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ON A CONJECTURE OF KUFNER AND PERSSON
PANKAJ JAIN, PAWAN K. JAIN AND BABITA GUPTA

ABSTRACT. The LP-L? boundedness of the (conjugate)
Hardy operator (L*f)(z) = f:o I(t,z)f(t)dt for the case
0 < g < 1 has been studied and thereby a conjecture of Kufner
and Persson is proved. An important role here is played by
level type functions.

1. Introduction The boundedness of the Hardy operator
= [y f(t)dt between welghted Lebesgue spaces LP((0,00),v)

and Lq(( 00), ) p € (1,00), ¢ € (0,00), has been studied quite ex-
tensively during the last decades. Simultaneously, as a natural case
the corresponding conjugate Hardy operator (H*f f (@)

was also considered and studied. A good account of such work can be
found in [3, 4, 7]. In order to obtain the boundedness of H*, generally,
two methods are employed. One is using the duality arguments and
the other is by making suitable variable transformations in the Hardy
inequality

“Ener@e) <ol [T pead)
(/0 > 0

In the case 1 < p, ¢ < oo, the two methods yield the same necessary
and sufficient conditions. However, when 0 < ¢ < 1, we cannot use
duality arguments. Moreover, in this case, the proof requires quite a
different approach than the other cases. This case is due to Sinnamon
[8] who made use of “level functions” introduced by Halperin [2].

Further, Bloom and Kerman [1] and Oinarov [5, 6], see also [3],
studied the boundedness of the generalized Hardy operator (Lf)(z) =
Iy U t) dt and its corresponding conjugate operator (L*f)(x) =
.= l(t,:v)f( ) dt involving the so-called “Oinarov kernel” [(z,t). It
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can be seen that, for any p,q, the LP-L? boundedness of L* cannot
be obtained by variable transformations in the corresponding Hardy
inequality. Here also the case 0 < ¢ < 1 needs special attention. In
this case, as before, the boundedness of L has been obtained using
level functions and the boundedness of L* was still open since duality
arguments are already ruled out for this case. However, Kufner and
Persson [3, page 113] gave a conjecture in this regard. The aim of this
paper is to give a proof of their conjecture, see Conjecture 3.1 below.
The technique used in the proof is similar to the one used by Stepanov
[10, 11], cf. also the technique of proof in [3, pages 110-114].

2. (-level intervals and C-level functions. As mentioned in
Section 1, the LP-LY boundedness of the operators H and L, for the
case 0 < ¢ < 1, requires the use of level functions. As regards the
boundedness of L*, Halperin’s theory of level functions is not adequate.
In fact, the construction of level functions is based on the “left part”
of the interval (a,b) whereas what we require is a level function which
is based on the “right part” of it. So, in this section, we develop
this theory and give certain results similar to the ones available in the
framework of level functions.

Remark 2.1. In this section, we shall define some level type intervals
(would be called complementary level intervals or C-level intervals) and
level type functions (would be called complementary level functions or
C-level functions) and state some of the properties possessed by these
intervals (functions) similar to level intervals (functions). The proofs
of the results presented in this section can be obtained exactly on the
same lines as those of Halperin’s results [2]. Also, in [9], Sinnamon has
developed the idea of level functions in a more general setting and, in a
personal communication, he informed us that his idea of level functions
is independent of the “left” or “right” part of the interval considered.
Moreover, the primary aim of this paper is not to develop this section
but to apply these results in the subsequent sections. Therefore, we
prefer not to give the proofs.

Let us fix some notation and terminology. Let —oo < a,b < .
By a weight function on (a,b), we shall mean a function which is
measurable and positive almost everywhere on (a,b). Let f be a
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nonnegative measurable function on (a,b). The symbol f(a,b) will

denote the integral f: f(t)dt. Similarly, for a weight function w, the
symbol w(a,b) will have the corresponding meaning. For a weight w
on (a,b), we shall write

f(a,b)/w(a,b) if [P w(t)dt < oo
lim,_,p sup f(a, s)/w(a,s) if fab w(t) dt = .

(2.1)  R(a,b) = {

We begin with the following:

Definition 2.2. Let f be a nonnegative measurable function on
(a,b) and w a weight function on (a,b). An interval (o, ) C (a,b) is
called a C-level interval of f with respect to w, written (o, 3) € C' =
C(a,b, f,w), if

R(z,B) < R(e,8), for every =€ (o, ).

If the C-level interval (o, ) is not contained in a larger C-level
interval, then it is called a mazimal C-level interval, written (o, ) €
C'M - CM(aabvaw)'

We have the following results:

Theorem 2.3. Fvery C-level interval is contained in a mazimal
C-level interval.

Theorem 2.4. Let I, € C with [y NIy # D, k=1,2,.... Then

UIk eC.
k
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Remark 2.5. In view of Theorems 2.3 and 2.4, the system Cy =
Cum(a,b, f,w) of all maximal C-level intervals is either empty or it is
a denumerable system of nonoverlapping intervals. Thus, if we assume
that Cyy # @, then

CM:{In:(an,bn);n:1,2,...},

Definition 2.6. Let f be a nonnegative measurable function on
(a,b) and
= Unl, if Cpf 75 (%]
T lo if Cy = @,

where I,s are the intervals from Remark 2.5. We define the C-level
function f. of f with respect to a weight function w on (a, b) by

[ R(an,bp)w(z) ifzel,
fe(@) = {f(x) if 2 € (a,b)\I.

Similar to the notation (2.1), we shall write

Re(a,b) = {fc(“ ,b)/w(a,b) if [P w(t)dt < oo

limg_,p sup fo(a, s)/w(a, s) 1ff (t) dt = 0.

Lemma 2.7. Let Cpr = Cpr(a,b, f,w) # &, fo the C-level function
of f and I, = (an,b,) a mazimal C-level interval. Then

(i) f(z,bn) < fe(@,bn), @ € L.
(11) f(a"’ ) fc(anabn)-

iii) f(z,B) < fe(z,B), B € (a,b)\], z € (a, ).
(iv) f(z,B) = fe(z,B8), z,B € (a,b)\I, z < B.
We also have the following :

Theorem 2.8. Let f. be the C-level function of f. Then

(i) Every C-level interval of f is a C-level interval of f., i.e.,
C(a,b, f,w) C C(a,b, f,w).
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(ii) Every mazimal C-level interval of f. is a C-level interval of f,

i.e., Cpr(a,b, fo,w) C Cla,b, f,w).
(iii) The functions f and f. have the same mazimal C-level intervals.

(iv) For each C-level interval J of f., there exists a constant K
(depending upon J) such that f.(z) = Kw(z), z € J.

(V) (fc)c = fc-

Theorem 2.9. Let («,3) C (a,b) and x € (o, 8). Then

(i) Re(a, B) < Re(x, B).
(ii) Re(a, z) < Re(a, B).

Lemma 2.10. Let (aq,81), (ag2,82) C (a,b) such that a1 < ao,
B1 < Ba. Then
R.(ou, 1) < Re(az, B2)-

Theorem 2.11. Let f. be the C-level function of f with respect to
w. Then for almost every x € (a,b), fe(x)/w(z) is a nondecreasing
function.

3. The conjecture. For a weight function u on (0,00), we shall
denote by LP((0,00),u), 1 < p < oo, the weighted Lebesgue space
which is the set of all measurable functions f defined on 2 such that

oo 1/p
T :—< / If(w)l”U(x)dw> < co.

It is known that for 1 < p < oo, LP((0,00),u) is a Banach space and
for 1 < p < oo, it is reflexive too.

Consider the generalized Hardy operator
L:LP((0,00),v) — LI((0,00),u)
defined by
Lhe= [ Mensod, o>0

where the kernel [(x,t) is defined for 0 < ¢ < z < oo and I(z,t) > 0.
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The conjugate operator L* to L is given by

oo

(L)) ;z/ It 2)g(t) dt, z> 0.

€T

For the sake of convenience we shall use the following notations. We
denote for s > 0

(Lof)(z) = / "1 (e, 1) (1) d,
and

Lig)e) = [ Eeog

For example, Lg is the standard Hardy operator foz f(¢)dt.

The aim of this section is to prove the following conjecture of Kufner
and Persson [3, page 113] regarding the boundedness of the operator
L* for the case 0 < ¢ < 1 < p < o0.

Conjecture 3.1. Suppose 0 < ¢ < 1 < p < oo and denote
1/r=1/q—1/p. Let L* be defined by

(L*g)(z) == /OO I(t,x)g(t)dt, x> 0;

where the kernel I(t,x) is defined for 0 < x < t < o0, l(t,x) > 0, and
is increasing in the first variable, i.e.,

(3.1) Ity z) <l(ta,x), for 0<t; <ts.

If

B = ([T @y O e 0 ) R
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(3-2) 127 gllg,0,00),u < Cllgllp,0,00),0

for all g > 0 with C' < Bj.
Conversely, if (3.2) holds for all g > 0, then Bj < C' < co where

1/p’

B = < /0 (L) 1 (007 (1) dt>

The boundedness of the operator L for the case 0 < g <1 < p < o0
has been studied by Sinnamon [8], see also [3]. As mentioned in
Section 1, the boundedness of the operator L* cannot be obtained using
duality arguments applied on the boundedness of L since ¢ < 1. So, a
direct approach is needed. In this direction, the basic tools have been
developed in Section 2 in terms of C-level functions. Using those tools,
we first prove the following important lemma which is needed in order
to prove Conjecture 3.1.

Lemma 3.2. Let (a,b) be an interval and w a weight function

on (a,b). Suppose that f;w(x) dx < oo. Then for each measurable
function f > 0 there exists a nonnegative function g such that

(i) S ) dt < [P g(t)dt, z € (a,b).

(ii) g(z)/w(z) is increasing on (a,b).

(i) [2(9(a) /w(@)Pw(z) do < [(f (@)/w(z)Pw(z)da, p > 1.

Proof. Let f. be the C-level function of f with respect to w. We
show that g = f. satisfies (i)—(iii). We find that (i) and (ii) follow
immediately by using Lemma 2.7 and Theorem 2.11, respectively.

Further, if z € (a,b) \ I, then f.(z) = f(z). Therefore it suffices to
show that
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where (an,by,) is a maximal C-level interval of f with respect to w.
The case p = 1 is disposed of by Lemma 2.7 (ii). For p > 1, put

e [ (e

If J,, = 0, we are done trivially. Otherwise, since

fu(@) = cow(e) with %-(ATf@ﬁ)/Kl?w@ﬁ),

using Lemma 2.7 and Holder’s inequality, we have

and (iii) follows. O

Proof of Conjecture 3.1. Suppose that (3.2) is satisfied for all func-
tions g > 0. Then, by the reverse Minkowski integral inequality, we

have
oo 00 q 1 / q
ﬂMhmmWZ</ mm(/ mwm@a>d@
0 T
I

/Ooo g(zf)(/ot (t, z)u(z) dm>1/q dt,

Y
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and the duality of LP((0,c0),v) gives

) t 1/q
¢= sup / g(t) </ 19(t, x)u(zx) da:) dt
llgllp,(0,00),»=1J0 0

= su ~ w)l/4
- / o(t)(Lqu) /(1) dt

llgllp,(0,00),»=1

@)1 0y 1 |
- </000(Lqu)17’/q(t)vl_p,(t) dt> 1/p
- B

To prove the other implication, we may assume, without any loss of
generality, that g is compactly supported in (0, c0) and that fooo P <
0o. Using Lemma 3.2 (i), we get

(L*g)(x):/:ol(t,m)g(t)dt:/:ol(t,x)d</toog(s)ds>
~ta) [+ [ ([T awds) aite)
<ia) [ a@ass [ [T alas) o)

= (L*gc) (),

where g, is the C-level function of g. Therefore
| wor@u) iz
0
< [ Woyi@ul) ds
0
_ / u(z)(L*g0)"  (x) / I(t, 2)go(t) dt dz

0

_ /Ooogc(t) [(/ > 5,2)ge(s )dsrldmdt
g/ooogc(t) [/too 5,2)g0(s s]qldmdt
g/ ge(t /zqm [/Oogc s] de dt
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because I(s,z) > I(t,
3.2 (ii) with w = v 7',

[ ateds = [0 s 2 o0 0 [0 ) ds
so that

/ N u(z)(L*g)(z) dz < / oo(gc(zt))qv(p'*”<‘H>*q/P(t)vq/P(t)
0 0
X < /t v (s) ds) (Lqu)(t) dt.

Since ((p'—1)(¢—1)—q/p)r/q = ((¢' — 1/q')—(1/p))r = 1-p’, Holder’s
inequality with exponents p/q and (p/q)’ = r/q yields

/0 " u(e)(L7g)(x) de

< (" erane a) m( [T

oo , (g=1)(r/q) a/r
X < / v 7P (1) dt> (Lqu)"™/9(z) d:c)

- ([[ranwa) "

([ o @ @) E @) de

= ||QC||Z,(0,OO),v-(BI)q-

)fort < s < ooand 0 < g < 1. By Lemma

a/r

The result now follows from the fact that due to Lemma 3.2 (iii) we
have

L e M ) R IO

- / ¢ (@)o(@) da = gl 5 o0, -
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