1, G is as well

compatible with g1. Consequently, G, being compatible with G, is compatible

also with g1 = G(1,0).

The same argument applies to the homotopy Ĝ : Ω× [0, 1]→ F , given by

Ĝ(x, µ) = (1− µ)g1(x) + µg2(x) = G(x, 1, µ),

showing that G is compatible with g2 = G(1,1).

Finally, since G is compatible with both g0 and g2, orienting the straight-line

homotopy joining these two smoothing maps with the orientation inherited from

G, we get that g0 ∼ g2.

Observe that, because of of Theorem 3.12 and Proposition 4.3, an equivalence

class of Ŝ(f) may be regarded as an orientation of the family S(f).

The following definition provides an extension to quasi-Fredholm maps of the

concept of orientation given in Definition 3.8.

Definition 4.4. Let f : Ω → F be an orientable quasi-Fredholm map. An

orientation of f is an equivalence class of Ŝ(f). In particular, if f is a locally

compact vector field (i.e. F = E and the identity of E is a smoothing map of f),

then it admits a distinguished orientation, called canonical : the one determined

by the natural orientation of the identity.

Obviously, if the Banach space E is finite dimensional, then any continuous

map f : Ω → E on an open subset of E is quasi-Fredholm. More precisely, it

is a locally compact vector field and, consequently, it is orientable and, unless

otherwise stated, we will assume it as canonically oriented.

In the sequel, if a quasi-Fredholm map f is oriented, any element in the

chosen class of Ŝ(f) will be called a positively oriented smoothing map of f .

Observe that if two oriented smoothing maps of f : Ω → F are equivalent

and V is an open subset of Ω, then the oriented restrictions to V of these two

smoothing maps are equivalent in the set Ŝ(f |V ). Thus, if f is oriented, the

restriction f |V inherits, in a natural way, an orientation by f . This restriction,

together with the orientation inherited by f , will be called the oriented restriction

of f to V . Notice that if V is empty, the oriented restriction of f to V is unique,

and this does not depend on the orientation of f .

Hereafter, unless otherwise stated, if f is an oriented quasi-Fredholm map

defined on Ω and V ⊆ Ω is open, with the symbol f |V we shall mean the oriented

restriction of f to V .

Here is the analogue for quasi-Fredholm maps of Proposition 3.10.

Proposition 4.5. Let f : Ω→ F be a quasi-Fredholm map. If f is orientable

and Ω is nonempty, then f admits at least two orientations. If, in addition, Ω is
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connected, then f admits exactly two orientations (one opposite to the other). If

Ω is empty, then f is orientable and admits only one orientation. If Ω is simply

connected, then f is orientable.

As for Fredholm maps of index zero, the property of quasi-Fredholm maps of

being or not being orientable is homotopic invariant, as shown in Theorem 4.8

below. We need first some definitions.

Definition 4.6. Let H : Ω× [0, 1]→ F be a map of the form

H(x, λ) = G(x, λ)−K(x, λ),

where G is C1, any Gλ is Fredholm of index zero and K is locally compact. We

call H a quasi-Fredholm homotopy and G a smoothing homotopy of H.

The definition of orientability for quasi-Fredholm homotopies is analogous to

that given for quasi-Fredholm maps. Let H : Ω× [0, 1]→ F be a quasi-Fredholm

homotopy. Let Ŝ(H) be the set of oriented smoothing homotopies of H. Assume

that Ŝ(H) is nonempty and define on this set an equivalence relation as follows.

Given G0 and G1 in Ŝ(H), consider the map H : Ω× [0, 1]× [0, 1]→ F defined as

H(x, λ, µ) = (1− µ)G0(x, λ) + µG1(x, λ).

We say that G0 is equivalent to G1 if their orientations are inherited from

an orientation of the map

(x, λ, µ) 7→ ∂1H(x, λ, µ).

As in Proposition 4.3, it is possible to prove that this is actually an equiva-

lence relation on Ŝ(H).

Definition 4.7. A quasi-Fredholm homotopy H : Ω × [0, 1] → F is said to

be orientable if Ŝ(H) is nonempty. An orientation of H is an equivalence class

of Ŝ(H).

The following result regarding the continuous transport of an orientation of

a quasi-Fredholm map along a homotopy is the analogue of Theorem 3.12.

Theorem 4.8 (Orientation transport for qF-maps). Let H : Ω × [0, 1] → F

be a quasi-Fredholm homotopy. If a partial map Hλ is oriented, then there exists

and is unique an orientation of H which is compatible with Hλ.

5. Degree for oriented quasi-Fredholm maps

In this section we summarize the construction of the degree for oriented

quasi-Fredholm maps introduced by the first and third author in [6]. See also [2]

and [3] for extensions of this degree to a class of maps involving the Kuratowski

measure of non-compactness.
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Definition 5.1. Let f : Ω → F be an oriented quasi-Fredholm map and U

an open subset of Ω. The pair (f, U) is said to be admissible for the degree (of f

in U at 0 ∈ F ) provided that f−1(0) ∩ U is compact.

The degree defined in [6] is a map that to every admissible pair (f, U) as-

signs an integer, deg(f, U) in symbols, verifying the following three fundamental

properties. Recall that, if V ⊆ Ω is open, f |V stands for the oriented restriction

of f to V .

• (Normalization) Let L : E → F be a naturally oriented isomorphism.

Then deg(L,E) = 1.

• (Additivity) Let (f, U) be an admissible pair, and U1, U2 two disjoint

open subsets of U such that f−1(0) ∩ U ⊆ U1 ∪ U2. Then,

deg(f, U) = deg(f |U1 , U1) + deg(f |U2 , U2).

• (Homotopy invariance) Let H : U × [0, 1] → F be an oriented quasi-

Fredholm homotopy. If H−1(0) is compact, then deg(Hλ, U) does not

depend on λ ∈ [0, 1].

With the notation of Definition 4.6, we do not know if the Homotopy in-

variance property still holds by replacing the assumption that the smoothing

homotopy G of H is C1 with the weaker hypothesis that it is continuous and

continuously differentiable with respect to the first variable. For sure this is true

when the locally compact perturbation K is zero (see [4]).

We observe that if two maps f1, f2 : Ω→ F differ by a locally compact map

and one is quasi-Fredholm, so is the other one. More precisely, they have the same

family of smoothing maps. Therefore, if one is oriented, f1 for example, then

f2 can be oriented by choosing the same equivalence class of oriented smoothing

maps defining the orientation of f1. As in Definition 3.13 we shall say that f2

has the orientation directly induced by f1.

Definition 5.2. Let f : Ω → F be an oriented quasi-Fredholm map and U

an open subset of Ω. Given y ∈ F , the triple (f, U, y) is said to be admissible for

the degree (of f in U at y ∈ F ) if so is the pair (f − y, U) with the orientation of

f − y directly induced by f . In this case deg(f, U, y) is a convenient alternative

notation for the integer deg(f − y, U).

The construction of the degree for admissible pairs consists of two steps. In

the first one we consider pairs (f, U) such that f has a smoothing map g with

(f − g)(U) contained in a finite dimensional subspace of F . In the second step

we remove this assumption, defining the degree for all admissible pairs.

Step 1. Let (f, U) be an admissible pair and let g be a positively oriented

smoothing map of f such that (f−g)(U) is contained in a finite dimensional sub-

space of F . As f−1(0)∩U is compact, there exist a finite dimensional subspace Z
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of F and an open neighbourhood W ⊆ U of f−1(0) ∩ U such that g is transverse

to Z in W . Assume that Z contains (f−g)(U). Choose any orientation of Z and

orient the C1-manifold M = g−1(Z) ∩W in such a way that it is the oriented

g|W -preimage of Z. Let f |M denote the restriction of f to M , as domain, and

to Z, as codomain. One can easily verify that (f |M )−1(0) = f−1(0) ∩ U . Thus

(f |M )−1(0) is compact and, consequently, the Brouwer degree, degB(f |M ,M, 0),

of the triple (f |M ,M, 0) is well defined. With this notation, we can give the

following definition of degree for (f, U).

Definition 5.3. The degree of the admissible pair (f, U) is the integer

(5.1) deg(f, U) = degB(f |M ,M, 0).

In [6] it is proved that the above definition is well posed, in the sense that

the right hand side of (5.1) is independent of the choice of the smoothing map

g, the open set W and the oriented subspace Z.

Step 2. Let us now extend the definition of degree to general admissible pairs.

Definition 5.4. Let (f, U) be an admissible pair. Consider:

(a) a positively oriented smoothing map g of f ;

(b) an open neighbourhood V of f−1(0)∩U such that V ⊆ U and g is proper

on V and (f − g)|V has relatively compact image;

(c) a continuous map ξ : V → F having bounded finite dimensional image

and such that

‖g(x)− f(x)− ξ(x)‖ < ρ, for all x ∈ ∂V,

where ρ is the distance in F between 0 and the set f(∂V ), which is

closed, since f is proper on V as the sum of the proper map g|V and the

compact map (f − g)|V .

Then,

(5.2) deg(f, U) = deg(g − ξ, V ).

Observe that the right hand side of (5.2) is well defined since the pair

(g − ξ, V ) is admissible. Indeed, g − ξ is proper on V and thus (g − ξ)−1(0)

is a compact subset of V which is actually contained in V by assumption (c)

above.

In [6] it is proved that Definition 5.4 is well posed since formula (5.2) does

not depend on g, ξ and V .

6. Uniqueness of the degree for oriented quasi-Fredholm maps

In this section we prove the main result of the paper. Namely, Theorem 6.1

below, which asserts that there exists at most one real function defined on the
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class of quasi-Fredholm admissible pairs verifying the three fundamental proper-

ties: Normalization, Additivity and Homotopy invariance. Thus, this function

coincides with the degree for oriented quasi-Fredholm maps and is integer valued.

Theorem 6.1. Let T denote the class of all admissible pairs and assume

that d : T → R is a function verifying the following three axioms:

(a) (Normalization) Let L : E → F be a naturally oriented isomorphism.

Then d(L,E) = 1.

(b) (Additivity) Let (f, U) be an admissible pair, and U1, U2 two disjoint

open subsets of U such that f−1(0) ∩ U ⊆ U1 ∪ U2. Then,

d(f, U) = d(f |U1
, U1) + d(f |U2

, U2).

(c) (Homotopy invariance) Let H : U × [0, 1] → F be an oriented quasi-

Fredholm homotopy. If H−1(0) is compact, then d(Hλ, U) does not de-

pend on λ ∈ [0, 1].

Then d = deg.

The proof of Theorem 6.1 will proceed as follows. First of all, we will show

that if L : E → F is an unnaturally oriented isomorphism, then

(6.1) d(L,E) = −1.

Afterwards, using the above equality and the Homotopy invariance property, we

will prove that, given a diffeomorphism φ : U → V between two open sets U ⊆ E
and V ⊆ F , if 0 ∈ V and x = φ−1(0), then

(6.2) d(φ,U) =

+1 if Dφ(x) is naturally oriented,

−1 otherwise.

Hence, as a consequence of formulas (6.1) and (6.2), and of the first two funda-

mental properties, we will show that, for every admissible pair (f, U) such that

f |U is C1 and 0 is a regular value of f in U , we have

(6.3) d(f, U) =
∑

x∈f−1(0)∩U

signDf(x).

The next step will be the proof of the uniqueness of d on the subclass of T of

the pairs (f, U) such that f is C1 on U . This will be obtained by the Homotopy

invariance property and the local properness of nonlinear Fredholm maps.

At that point, to prove the uniqueness of d on T we will use as a crucial tool

an aproximation result for compact maps in Banach spaces (see Proposition 6.8

below) which is based on a result by Pejsachowicz and Rabier (Lemma 6.7).

Finally, since the function deg verifies the three fundamental properties, we

will get d = deg.

This process will be developed in a number of steps.
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Step 1. This is a preliminary part in which we show some properties of d

which follow from the Additivity and the Homotopy invariance properties.

Given any oriented quasi-Fredholm map f , the pair (f, ∅) is admissible, being

the empty set compact. By the Additivity property, we get

d(f, ∅) = d(f |∅, ∅) + d(f |∅, ∅) and d(f |∅, ∅) = d(f |∅, ∅) + d(f |∅, ∅).

Hence, one has d(f, ∅) = d(f |∅, ∅) = 0.

By the above equality and the Additivity we obtain the following (often

neglected) Localization property.

Proposition 6.2 (Localization). Let f : Ω → F be an oriented quasi-Fred-

holm map, U an open subset of Ω. If (f, U) is an admissible pair, then

d(f, U) = d(f |U , U),

where f |U denotes the oriented restriction of f to U .

Proof. By the Additivity one has d(f, U) = d(f |U , U) + d(f |∅, ∅). Then,

the assertion follows being d(f |∅, ∅) = 0. �

Another consequence of the Additivity (and of the Localization) is the Exci-

sion property, which basically assert that d(f, U) depends only on the behavior

of f in any neighbourhood of f−1(0) ∩ U .

Proposition 6.3 (Excision). If (f, U) is admissible and V is an open subset

of U such that f−1(0)∩U ⊆ V , then (f, V ) is admissible and d(f, U) = d(f, V ).

Proof. The pair (f, V ) is clearly admissible. From the Additivity and the

fact that d(f |∅, ∅) = 0 one gets d(f, U) = d(f |V , V ).

On the other hand, the Localization implies that d(f, V ) = d(f |V , V ), and

the assertion follows. �

From the Excision we obtain the Existence property.

Proposition 6.4 (Existence). Let d(f, U) be nonzero. Then, the equation

f(x) = 0 admits at least one solution in U .

Proof. Assume that f−1(0)∩U is empty. By the Excision property, taking

V = ∅, we get d(f, U) = d(f, ∅) = 0, which contradicts the assumption. �

The following is an immediate consequence of the Additivity and the Loca-

lization properties.

Proposition 6.5 (Classical Additivity). Given an admissible pair (f, U) and

two disjoint open subsets U1, U2 of U such that f−1(0) ∩ U ⊆ U1 ∪ U2, one has

d(f, U) = d(f, U1) + d(f, U2).
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The reader who is familiar with the degree theory probably observes that

the above property is the classical version of the Additivity which is usually

mentioned in the literature. Actually, we believe not possible to deduce the

Localization property of d : T → R by replacing the Additivity property with

the above classical version.

As in Definition 5.2, given an oriented quasi-Fredholm map f : Ω → F , an

open subset U of Ω and y ∈ F , if the pair (f − y, U) is admissible (with the

orientation of f − y directly induced by f), then d(f, U, y) denotes the number

d(f−y, U). In this case the triple (f, U, y) is said to be admissible and y is called

the target point. Notice that, because of Proposition 6.4, if d(f, U, y) 6= 0, then

the equation f(x) = y has at least one solution in U .

The next property shows that, for an important class of admissible triples,

the degree depends continuously on the target point y ∈ F .

Proposition 6.6 (Continuous dependence). Let f : Ω → F be an oriented

quasi-Fredholm map and U an open set whose closure U is contained in Ω. As-

sume that f is proper on U and let y belong to the open set F \ f(∂U). Then

(f, U, y) is admissible and d(f, U, y) depends only on the connected component of

F \ f(∂U) containing y. In particular, if U = Ω = E and f : E → F is proper,

then d(f,E, y) does not depend on y ∈ F .

Proof. The set F \ f(∂U) is open, since f , being proper, maps the closed

set ∂U onto the closed set f(∂U). Thus, there exists a ball B centered at y

which does not intersect f(∂U).

Fix any z ∈ B and let C denote the line segment joining y with z. Since

f is proper on U , f−1(C) ∩ U is a compact set, and it is contained in U being

C ∩ f(∂U) = ∅. In particular, (f, U, y) is admissible.

Now, the Homotopy invariance property implies d(f, U, z) = d(f, U, y), since

the closed set

{(x, λ) ∈ U × [0, 1] : f(x) = (1− λ)y + λz}

is contained in the compact subset (f−1(C)∩U)×[0, 1] of U×[0, 1]. Consequently,

z ∈ B being arbitrary, the map that to any q ∈ F \ f(∂U) assigns d(f, U, q) ∈ R
is locally constant, and this implies the assertion. �

Step 2. Let L : E → F be an oriented isomorphism. In this step we prove

that d(L,E) = signL.

If L is naturally oriented, from the Normalization property we get d(L,E) =

1 = signL. Thus, we assume that L is unnaturally oriented, and we need to

show that d(L,E) = −1.

Fix any nonzero vector w ∈ E and call E2 the one-dimensional subspace of

E spanned by w. As a consequence of the Hahn–Banach Theorem there exists a
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closed subspace E1 of E such that E = E1 ⊕E2. Thus, any element x of E can

be uniquely written as

(6.4) x = v + tw,

with v ∈ E1 and t ∈ R. Taking into account (6.4), define f : E → F by

f(v + tw) = L(v + |t|w).

Observe that f is a quasi-Fredholm map and L is one of its smoothing maps. In

fact, one has

f(v + tw) = L(v + tw)− h(tw),

where

h(tw) =

0 if t ≥ 0

2ty if t < 0.

Notice that f coincides with L in the closure E+ of the open half space E+ :=

{v + tw : t > 0} and with the isomorphism L̃ ∈ L(E,F ), defined as

L̃(v + tw) = L(v − tw),

in the closure E− of E− := {v + tw : t < 0}.
Clearly, L̃ is another smoothing map of f , since the difference L − L̃ is the

linear operator v+tw 7→ 2tw, which is locally compact (having finite dimensional

image) and C1 (being linear).

Orient f according to the assumed unnatural orientation of the smoothing

map L. This implies that L̃, as another smoothing map of f , receives an orienta-

tion which is compatible with that of f , and this can be obtained by transporting

the orientation of L along the straight-line homotopy joining L with L̃. Le us

show that this orientation of L̃ is the natural one.

Since L and L̃ are isomorphisms, they are, in particular, proper maps. Thus,

their respective restrictions to the closed sets E+ and E− are proper as well.

Consequently, so is the map f , which can be regarded as obtained by glueing the

above two restrictions. Because of Proposition 6.6, this implies that d(f,E, y)

does not depend on the target point y ∈ F (recall that d(f, U, y) is an alternative

notation for the number d(f − y, U)). Therefore, as f is not surjective, from the

Existence property (Proposition 6.4) we obtain d(f,E, y) = 0 for all y ∈ F .

Thus, in particular, d(f,E, y) = 0, where y = f(w).

Observe that f−1(y) = {−w,w}, with −w ∈ E− and w ∈ E+. Hence, by the

the Additivity property, we get

(6.5) 0 = d(f,E, y) = d(f |E− , E−, y) + d(f |E+
, E+, y).

Now consider d(f |E+
, E+, y). Since the oriented restrictions f |E+

and L|E+

coincide, we obtain

d(f |E+ , E+, y) = d(L|E+ , E+, y).
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Thus, because of the Localization and Excision properties (Propositions 6.2

and 6.3, respectively), we get the equality

d(f |E+
, E+, y) = d(L,E, y).

Analogously, we have

d(f |E− , E−, y) = d(L̃, E, y).

Consequently, taking into account (6.5), we obtain

d(L,E, y) + d(L̃, E, y) = 0,

and recalling that the maps L and L̃ are proper on E, we equivalently have

d(L,E) + d(L̃, E) = 0.

Hence, to prove our assertion we need to show that L̃ is naturally oriented, so

that d(L̃, E) = 1. For this purpose, consider the homotopy

G : E × [0, 1]→ F, G(x, λ) = (1− λ)Lx+ λL̃x,

and orient it with the unique orientation which is compatible with L. Thus any

operator

Gλ = (1− λ)L+ λL̃, λ ∈ [0, 1]

is oriented, and G1 = L̃, as a smoothing map of f , receives the orientation which

is compatible with that of f .

Let us show that the corrector A of L, defined by A(v + tw) = −4ty, is

a positive corrector. In fact, the composition L−1(L + A) : E → E acts as

follows: v + tw 7→ v − 3tw. Hence, its restriction to the one-dimensional space

E2 has determinant −3. Thus, A is not L-equivalent to the trivial operator of

E and, since L is unnaturally oriented, A is a positive corrector of L.

Now, observe that A is a corrector of any linear operator

Gλ = (1− λ)L+ λL̃, λ ∈ [0, 1].

In fact, one can verify that

(Gλ +A)(v + tw) = Lv − (3 + 2λ)ty

and, consequently, Gλ +A is an isomorphism for all λ ∈ [0, 1]. This implies that

A is a positive corrector of any oriented operator Gλ, λ ∈ [0, 1].

Finally, consider the composition

L̃−1(L̃+A) : E → E, given by L̃−1(L̃+A)(v + tw) = v + 5tw.

The determinant of the restriction L̃−1(L̃ + A)|E2 : E2 → E2 is 5, which means

that L̃ is naturally oriented. Thus, the proof of Step 2 is complete.
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Step 3. Let f : U → F be a diffeomorphism of an open subset U of E onto

an open subset V of F such that 0 ∈ V . In this step we prove that

(6.6) d(f, U) = signDf(x),

where x = f−1(0). Consider the homotopy H : U × [0, 1]→ F defined as

H(x, λ) = (1− λ)f(x) + λDf(x)(x− x).

It is immediate to see that H is C1, H(x, λ) = 0 for every λ ∈ [0, 1] and the

Fréchet derivative at x of any partial map Hλ = H( · , λ) is

DHλ(x) = Df(x).

As Df(x) is an isomorphism, the Implicit Function Theorem and the compact-

ness of [0, 1] imply the existence of a neighbourhood W of x in U such that,

for any λ ∈ [0, 1], the equation H(x, λ) = 0 admits in W the unique solution

x. This implies that H−1(0)∩ (W × [0, 1]) is compact and, consequently, by the

Homotopy invariance property, one has

d(f,W ) = d(Df(x)− q,W ), where q = Df(x)x.

From the Excision property, we get

d(Df(x)− q,W ) = d(Df(x)− q, E).

Moreover, since Df(x) is a proper map, d(Df(x) − y,E) does not depend on

y ∈ F (see Proposition 6.6). Consequently,

d(f,W ) = d(Df(x), E),

and the equality (6.6) follows from the previous Step 2 (and the Excision pro-

perty).

Step 4. We are now in the position to prove formula (6.3). Let (f, U) be an

admissible pair such that f is C1 on U and 0 is a regular value for f |U . We know

that f−1(0)∩U is a finite set, say {x1, . . . , xn}. Since Df(xi) is an isomorphism

for any i = 1, . . . , n, we can apply the Inverse Function Theorem, obtaining

that there exist n pairwise disjoint neighbourhoods U1, . . . , Un of x1, . . . , xn,

respectively, such that each restriction f |Ui is a diffeomorphism onto an open

neighbourhood of 0. By the Classical Additivity property (Proposition 6.5) we

have

d(f, U) =

n∑
i=1

d(f, Ui).

On the other hand, by the above Step 3, we obtain d(f, Ui) = signDf(xi) and

this proves formula (6.3).

Step 5. Here we show the uniqueness of d on the class T2 (⊆ T ) of the pairs

(f, U) with f of class C1 on U .
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Let (f, U) be an admissible pair such that f is C1 on U . Since f is locally

proper, there exists an open subset W of U , containing f−1(0) ∩ U , such that

W ⊆ U and f is proper on W . By the Excision property we have

d(f, U) = d(f,W ).

By the Continuous dependence property (Proposition 6.6), we see that d(f−y,W )

depends only on the connected component V of F \ f(∂W ) containing 0. This

component is an open set, since, as f is proper in W , f(∂W ) is closed in F .

Therefore, taking into account the Sard–Smale theorem [29], we may compute

d(f,W ) by choosing a regular value y ∈ V for f |W . In fact, because of for-

mula (6.3), one has

d(f,W ) = d(f − y,W ) =
∑

x∈f−1(y)∩W

signDf(x),

and this shows the uniqueness of d on T2.

Step 6. Here we show that the uniqueness of d on T2 implies the uniqueness of

d on the class T1 (⊆ T ) of those admissible pairs (f, U) such that f has a smooth-

ing map g with the property that (f − g)(U) is contained in a finite dimensional

subspace of F . This step contains one of the most important difficulties of our

process.

As is well known, a continuous real map, defined in a compact subset of Rn,

can be uniformly approximated by a smooth map defined on the whole Rn. As

far as we know, an analogous result does not hold if Rn is replaced by a general

Banach space E, unless the compact domain of the map is contained in a finite-

dimensional subspace of E (recall that any finite-dimensional subspace of E is

the image of a bounded linear projector). Thanks to the following lemma by

Pejsachowicz and Rabier (see [25, Theorem 7.1]), an approximation result like

the one in the finite dimensional case holds true even when the domain of the

map is contained in a finite-dimensional submanifold of E.

Lemma 6.7 (Pejsachowicz–Rabier). Let M be a finite-dimensional C1 sub-

manifold of E, and K a compact subset of M . Then, there exist a finite-

dimensional subspace E1 of E and a C1 diffeomorphism φ : E → E such that

φ(K) ⊆ E1.

Proposition 6.8. Let K be a compact subset of E. Assume that there

exists a finite dimensional submanifold M of E containing K. Let γ : K → R
be a continuous map. Then, given a positive ε, there exists a bounded C1 map

η : E → R such that

sup
x∈K
|γ(x)− η(x)| < ε.
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Proof. According to Lemma 6.7, let φ : E → E be a C1 diffeomorphism

such that K̃ = φ(K) is contained in a finite-dimensional subspace E1 of E.

Consider γ̃ : K̃ → R defined as γ̃(x) = γ(φ−1(x)). As K̃ is compact, given

a positive ε, there exists a bounded C1 map ξ̃ : E1 → R such that

sup
y∈K̃
|γ̃(y)− ξ̃(y)| < ε.

Define ξ : E → R by ξ(x) = ξ̃(P (x)), where P is a bounded linear projector

onto E1, and let η : E → R be such that η(x) = ξ(φ(x)). It follows that

sup
x∈K
|γ(x)− η(x)| = sup

x∈K
|γ̃(φ(x))− ξ̃(φ(x))| = sup

y∈K̃
|γ̃(y)− ξ̃(y)| < ε,

and this proves the assertion. �

Let (f, U) be an admissible pair and let g be a positively oriented smoothing

map of f such that (f−g)(U) is contained in a finite dimensional subspace of F .

As f−1(0) ∩ U is compact, there exist a finite dimensional subspace Z of F and

an open neighbourhood W of f−1(0)∩U in U such that the following conditions

hold:

• g is transverse to Z in W ;

• Z contains (f − g)(U).

As already seen, the set M = g−1(Z) ∩W is a boundaryless C1 manifold of

the same dimension as Z. Let us now consider an open subset V of W such that

• f−1(0) ∩ U ⊆ V ⊆ V ⊆W ;

• g is proper and bounded on V ;

• f − g is a compact map on V .

The subset S = g−1(g(V ) ∩ Z) ∩ V of E turns out to be compact, due, in

particular, to the fact that Z is finite-dimensional and that g is proper on V . In

addition, S is contained in the manifold M .

Now, let δ be the positive distance between 0 and f(∂V ), and let k = g − f .

We are in the position to apply a straightforward consequence of Proposition 6.8

to the restriction k|S , obtaining a compact C1 map k∗ : E → F , having image

contained in Z and such that

sup
x∈S
‖k∗(x)− k(x)‖ < δ/2.

Consider the homotopy H : V × [0, 1]→ F defined as

H(x, λ) = g(x)− λk(x)− (1− λ)k∗(x).

Notice that the restriction H of H to V × [0, 1] is a quasi-Fredholm homotopy,

which is orientable since so is its partial map H1 = f . Orient H with the
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unique orientation compatible with H1. Our purpose is to apply the Homotopy

invariance property and show that

(6.7) d(g − k, V ) = d(g − k∗, V ).

To obtain the above equality it is sufficient to verify that the set

C = {(x, λ) ∈ V × [0, 1] : H(x, λ) = 0}

is compact. Since g is proper on V and k and k∗ are compact on V , it follows

that H is proper. To prove the compactness of the above set C, it is sufficient

to check that H
−1

(0) does not intersect ∂V × [0, 1], i.e. that C coincides with

H
−1

(0). Let (x, λ) ∈ H−1
(0) be given. Observe that k(x) and k∗(x) belong to

Z. Hence, g(x) belongs to Z too. Therefore, x ∈ S by the definition of this set.

Consequently, ‖k∗(x)− k(x)‖ < δ/2.

Suppose now, by contradiction, that x ∈ ∂V . We have

‖H(x, λ)‖ = ‖g(x)− λk(x)− (1− λ)k∗(x)‖

≥‖f(x)‖ − (1− λ)‖k(x)− k∗(x)‖ ≥ δ − δ/2 = δ/2 > 0.

Therefore, we obtain that, if (x, λ) is any element in H
−1

(0), then x does not

belong to ∂V . Consequently, C coincides with the compact set H
−1

(0). Thus,

by the Homotopy invariance property we get the computation formula (6.7),

which, because of the previous step, implies the uniqueness of d on the subclass

T1 of T .

Step 7. In this final step we conclude the process, showing the uniqueness of

d on the whole class T . Let (f, U) be an admissible pair. Consider:

• a positively oriented smoothing map g of f ;

• an open neighbourhood V of f−1(0) such that V ⊆ U , g is proper on V

and (f − g)|V is compact;

• a continuous map ξ : V → F having bounded finite dimensional image

and such that ‖g(x) − f(x) − ξ(x)‖ < δ, for all x ∈ ∂V , where δ is the

distance in F between 0 and f(∂V ).

Consider the homotopy H : V × [0, 1]→ F , defined as

H(x, λ) = (1− λ)f(x) + λ
(
g(x)− ξ(x)).

The restriction H of H to V × [0, 1] is a quasi-Fredholm homotopy, being

a compact perturbation of the map (x, λ) 7→ g(x). In addition, H−1(0) is a com-

pact subset of V × [0, 1]. Assume that H is oriented with the unique orientation

compatible with f . Therefore we are in the position to apply the Homotopy in-

variance property showing that d(f, V ) = d(g−ξ, V ). This proves the uniqueness

of d.
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7. The Leray–Schauder case

In this section we show that the degree for oriented quasi-Fredholm maps

provides a generalization of the Leray–Schauder degree, in the sense that there

exists a “canonical” embedding j of the class of the Leray–Schauder admissible

pairs into the class T (of the quasi-Fredholm admissible pairs) such that the

composition of j with deg : T → Z coincides with the Leray–Schauder degree

degLS (see Theorem 7.1 below).

Let, as before, E denote any real Banach space. Recall that a continuous map

f : X → E, defined on a subset of E, is called a compact vector field (on X) if it

differs from the identity by a completely continuous map. Given a compact vector

field f : U → E on the closure of a bounded open subset of E, the pair (f, U)

is said to be Leray–Schauder admissible (LS-admissible, for short) provided that

f−1(0) ⊆ U (i.e. 0 6∈ f(∂U)). In this case, an integer, degLS(f, U), is defined

and called Leray–Schauder degree of f in U . Denoting by CLS the class of the

LS-admissible pairs, this degree is a function degLS : CLS → Z that is known to

satisfy the following three basic properties:

• (LS-normalization) Let U be a bounded open subset of E and let I

denote the identity of E. If 0 ∈ U , then

degLS(I|U , U) = 1.

• (LS-additivity) Let (f, U) be an LS-admissible pair, and U1, U2 two

disjoint open subsets of U such that f−1(0) ⊆ U1 ∪ U2. Then,

degLS(f, U) = degLS(f |U1
, U1) + degLS(f |U2

, U2).

• (LS-homotopy invariance) Let H : U × [0, 1] → F be a homotopy of

compact vector fields on U . If H−1(0) is contained in U × [0, 1], then

degLS(H( · , λ), U) does not depend on λ ∈ [0, 1].

We recall that a famous result of Amann and Weiss [1] asserts that degLS is

the unique map satisfying the above three properties. This fact will be crucial

in the proof of Theorem 7.1 below.

We define now a “canonical” one-to-one map j from the class CLS of the

LS-admissible pairs onto a subclass TLS of T .

Notice that a compact vector field on an open subset of a real Banach space

is, in particular, a locally compact vector field (which is, we recall, a quasi-

Fredholm map having the identity among its smoothing maps). Thus, according

to Definition 4.4, a compact vector field has a distinguished orientation: the

canonical one (that is, the one directly induced by the natural orientation of the

identity).

Let j : CLS → T be the map defined by j(f, U) = (f |U , U), where the orien-

tation of the restriction f |U is the canonical one.



428 P. Benevieri — A. Calamai — M. Furi

Clearly, j(f, U) belongs to the class T of the admissible pairs. In fact, with

the notation of Definition 5.1, Ω coincides with U and f−1(0) ∩ U is compact

since f is proper on its domain U and such that f−1(0) ⊆ U .

The map j is clearly one-to-one, since if two continuous maps defined on U

do not coincide, they necessarily have different restrictions to U . Moreover, one

can check that the image of j is the subclass TLS of T of the pairs (g, U) with

the following properties:

• U is a bounded open subset of a real Banach space E;

• g : U → E is a canonically oriented compact vector field on U ;

• g admits a continuous extension f : U → E;

• 0 6∈ f(∂U).

The following result shows that, if in T we identify CLS with its image

j(CLS) = TLS , then deg : T → Z may be regarded as an extension of the Leray–

Schauder degree degLS : CLS → Z.

Theorem 7.1. For any LS-admissible pair (f, U) one has

deg(j(f, U)) = degLS(f, U).

Proof. Because of the uniqueness result due to Amann and Weiss [1], it is

enough to check that that the map d∗ : CLS → Z defined by

d∗(f, U) = deg(j(f, U))

verifies the above three basic properties of the Laray–Schauder degree: LS-nor-

malization, LS-additivity, and LS-homotopy invariance.

This follows easily from the properties of deg : T → Z. Indeed, observe

that the LS-normalization property is a consequence of the Normalization prop-

erty of deg, the Localization property of d (Proposition 6.2), and the fact that

(because of Theorem 6.1) d = deg. The LS-additivity property is trivially sat-

isfied. Moreover, regarding the LS-homotopy invariance property, notice that if

H : U × [0, 1] → E is a homotopy of compact vector fields on U , then its re-

striction to U × [0, 1] is an oriented quasi-Fredholm homotopy, provided that

any partial map Hλ|U : U → E is canonically oriented (as it is in the pair

(Hλ|U , U) = j(Hλ, U)). Finally, since U is bounded, H is a proper map. Conse-

quently, H−1(0) is compact.
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Instituto de Matemática e Estat́ıstica

Universidade de São Paulo

Rua do Matão 1010
São Paulo - SP, CEP 05508-090, BRASIL

E-mail address: pierluigi.benevieri@unifi.it, pluigi@ime.usp.br

Alessandro Calamai

Dipartimento di Ingegneria Industriale e Scienze Matematiche
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