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TWO PARAMETERS FOR
RAMANUJAN’S THETA-FUNCTIONS
AND THEIR EXPLICIT VALUES

NAYANDEEP DEKA BARUAH AND NIPEN SAIKIA

ABSTRACT. We define two parameters g , and g;c , D

volving Ramanujan’s theta-functions ¥ (g) for any positive real
numbers k£ and n. We study several properties of these pa-
rameters and find some explicit values of 9(q) and quotients
of 1(q) and of ¢(g). This work is a sequel to some recent
works by J. Yi.

1. Introduction. For q := e*™* Im (z) > 0, define v (q) as
’(/J(CI) — an(n+1)/2 — 2—1(1—1/55192(0’2:)7
n=0

where ¥ is one of the classical theta-functions [15, page 464]. For

g := e?™% and Im (z) > 0, we also define

oo

3a):= Y ¢ =05(0,22)

n=—oo
and

—1/24

f(=0) = (30w =¢q n(2),

where 93 is another classical theta-function [15, page 464] and 7 denotes
the Dedekind eta-function and (a; ¢) is defined by

(oo}

(a:0)o0 = [ [ (1 = ag®).

k=0
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In his first notebook [12, page 248] Ramanujan recorded many
elementary values of ¥(q) and ¢(q). Particularly, he recorded ¥ (e "")
forn=1,2, 4,8, 1/2, and 1/4 and ¢(e~"") and ¢(—e "") for n =1,
2,4, 8,1/2, and 1/4. All these values were proved by Berndt [7, page
325]. Ramanujan also recorded nonelementary values of ¢(e="") for
n=23,59,7 and 45. Berndt and Chan [8] found proofs for these.
They also found new explicit values of ¢(e~"") for n = 13, 27, and
63. Recently, Yi [17, 18] evaluated many new values of ¢(q) and f(q)
using modular identities, transformation formulae for theta-functions
and the parameters hy y, h;cm, Tk, and r;c’n defined, respectively, by

3 F(=q) _ —2m\/n/k
(1.1) Tk = k1/ag(h—1)/24f(—gk)’ qg=¢e )

f(q) —7my/n/k
(1.2) T = fel/4g(k=1)/24 f (gk)’ 7=¢€ K,

_ 9 _ m/m
(1.3) hipn == W, g=c¢e m,

and

(1.4) ;c,n = kl/gi;(i)qk)’ q= e 2mV/n/k,

In particular, she evaluated ¢(e "™) for n = 1, 2, 3, 4, 5 and 6 and
¢(—e ") forn =1, 2, 4, 6, 8, 10, and 12. Motivated by Yi’s work, we
define, for any positive real numbers k and n, the two parameters g .,
and g; ,, of the theta-function ¢(q), by

— w(_q) _ _—my/n/k
(1'5) gk,’n L k1/4q(k_1)/8¢(_qk)7 q =€ I

and

¥(q) —7my/n/k
4 I _ T/ N
(1.6) Ikn - = K1 /aq(h=1)/84) ()’ 7=¢ :

In this paper, we establish many general properties of these param-
eters, which are analogous to those of hy, and h;c,n' We also find
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several general theorems for the explicit evaluations of these parame-
ters by using theta-function identities. In particular, we obtain several
new explicit values of the theta-function ¢(q) and quotients of 1(q)
and of ¢(q).

In Section 2, we present the theta-function identities involving v (q)
and ¢(q) and transformation formulae which are used in the subsequent
sections.

In Section 3, we list the explicit values of 7y, and 7}, ,, from [17] for
ready reference in the later sections.

In Section 4, we give some general properties of g, and g}cm. We
also establish relations between g n, gy ,,» Tk,n, and 7 .

In Section 5, we give some general theorems for the explicit evalua-
tions of gk, and g, ,, and find many explicit values of g, and g; ,, by
using the results in Sections 2—4.

In Section 6, we find several explicit values of the theta-functions
P(£q)-

In Section 7, we find several explicit values of quotients of the theta-
function ¢(q).

In the last two sections, we briefly discuss about applications of
the parameters gy p, gkn, hi,n and hkn to the explicit evaluations
of the Rogers—RamanuJan continued fraction and Ramanujan’s cubic
continued fraction.

2. Theta-function identities and transformation formulae.
In this section, we give some theta-function identities and a transfor-
mation formula which will be used in the subsequent sections. We also
present proofs of the new theta-function identities.

Theorem 2.1 (Ramanujan [12, page 327], Berndt [6, page 233)). If

1)) _%(d®)
P= 729(g) and Q= BB’

then

sy (8 (5 (8+5)
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Theorem 2.2 (Baruah [2, page 245]). If

P = ﬂ and Q

a4y (q®)

/0 P\? O P p\2 0\?
-(7) (a) *(2 a)+(a) =(2)-
Theorem 2.3 (Baruah [2, page 250]). If

p__ ¥ wmd Q- )

() = TG

then

2
(2:3) k1 (PQ)? + k2 PQ = k3(PQ)* + ka <g> — ks,

where k1 = (P/Q)® — 1, ke = 14P*((P/Q)* — 1), k3 = P*(7 — P*),
ke = TPH(P* — 3), and ks = 27(PJQ)* — TP*(3 + 3(P/Q)* — P*).

Theorem 2.4. If

Y(—¢*)
PP(—¢*)’

and Q=

Proof. The proof of the theorem follows easily from [5, page 345].
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Theorem 2.5 (Berndt [5, page 306]). If
/_L = M _—
af*(—q") P/ (=q")’

then

(2.5) 2u =73 +50% + ) + (V2 + Tv + 7)(4v° + 2102 4 280)Y/2,

Theorem 2.6 (Adiga et al. [1, page 10]; Baruah and Bhattacharyya
[4, page 2157)). If

_ Y(—q) )
b= ™ 9Ty
then
(2.6) Q*+ P'Q* =9+ P

Theorem 2.7 (Adiga et al. [1, page 10]; Baruah and Bhattacharyya
[4, page 2156]). If

po Y9 g o= 29
—q q

then

(2.7) Q+PQ=3+P.

Theorem 2.8 (Adiga et al. [1, page 10]; Baruah and Bhattacharyya
[4, page 2156]). If

V9 L o=

b= o) (&)

then

(2.8) Q*+ P?Q* =5+ P2
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Theorem 2.9. If

¥(q) ()
P = 7)(g?) and Q= a'%4(¢6)’
then
P\?* 3 > (Q\
(2.9) <§> + 5 Pt <F> = 0.
Proof. Replacing g by —¢ in [5, page 39], we note that
_ =)

Thus,

_ PR ol P(Ed)f (=)
G P e M T ) e

Set

f(-a) £
212 L= gy B ey
and

2 (=q")

__f(=a%) _
(213) Ml = T Ay and M2 = W(_qm)

q*/%f(=q°)
Then, from (2.11), (2.12) and (2.13), we have

L,

M.
2.14 P=22 @Q==2, and L,= M2
L M, 1

Now from (2.12), (2.13) and [6, page 204], we deduce that
2 6 6
3 M L
2 _ (2t ~L
219 @+ (on) = (8) (1)

9 My\? Ly \?
2.1 Lo M. —_— | = == —_— .
(2.16) ? 2+(L2M2> <L2> +<M2>
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Employing (2.14) we find that

P12 o 9P8
12 _
(2.17) M = ——
and
6 2
6 @ —9Q
From (2.17) and (2.18), we conclude that
P2 _gp8 6 _ 902 2
(2.19) _ (L9097
Pi_1 Qi1
Simplifying the above equation (2.19), we obtain
(2.20)
(P4 _ 3Q2 +P4Q2 +Q4)(—P4 _ 3Q2 +P4Q2 _ Q4)(9 _P4 _ Q4 +P4Q4)

=0.

By examining the behavior of the first and the last factors of the
lefthand side of (2.20) near ¢ = 0, it can be seen that there is a
neighborhood about the origin where these factors are not zero. Then
the second factor is zero in this neighborhood. By the identity theorem
this factor is identically zero. Thus, we have

(2.21) P*4+3Q° - P'Q*+Q*=0.

Dividing the above equation by P2Q?, we complete the proof. a

Theorem 2.10. If

(=g p(d?)
P= g M 9= angey

then

(2.22) <g>2+%+P2— <%>2 =0.
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Proof. Replacing ¢ by —q in Theorem 2.9, we complete the proof.
]

Theorem 2.11. If

o= _ Y9

¥(—q)
and q1/41/1(q3)

U )

then
(2.23)

(&) () (&) - () () o) e

Proof. Invoking (2.10), we obtain

(=) f(e*) FA(=*)f(=2°)

.24 P=——— d =
(2.24) (@) (%) " < a4 f(—q) f3(—q°)
We set
f(a) 2 (—¢*)
(2.25) Ly = ql/w—;(qs) and Ly := W(q_(ﬁ)’
f(= f(=¢*
(226) M1 = W(q_)qs) and MQ:: W(q_ifi)
Then, we have
(227) P= é—i, Q == %, and L2 == Mg.

Now by applying (2.25) and (2.27) in [6, page 204], we obtain
(2.28) LYMY —9LIMZ = MS — L12.

Replacing L; in the above equation using (2.27), and simplifying using
the result Lo = M>, we find that

P'? 4 9p®
6 __
(2.29) My =~
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Again, from (2.26) in [6, page 204], we obtain

9 M M

2.30 M2My 4 —— = L 2
(2:30) R VS VA VI VE:

Employing (2.27), we deduce that

_ Q°%(Q° - 9Q%)
T

From (2.29) and (2.31), we arrive at

(2.31) M3

P12 + 9P8 B Q6(Q6 _ 9Q2)

(2.32) T aa T

Simplifying, we obtain
(2.33) 9P* 4+ P® —9Q* —10P*Q* — P3Q* + Q* + P*Q® =0.

Dividing the above equation P*Q* and rearranging the terms, we
complete the proof.

Theorem 2.12. If

¥(q) ~ Y(d®)
q'/?(q%) and Q q¥(¢*°)’
then
P\* 5 Q\’
(2.34) <§> EPQJF(F) +4=0.

Proof. We employ [6, page 206] and proceed as in the proof of
Theorem 2.9. O

Theorem 2.13. If

__¥(9)
q1/2¢(_q5)
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then
P\ 5 Q\°
2.35 —) - -P*+ (=) —-4=0.
(2:39) () 77+ (3)
Proof. Replacing ¢ by —¢ in Theorem 2.12, we easily arrive at (2.35).
O

Theorem 2.14. If

R G’ B A C)
P_ql/zllﬁ(*(f) ‘e

a'?9(q%)’
o0 (5 (8459 () e

Proof. We use [6, page 206] and proceed as in the proof of Theo-
rem 2.11. O

Theorem 2.15. If

¥(g) P(g®)
P= 7739 (g?) and Q= /4 (q4)’
then
9 \2 0\2
(2.37) P? — (P—Q> - (F) =0.

Proof. From [17, page 21], we note that

(2.38) (L My)* + <Lj\41>4 = <f—11>12,
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where
f(= f(=¢?
(239) Ll = W(q)qz) and M1 = #(q)qél)
Let
(2.40) Lye C8) g g L4

Now, we proceed as in the proof of Theorem 2.9 with applications of
(2.38) instead of [6, page 204] to complete the proof. O

Theorem 2.16. If

~ #(g) ~ 9(—q)
P=5 ™ 9T ey
then
5 QP
(2.41) PQ+ 55 —4=F+ 5

(2.42) ¢(q) =
Thus, P and @ can be written as

_ @) ol PeafCd?)

(2.43) P =) 2 ©= F=) (=)
Setting

F(—" £
(2.44) L :—% and - Ly := W(f()cf)
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(=4 (=9
G4) M= gy 2 M= ey
we find that
(2.46) P="0 Q=12 and M=L.
1 1

Now, from (2.44) and [6, page 207], we have
(2.47) LiL% —5L%L, = LS — L3.
From (2.46) and (2.47), we obtain

5P — pP3
3 __

Again, from (2.45) and [6, page 206],
(2.49) M{PM3 + 5MEMy = MP + M3,
From (2.46) and (2.49), we find that

3
3 Q°—5Q
Since Ly = M, so from (2.48) and (2.50), we deduce that

5P—P*  Q®-5Q
Pz-1 Q-1

(2.51)

Simplifying (2.51), we arrive at
(2.52) (P+Q)(5— P*—4PQ — Q* + P2Q?) =0.

Since the first factor is nonzero in a neighborhood of the origin, we
deduce that

(2.53) 5— P2 —4PQ - Q*+ P2Q*=0.

Dividing the above equation by PQ, we complete the proof. ]
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Theorem 2.17. If

_ o9 _ #(=2%)
P=5e) ™ @ gy

then
(2.54) <g> + (%) —QQ—%+4=

Proof. Employing (2.42), we note that

p— LS00 724" £2(~)

(2.55) P ) and Q= (=2~
Setting
s re
(256) L1 = % and L2 = W(E)q%a
4 2(—q?
@51) M= o ad e )

7 (=q")’
we deduce that

L,

(2.58) P=1

M.
, Q:ﬁi, and M, = L2.

Now, from (2.56) and [6, page 206], we deduce that

5 Mi\° [ Li\®
2. Ly M — = — — ] .
(2.59) 1 1+L1M1 <L1> +<M1
Applying the results in (2.58) and simplifying, we find that
6 4
6 @ —9Q

Similarly, from (2.57) and [6, page 206], we obtain

_ P®_5P

3
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From (2.60) and (2.61), we find that

<P3 - 5P>2 Q5 -9

(2.62) o o1

Simplifying the above equation, we obtain
(2.63) (5—P?—Q*+P?Q*)(—5P*+ P*+4P?Q* + Q* - P?Q") = 0.

Now, proceeding as in Theorem 2.9, it can be shown that the first
factor of (2.63) is nonzero in a neighborhood of zero. Thus, we have

(2.64) 5P% — Pt —4P?Q% — Q* + P2Q* =0.

Dividing the above equation by P2Q?, we complete the proof. a

Theorem 2.18. If

_9@ . oo 90
P=5 ™ 9= sy
then
(2.65) <g> + (%) -Q* - %+4=0.

Proof. Replacing ¢ by —¢ in Theorem 2.17, we readily complete the
proof. ]

Theorem 2.19. (i) (Adiga et al. [1]). If a8 = 72, then

(2.66) e~ /8ol Ay (—e®) = e7P/BB Ay (—eP).

(ii) (Berndt [5, page 43]). If a8 = n%, then

(2.67) efa/u\“/af(—e*za) =e P12 {/Bf(—efzﬁ).
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3. Values of 7, and r;c’n. In this section, we list the values of
Tk and vy from [17].

Theorem 3.1. If ry, and 7, are as defined in (1.1) and (1.2),
then

1= 1,
T22 = 21/8,
1/8
T4 = 21/8 (1 + \/§> )
1++5
T2,5 = 2 )

rog = 21/8 (1 + \/§>1/4 <4 +/2+ 10\/§> v ,

T2,9 = (\/§+ \/g) v )
(L+v3)"" (14 VB +vE-3/9)"°

2,18 = ol1/24 ’

1/4 1/8
rogg = 21/8 (1 + \/5) <4 /24 10\/§> ,
/8

1/4 L
P =2/ (14v2) (1641524 1 12v3 49 2%1)

25/8
r2,50 = B4 1

((\/E‘f' \/§) (\/§+ 1) (1+\/—_\/§+2,35/4))1/3

r2,72 = )
97/16 (\/57 1)5/12
(1+V3+ 2334
T2,9/2 = 913/24 )
5174 41
T2,25/2 = 25T’

1/12 3l/8(1 3 1/6
r3,3 = 31/12 (3 + 2\/§> = —(21—’/—1;/_)
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V341
73,4 \/5 y
o f Vi
3,7 = 2 \/§) ,
T3,25=%(1+\/_+\/5+2\/_+\/ﬁ>
. _3+ff+\/—\/—+\/49+13ff+8f\/—
3,49 = 23
7"4,1:1a

1/4

T44 = 25/16 <1+\/—>

rag =24 (1 + \/§> i <4 +V/2+ 10\/§> B ,

rao = 3 (14 V3934 V3),
B <1+\/5+\/§+\/m>1/2
2

T5,4 =

)

1/6
5,5 = <25 + 10\/5) ,
35V VB 1 (1+V3+ V2 344"

76,6 = 913/24 ]
R V1T + V1343 +/13
13,3 = e )

rise = ((f+ )(\/§+\/1—3>+2\/(3+2\/§> (4+\/1—3)>,

ro54 = = <3+\/_+\/_+\/_) V541

V-1
o VB0+2-VE+5
PO -2+ VBV

1 2
rasg =g (4\/5+a1+b1+\/(4\/5+a1+b1> —36>,
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where
1 1/3
ay = <§ (2251\/5+ 9\/105)>

and

1/3
by _<% 2251f 9\/105)> :
1 2
T25,49 = g(az—k 5bz+\/(a2+2\/5b2> 64),

where ay = 14974 651v/5+565/7+247/35, by = 437430+1955661/5+
1653337 + 73917+/35.

We also note that 741 =1, rgn = rp i and 7y 1/ = 1/rkn.

Theorem 3.2. For any positive real numbers n and k, we have

1/4
rha =210 (Va-1) ",

) 99/16

T4a = (9‘21/44_4\/5_3'23/4)1/87

/ 5_\/3

Ts5 = 5

L 911/1631/8 (\/5_ 1)1/12 (ﬁ+ 1)1/6
6,6 =

(2-3v2+3-31/4 4 33/4)"/°

y :<2(z+¢§>)”“

V34+VT
, 1++/5
T35 = 5
;o V3HVT
7“3,49:Ta

y V5 +vV13++/V13 - 3
133_ 2\/— 9
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rlse = i ((x/§+ 1) <\/1—3—\/§) +2\/(3+2\/§) (4—\/13)),

T" _\4/%‘}_2"_\/__\/5
9 602 V315

1 2
g = (2\/5+a4+b4+\/(2\/5+a4+b4) —36>,

1 2
7"/25,1/7 =5 (2\/5+a4+b4 - \/(2\/5+a4+b4> —36) ,

where
1/3

4y — <% (17\/5+3\/ﬁ)>1/3 and by = G (17\/——3\/ﬁ)> :

1 2
T5.49 = 3 <as +24/5b5 + \/(as + 2\/@) — 64) ,

/ 1 2
Thsa/49 = g | @5 2505 — (a5 +2v/565) —64],

where as = 1497 — 651v/5 + 565v/7 — 247+/35 and by = 437430 —
195566+/5 + 1653337 — 73917/35.

4. Properties of gy, and g ,.

Theorem 4.1. For all positive real numbers k and n, we have
(1) 9k,1 = 17
(11) 9k, 1/n = gk;_;p

(lll) 9k = Gn k-

Remark. By using the definitions of ¥(q) and g, it can be seen that
gk,n increases as n increases when k£ > 1. Thus, by Theorem 4.1 (i),

gk > 1foralln>1ifk>1.
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Proof. Using the definition of g, and Theorem 2.19 (i), we easily
arrive at gr1 = 1. Replacing n by 1/n in g, and using Theorem
2.19 (i), we find that grn gi,1/n = 1. Interchanging n and k in gy n,
we complete the proof of (iii). O

Theorem 4.2. For all positive real numbers k, m, and n

—1
9kn/m = Gmk.n gnk,m'

Proof. By the definition of g, we find that

Imk,n g'r:k},m = 9m/n,1/k-

Employing Theorem 4.1 (ii) and (iii), we complete the proof. O

Theorem 4.3. For all positive real numbers a, b, ¢, and d, we have

Yad,be

4.1 Ga/bc/d = .
( ) [bc/d YGac,bd

Proof. Applying Theorem 4.1 (iii) in Theorem 4.2, we deduce that,
for all positive real numbers a, b, and n

(42) Ga/bn = Ga,bn gl:;n

Again employing Theorem 4.2 and Theorem 4.1 (iii) in (4.2), we arrive
at (4.1). o

Theorem 4.4. For all positive real numbers k and n, we have

9k2n = Jk,nk Gkn/k-

Proof. Setting a = k, b=1/k, c =n and d = 1 in Theorem 4.3, we
deduce that
Jk,n/k
k2n = — -
91/knk
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Employing Theorem 4.1 (ii) and (iii), we readily complete the proof.
[}

Theorem 4.5. For all positive real numbers a and b, we have
(1) Ga/b,a/b = Gbp Ga,a/v2s
(11) Ga,a Ya,b2/a = 9b,b 9b,a2/bs

(111) Ga,a 9b,a2b = 9b,b Ga,ab?-

Proof. Let a and b be any positive real numbers. By using Theorem
4.1 (ii) and Theorem 4.3, we find that

(4.3) Ga/b,a/b = Ibb Ga,a/b? -
So we complete the proof of (i). Similarly, we find that
(44) 9b/ab/a = Ya,a g[:i2/b'

From (4.2) and (4.3), we derive (ii). By using Theorem 4.1 (ii) and
Theorem 4.2, we find that

(45) Ga/b,a/b = gbb Gab2,a 9;2171,2-

Similarly, we find that

(46) 9b/ab/a = Ya,a a2bb gb;%az-

From (4.4), (4.5), and Theorem 4.1 (ii) and (iii), we complete the proof

of (ili). o

Theorem 4.6. For all positive real numbers k, a, b, ¢, and d with
ab = cd, we have
9a,b Gke,kd = Gka,kb YJe,d-

Proof. From the definition of g, and using ab = cd, we derive that
for all positive numbers k, a, b, ¢, and d,

-1 _ -1
Gka,kb 9o b = Gke,kd 9o d-
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Rearranging the terms, we complete the proof. ]

Theorem 4.7. For all positive real numbers n and p, we have

np,np = In,np? Ip,p-

Proof. The result follows immediately from Theorem 4.1 (i) and (iii)
and Theorem 4.6 with a = p?,b=1,c=d=pand k =n. o

Now, we give relations between the parameters g », g;cvn, Tk,n and
r;c7n and then use these relations to determine the values of g, and
9k,n Dy using known values of i, and rj ,, where ry, and r} , are
given by (1.1) and (1.2).

Theorem 4.8. Let k and n be any positive real numbers. Then
(1) gkvn = Tl?:,n/r;c,n‘

(ii) gfc,n = (7“2,nk/2/7"2,n/2k) Tk,n-
Proof. (i) Let ¢ = e~ ™V"/k, Replacing ¢ by —¢ in (2.10) and using
the definitions of g, and 74 ,, we find that

g Gnk:
k,n —
Gn/k

(4.7)

Tk,n»
where the class invariant G,, is given by
G, = 271/2q71/24x(q)’

where ¢ := e~™V", n is a positive real number, and X(¢) = (—¢; ¢%) -

By [17, page 17, Theorem 2.2.1], we note that

Gn/k r;c n
4.8 = —.
( ) Gnk: Tkn

Using (4.8) in (4.7), we complete the proof of (i).
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(i) Let ¢ := e~ ™V™/*. Employing (2.10) and the definitions of Ikm
and 7y, we find that

(4.9) Gom = Ly,
9n/k

where the class invariant g,, is given by
gn = 2712¢7V*x(—q),

where ¢ := e "™V", n is a positive real number and X(q) = (—¢; ¢*)co-

Also, by [17, page 18], we have

(410) 9n = T2,n/2-

Using (4.10) in (4.9), we complete the proof of (ii). o

Theorem 4.9. For every positive real number n, we have

(411) g;z 1 = T4n-

)

Proof. From [17, page 13], we note that

(4.12) Phom/m = —Em

Tnk,m

Employing (4.12), Theorem 4.8 (ii) and Theorem 4.1 (i), we complete
the proof. i

Theorem 4.10. For all positive real numbers k and n, we have
(1) Gkn = (Gnk/Gn/k) Tkn-
(11) g;c,n = (gnk/gn/k) Tkon-

Proof. These are (4.7) and (4.9), respectively. O
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Theorem 4.11. For every positive real number n, we have
(1) In,n = an Tn,n-

(ii) g;l,n = 21/87“27”2/2 Ton = 21/8gn2 Tron-

Proof. (i) With £ = n in Theorem 4.8 (i) and then using [17, page
17, Corollary 2.2.2], we complete the proof.

(i) Setting k = n in Theorem 4.8 (ii) and using the value g o = 21/8
in Theorem 3.1, we complete the proof of (ii). mi

5. General theorems for explicit evaluations of g; , and g;cvn.
In this section, we find some general theorems on g, and g}cm, and
then use these theorems to find some explicit values of gy, and g;c,n‘

Theorem 5.1. We have
(1) (1 + \/593,7193,97;)3 = (1 + 3g§,9n)7
(i) V59519590 + (V5/95,n95.9n) = (g5.9n/95.n)% — 3(g5,9n/95.n) —
3(g5,n/95,9n) — (95,n/95,0n)%
(i) 3(g3,n.93,25n)2+(3/(93,n93,25n) ) +5(93,25n/93,n) > +5(g3,n/93,25n)
= (93,25n/g3,n)3 - (93,n/g3,25n)3 + 5((93,25n/g3,n) - (gs,n/gs,zsn)),

(iv) k1(V393.193.490)% + k2(v393.1.93.49n) k3(v/393n93,490)% +
ka(g3n/gs,aon)? — ks, where ky = (g3 n/gsaon)® — 1, ko = —42g3,, X
((93,n/g3,a9n)* = 1), ks = =393 ,,(T+ 393 ,,), ka = 6393 ,(93,, +1), and
ks = 27(g3,n/93,49n)* — 6395, (1 + (93,n/93,09n)* — 930,

(v)
((V'3/99,9n) + V399,90 +3)((V3/g9.n) + V3go.n + 3) = (99,9n/99,n)*-

[o]

Proof. Proof of (i) follows from [5, page 345] and the definition of
Gk,n. Proofs of (ii)—(v) follow from Theorem 2.1-2.4, respectively, and
the definition of gi .

Theorem 5.2. For any positive real number n, we have

(1) (1= (V3/95.n95.00))° = (1= (3/9'5.0n));
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(11) \/_95 n95 9n (\/_/95 ng5 Qn) = (gé,gn/gé,n)z + 3(.9/5,9n/.915,n) +
3(95,n/95 gn) (95 n/gs gn) ’

(iii) 3(95,,95 25n) > +(3/ (95,095 250) %) +5(95 250/ 95.0)* —5(95,/ 95 250)
= (gé 25n/93 n)3 (93 n/93,25n) 5((93,25n/93,n) (g;’;)n/g?, 25n))

(iv) k1(\/_93 95 a9n)° + k2(\/§g§,ngé,49n) = k3(\/_93,ng3,49n) +
k4 (g3,n/93,49n) k57
where ki = (95 ,/95,10n)° — 1, k2 = 429" ,,((95,0/95,400)" — 1), ks =
3914317”(7 - Sglg,n)7 k4 = 63914317”(9/;17” - 1)? and k5 = 27(gé,n/gé,49n)4 +
639’;1),71(1 + (gé,n/gé749n)4 + glg,n)’

(v) ((V3/%.0n) + V396 90 —3)(V3/ 9 +V39h n—3) = (96 9n/96.n)*-

2

Proof. Proof of (i) follows easily from [5, page 345] and the definition
of gfc’n. Proofs of (ii)—(v) follow from Theorems 2.1-2.4, respectively,
and the definition of g ..

Theorem 5.3. We have
(i) (95,n/95,.4n)% + V3((1/(d5,0)%) — (95,0)%) + (d5.4n/95.0)° = O,
(i1) (93,0/95.4n)* + V3(1/(93,0)* + (93,0)%) = (95,4n/93,0)* = 0,
(i) (93,0/95.0)* + (95,/93,0)* + 3{(93,0/95,0)" — (95,n/93,0)> H(L/

93095 n)% — (95.,93n)°} — 10 =0,
(iv) (95,n95,4n)% — VB((1/(95,0)%) + (95,2)%) + (95 40/ 95.0)* +4 =0,
(V) (95,1/95,40)° = V5((1/(95,0)*) + (95,1)%) + (95 4n/95,n)> — 4 = 0,

2 7 7
g5,n 9I5,n gsn _ I5,n 1 ) o
(gg,n> + <95,n> +5 (gsn 95,71,) ((gs,ngg,n> 957"957”> 6

(vil) V2((gh,n)?* — (V2/(95,n95.4n)%)) — (92.4n/92.0)* = O-

Proof. Proofs of (i)—(vii) follow from Theorems 2.9-2.15, respectively,
and the definitions of g; ,, and gfcm. o
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Theorem 5.4. We have
(i) gs,s = (W(—e ™)) /(34 ™/ 4p(—e737)) = (3 +2v/3)'/%, and
() g0 = (e 7/¥3))/(8V/1e VB ty(—e3V3m) = (1421525,

Proof. Setting n = 1/3 in Theorem 5.1 (i) and employing Theorem
4.1 (ii), we obtain

(1 + \/§)3 =1 + 3g§,37

which readily gives (i). Again, setting n = 1 in Theorem 5.1 (i) and
recalling the value g1 = 1 from Theorem 5.1 (i), we find that

(5.1) (1+V3g39)° =1+ 3g3.0-
Solving (5.1) and using the remark given after Theorem 4.1, we prove

(ii). O

Baruah and Saikia [4] and Adiga et al. [1] also proved the results of
the above theorem.

Theorem 5.5. We have
(i) g5,0 = (1/2)(3+ V3 + V5 + V15) and
(i) gs3 = (17v/5 + 38)%/6,

Proof. Setting n = 1 in Theorem 5.1 (ii) and recalling that g1 = 1
from Theorem 4.1 (i), we find that

1 1 1)?
(5.2) V5 (9579 + —> =(g50)" — 3 (95,9 + —> — <—> :
95,9 95,9 95,9

Solving (5.2) and using the fact that g, > 1 from the remark after
Theorem 3.1, we prove (i). Again, setting n = 1/3 in Theorem 5.1 (ii)
and recalling gi 1/, = 1/gk,n from Theorem 4.1 (ii), we find that

1 1
(5.3) g53—— | —3|gs+—=)=2V5
95,3 95,3

Solving (5.3) and employing gi » > 1 again, we prove (ii). o
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Baruah and Saikia [4] and Adiga et al. [1] also established the results
of the above theorem.

Theorem 5.6. We have
2
(i) g3,25 = (1 + Y10+ V5 + 2910 + \3/102) /(2(1 4+ v/5)),

(i) ga,7 = (V3+ VT)*/4/(224(2 = V34,
(iii)

- (\/11+\/ﬁ+\/3+\/ﬁ)2
I Va5t VI3 + VI3 -3))
(iv)
93,49
(3+€/Z-€f7+x3/§-\3/4_9+\/49+13-\3/1-\3f7+8-3/§-{’/4_9)2
B 6(+/3 +v/7) ’
(v)
, (VB0 +2-vB+5)" (V60 -2 V3 +5)
P (60— 2+ V3 - VB) (Y80 +2+3 - VB)
(vi)
< 1)(v3+ V13) +2\/3+2f 4+\/_)>
g139 =
1 (WE+ DVB- V) + 2y 2vBa - V)
(vii)

(4\/3+a+b+\/(4\/5+a+b)236>2
6(2\/5+c+d+ \/(2\/5+c+d)2—36>

9257 = )
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where

1/3

a= <%(2251\/5+ 9@))1/3, b= <%(2251\f - Wﬁ)) v

1/3

c_<%(17\/5+3x/ﬁ)>1/3, andd—<%(l7\/5—3\/ﬁ)> ;

(viii)

<a'+2\/W+ \/(a'+2\/ﬁ)2 —64>2
8(c’+2m+ \/(c’+2\/W)2—64)’

925,49 =

where a' = 1497+ 651v/5+565v/7+247/35, b’ = 437430+ 195566/5 +
165333V/7 + 73917/35, ¢ = 1497 — 651v/5 + 5657 — 247/35 and
d’ = 437430 — 195566+/5 + 1653337 — 73917+/35.

Proof. The proof of the theorem follows from Theorem 4.8 (i) and
the corresponding values of 7, and r;c’n from Section 3. O

Baruah and Saikia [4] also found the first four values of the above
theorem.

Theorem 5.7. We have

(0) g0 =1,
(i) gh1 =251+ VD),
(i) g5, = \/(V3+1)/V2,
() gy =2/ + VD)4

)

(v) 951 = ((1 ++5 + ﬁm)/Q)l/z’
() ghy = 241+ VD (44 VET 10vE)
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(vii) gg1 = (L +V2V3++3) /2,
(viii) ghs, = (V5 +1)/(V5 — 1),

Proof. The proof of the theorem follows from Theorem 4.9 and the
corresponding values of r, ,, from Section 3. O

Theorem 5.8. We have
() gha= (VVZ1+vV2H1) "
(i) ghs = V2+ V2,
(iii) g54 = (V3+1)/V?2,
(iv) gh16 = 1+ V3)(V2+1)/V2,
(v)
o1 = (102 +72v2 + 59v/3 + 4216

1/2
+\/ 41680 + 29472v/2 + 24064v/3 + 17016\/6> :

1/2
(vi) 93,12 = (3 +2V3+ V24 + 14\/§) ,
(vii)
93,36 = (13\/§ +10-2'/3/3 +8.22/3

1/2
/3 4+ 24/373 + 296 - 21/3 + 235 - 22/3) ,
(viii)

9320 = (1/2) (\/5 +/3(38 + 17V/5)%/3

1/2
+\/3 +10(38 + 17v/5)2/3 4 3(38 + 17\/5)4/3> ,

1/4
(12208 4 7048+/3 + 4614v/7 + 26641/21 — \/6k>
582 + 333+/3 + 2187 + 127/21

)
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where k = 9623566 + 55561688+/3 + 36373663v/7 + 21000344+/21
(x)

/7464592434470 ¥4+1/1641279+13026841/3+1033941 V4
939 = 19+15/2+12 V4 ’

1/2

(6 gha = (1/2) (14295 + 20 VB) + 1005 VB))
(xii)

. (VB —6(38+17vB)13 + V/B(38 + 17v/B)1/3 + i)

95,3 —2 4+ 2v/5(38 +17/5)1/3 ’

where r = —675 — 304+/5 + 19(38 + 17/5)1/3 + 77/5(38 + 17/5) /3 +
22(38 + 17+/5)1/3,

(xiii)
1/2
(132+76\/§+59\/5+34\/15+2\/16406+9472\/§+7337\/5+4236\/15)
-
95,9 = 8+5v3+4v5+2v15

Proof. To prove (i) and (ii), we set n = 1 in Theorem 5.3 (vii) and
use the value of gj ; from Theorem 5.7 (ii) and the value of g} , = 23/%
from Theorem 6.7 (ii), respectively.

To prove (iii), we set n = 1 in Theorem 5.3 (i) and use the value of
g3 from Theorem 5.7 (iii). To prove (iv) and (v), we set n = 4 and
16, respectively, in Theorem 5.3 (i) and successively use the values of
954 and g3 ;¢ from the same theorem.

To prove (vi)—(viii), we set n = 3,9 and 5 in Theorem 5.3 (ii) and use
the values of g3 3, g3,0 and g3 5 from Theorem 5.4 (i), (iii), Theorem
5.5 (iii), and Theorem 4.1 (iii), respectively.

We set n = 7 and 9 in Theorem 5.3 (iii) and use the values of g3 7
and g3 9 from Theorem 5.6 (iii) and Theorem 5.4 (iii), respectively, to
complete the proof of (ix) and (x).

We set n = 1 in Theorem 5.3 (iv) and use the value of g5 ; from
Theorem 5.7 (v) to prove (xi).
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To prove (xii) and (xiii), we set n = 3 and 9 in Theorem 5.3 (vi)

and use the values of gs53 and g59 from Theorem 5.5 (iii) and (i),
respectively. ]

Theorem 5.9. We have
(i) g52 = 1+ V22,

(ii) gi o = 2°/3(1+ V2)¥/4,
(i) g5 2 = (V5 +1)/2)*,
(iv) gos =241+ V2)1/2,
(V) g2 = V2+ /3,

1/8
(vi) ghs = 2/5(1+ V2P/* (44 V24+1012)
3/8
(vil) 5,16 = 2951+ V¥4 (44 V24 103)

(viii) gh 3o = 29/16(1 + v/2)3/4(16 + 15v/2 4 12v/2 + 9 - 23/4)3/4,

Proof. The proof of the theorem follows directly from Theorem 4.8 (ii)
and the values of r , from Section 3. a

Theorem 5.10. We have

(i) g7, = (1/2)(TY* + V4 +VT) ((35/2)+7f7+(7/2) 21 + 87
1/4
+ 147+56ﬁ) ,
1/4

(i) ghr =27 Y3gu9 (35+14\/7+2\/ 1474561/ +/ 7(147+56ﬁ)>

where

1/8
G ++/Gi— 1 ! VA LA+ T
Ja9 = I and Gy = ——F7.
2G, 2

Proof. First we find the explicit values of r7 7 and r'777 in the following
lemma.
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Lemma. We have

(i) r7,7= (<1/2>(35+14ﬁ+2¢m+ \/m»m,
(ii) TI7,7 = <23/4 (35 + 147 + 7\/m n 2\/m>1/4>/

(T4 + 4+ V7).

Proof of the lemma. We set q := e 2™ in Theorem 2.5 and then apply
Theorem 2.19 (ii) to obtain

f _,—2m/7
(5.4) v = 6_475/7;(6_1)4”) =7
and
(5.5) fee™) .

HS )

Using (5.5) and (5.6) in (2.5), we obtain
(5.6)

1 1/4
77 = (5 <35 + 14V7 + 24/ 147 4 56V/7 + 7(147 + 56\/?)>> ’

to complete the proof of (i).
From [17, page 17], we have

(57) Tnn = anrfln,n'

Setting n = 7 and using the value of G [7, page 191] and (5.6) in
(5.7), we complete the proof of (ii). o

Proof of Theorem 5.10. Using Theorem 4.11 and the above lemma,
we easily complete the proof. o

6. Explicit values for (+q). In this section, we find explicit
formulae for the theta functions 1(e™""), ¥(—e™""), ¥(e~™/") and
1/)(—6_”/ ™) for any positive real number n and give some examples.
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Lemma 6.1. Let a = 7*/4/T'(3/4). Then
(i) Y(e ™) = a2 %/8¢m/8
(ii) Y(—e~™) = a273/4e™/8.
Proof. See [5, page 123].
Theorem 6.2. For every positive real number n, we have

()

a273/4en7r/8 a273/4en7r/8

Y(—e ") = Wige = WG
(i)
w(efnrr) _ a275/86n7r/8 _ a273/4en7r/8 ‘
n1/4g{n,n n1/4r2,(n2/2)rn,n

Proof. Using the definitions of g, , g;,,, Lemma 6.1, and Theo-
rem 4.11, we complete the proofs of (i) and (ii).

Theorem 6.3. For every positive number n, we have
(i)
an1/42—3/4e7r/8n an1/42—3/4e7r/8n

(- = =

9n,n Gn2 Tn,n

(i)
an1/4275/867r/8n an1/4273/4,’.2’2n2e7r/8n

e /) = =

!
gl/n,l/n Tnmn

Proofs. Replacing n by 1/n in Theorem 6.2 (i) and (ii), and using the
fact that g1/n,1/n = gnn and ry 1/, = 7. L [17, page 12], we complete
the proof of (i) and (ii). o

In Theorem 5.4 (i) and Theorem 5.10 (i) and (ii), we have evaluated
93,3, g7,7, and g’777, respectively. Now, we give some more explicit values
of gnn and g;, ,, and then use these values to determine some values of
theta-function ¢(q).



RAMANUJAN’S THETA-FUNCTIONS 1779

Theorem 6.4. We have
(i) g11 =1,
(ii) g2 = 271/10(V2 4+ 1)1/4,
(iif) ga4 = 21/16(1 + v/2)1/2(9 - 21/4 + 4y/2 — 3. 28/4)1/8,
(iv) g5,5 = (5 + V5)*/2/(23/2/5),

(v)
96,6
31/4(\/§+1)5/6(1+\/§+\/§ 33/4)2/3(2_3\/5_’_3 B 31/4+33/4)1/3
- 285/48 ?
(vi)

1/3
1
goo =2+ V3 + (§> <1269 +729V/3 — 271/ 156 + 90\/§>

1/3
+ <47 +27V3 4 1/ 156 + 90x/§) )

Proof. The value in (i) readily follows from Theorem 3.1. The proofs
of (ii)—(v) follow from Theorem 4.8 (i) and the values of 7y, and 7,
given in Section 3.

Next, we set n = 1 in Theorem 5.1 (v) and use the value g1 = 1, to
obtain

(6.1) (\/§ (gg,g + i) + 3> (2\/5 + 3) — g2,.

99,9

Solving equation (6.1), we easily arrive at (vii).
Baruah and Saikia [4] and Adiga et al. [1] also found the value of
99,9-

Theorem 6.5. We have
(i) ¥(—e ™) = a2 3/%e™/8,
(11) w(_e—Qﬂ) _ a2—15/16(\/§_ 1)1/4e7r/4’
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(if) Y(e ™) = (a2 #/4e¥/%)/(3/4(3 + 2v/3)119),
(iv)
a2—21/16(\/§ _ 1)1/2e7r/2

_ 4w —
d]( € ) (9\‘1/5+4\/—_3,23/4)1/87

(v) P(—e=5™) = (ae®™/3(5 — \/5)3/2) ) (29/455/4),
(vi)

ae3™/4987/48

—6my\ __
’(vb(_e ) - \/g(\/g_i_l)s/s(1+\/§+\/§_33/4)2/3(2_3\/5_’_35/4_’_33/4)1/37

a2l/277/8

= 1/49
71/4 (71/4+\/ 4+ﬁ) (35+14\/7+7\/21+8\/7+2\/147+56\/7>

(viii) ¢(—e97) = (a27%/%e"7/8) /(V/3g9.9),

where go 9 is as given in Theorem 6.4 (vi).

Proof. The proof of the theorem follows from Theorem 6.2 (i) and the
values of g,, ,, from Theorem 5.4 (i), Theorem 5.10 (i) and Theorem 6.4.
]

Theorem 6.5 (iii), (v) and (viii) were also proved by Baruah and
Bhattacharyya [3].

Theorem 6.6. We have
(i) 1/](_6—#/2) —a 2—7/16(3#/16(\/5_ 1)1/4’
(i) ¥(—e ™/3) = (a 31/4273/4e7/24) /(3 + 2v/3)1/4),
(iii)
a 2—5/1667r/32(\/§_ 1)1/2

/4y —
=) (9-2/4 + 4v/2 — 3. 23/4)1/8

(iv) (=79 = (a P45/ (15 +5)712)
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(v)
1,/)(—6_”/6) _ q 261/48,7/48
(\/§+1)5/6(1+\/§+\/§_33/4)2/3(2,3\/§+35/4+33/4)1/3 ’
(vi)
’(/1(—67‘"/7 a 21/2 q1/4,7/56

) = 1/4»
(71/4+\/4+\/7> (35+14ﬁ+7\/21+8ﬁ+2\/147+56ﬁ> !

(vii) 9(—e~™%) = (V3 a 273/4™/72) /gg 9,

where gg o is as given in Theorem 6.4(vi).

Proof. The proofs follow from Theorem 6.3 (i) and the values of g, ,,
from Theorem 5.4 (i), Theorem 5.10 (i) and Theorem 6.4. O

Theorem 6.7. We have
(i) 911 =1,
(ii) gho = 2%/%,
(iii) g55 = 32 (1 + V3 +V2-35/4)/3(1+/3)1/0 /2,
(iv) gha = 2°/3(1 + V2)!/2,
(v) 955 = (5+VB)'/2(5/* + 1) /2,
(vi) gé,a _ (31/8(1 + \/5)5/6(1 +V34+ \/5‘33/4)2/3)/229/24’
(vii) gho = (a + (2(b — 2¢))'/3 + (2(b + 2¢))1/%) /2,
where a = 24++/2-31/4421/34+1/2-33/4, b = 824+451/2+481/3+25+/2-33/4
and ¢ = \/3(88 + 47v/2 - 3/4 + 50v/3 + 27v/2 - 33/4).

Proofs. The proofs of (i)—(vi) follow from Theorem 4.11 (ii) and the
values of ry , given in Section 3.

Next, we set n =1 in Theorem 5.2 (v) to obtain

60 (L evihe ) (v, 3) = (%2)).

99,9 99,1 99,1

)
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Substituting the value of gy ; from Theorem 5.7 (vii) in (6.2) and solving
the resulting polynomial equation, we complete the proof of (vii).

Theorem 6.8. We have
(i) ¥(e™™) = a 275/8em/8,
(i) Y(e27) = a 2 4em/4,
(iii)
a 271/8637r/8

31/3(1 + \/§+ \/§ . 33/4)1/3(1 + \/5)1/6’

Blem) =

(iv) P(e ™) = a 272(2 — V2)1/2,

(v) $(e™7) = (a 2¥/5e>7/%) /(51/4(5 + V/5)/2(1 + 51/1)),
(vi)

a 21/43m/4

33/8(1 + \/5)5/6(1 + \/g—i- \/5 . 33/4)2/3’

P(e™T) =

(vil) (e ™) = (a 742 12T/ gt 1y,
(viii) $(e™07) = (a 275/%¢7/5//3g} ),

where g7 ; and gy 9 are as given in Theorem 6.7.

Proof. The proof of the theorem follows from Theorem 5.2 (ii) and
the values of g;, ,, from Theorem 5.10 (ii) and Theorem 6.7. o

Theorem 6.8 (i) and (ii) were also proved by Berndt [7, page 325].

Theorem 6.9. We have

( ) ( 7r/2) =a 2" 7/16(\/__'_ 1)1/4 7r/16

(i) ¥ (e~ 7r/3) a 9-27/243— 1/8(\/—+1)1/6(1+\/—+\/— 33/4)1/3 Tr/24
1l e - +15- + 249. )

( ) —m/4 7/8(16 15 21/4 12\/_ 9 23/4)1/8

vle /1) =
) 61em5) = (0 2956705+ VBV 1 1),
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(v)

’(P(eiﬂ—/s) _a 2—11/12€7r/48((ﬁ+\/§)(\/§+1)(1+\/§7\/§+2_35/4))1/3
o 31/8(14+/3)1/2(14/34+/2 33/4)1/3(\/2—1)5/12 .

Proof. The proof of the theorem follows from Theorem 6.3 (ii) and
the values of 7, from Section 3. O

Theorem 6.9 (i) and (iii) were also proved by Berndt [7, page 325].

7. Explicit values of quotients of the theta-function ¢(g). In
this section, we give theorems for the explicit evaluations of quotients
of the theta-function ¢ in terms of the parameter gfmn and then use
these theorems to find some new explicit values.

Theorem 7.1. For any positive real number n, we have

(1) B(—e V3 /(e ™) = (9~ 3g4t,) /(1 — 3g8h)) 4,

(ii) p(—e™ V%) [p(—e~ ™) = (3~ v/3g},.)/ (1 — v/3g) ),
(iii) ¢(—e V%) fp(—e=mVEm) = (5 — VBg2)/ (1 — VBg,)) /.

Proof. We set ¢ = —e™™V"/3 —e=™"/9 and —e~"V"/% in Theo-
rems 2.6-2.8, respectively, and use the definition of gfgvn to complete
the proofs. ]

Theorem 7.2. We have
(i) (—e=™/V3) /g(—e~™3) = ((9 = 3(2+V/3))/(1 = 3(2 + V/3))) /4,
(

ii)
p(=e ") <36_39/2(1+\/5)2/3(14-\/54-\/5.33/4)4/3)1/4
¢(—e=3m ’

= 4 — 39/2(1 4 \/§)2/3(1 + \/§+ \/§ . 33/4)4/3

(iii) ¢p(—e™V2/3)/p(—e=™V0) = (3v/2/(4 + 3v/2)) /4,
(iv)
$(—e V) _ VB+6v3-3
$(—e=™0)  VB+V6V3+1
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(v) (=) /¢(—e77) = (3 — b2)/(1 — ba),
where by = \/ggé’g and gy o is given by Theorem 6.7 (vii),
(¥) 6~ V) fo(~em) =3~ VB,
(vii)
1/2

P(—e=™/V3) V5 4+ /54/2(1 ++/5) — 5

$(—e-™5) VB4 v54/2(1 +5) + 3

(viii)

p(—e™™) 5(1+5Y* 4+ V5 4+ 5%/4) v
#(=e57) ’

"\ 134551/ +5V5+5.5%4

(%) $(—e V) Jg(—e=VI0) = (VB/(2 + V)2,

Proof. Proofs of (i)—(iii) directly follow from Theorem 7.1 (i) and the
values of g3 ; from Theorem 5.7 (iii), g3 5 from Theorem 6.7 (iii), and
g5 2 from Theorem 5.9 (i), respectively.

Similarly, proofs of (iv)—(vi) follow from Theorem 7.1 (ii) and the
values of gy ; from Theorem 5.7 (vii), g g from Theorem 6.7 (viii), and
gy 2 from Theorem 5.9 (v), respectively and proofs of (vii)-(ix) follow
from Theorem 7.1 (iii) and the values of g5 ; from Theorem 5.7 (v), g5 5
from Theorem 6.7 (v), and g , from Theorem 5.9 (iii), respectively.

Several other quotients of ¥(g) and ¢(q) are also evaluated in [3].

Theorem 7.3. For any positive real number n, we have

() V5(hs,nh gt (1 sl y4)) =4 = (B 4/ hsn)+(hsn /15 L, )
(i) (R /s 4n) + (RS 40 /B 1) = VB(hE gy + (1/hE4n)) + 4 =0,
(i) (s /B )2 + (W /s m)? — V/B(HZ, + (1/R2,)) +4 = 0.

Proof. The proof follows from Theorems 2.16-2.18 and the definitions
of hy,n and hj, , from (1.3) and (1.4), respectively. o
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Theorem 7.4. We have
(i) hsp =1,
(ii) hs,s = V5V5 — /\/—
111) hs 1/3 = V5 /\/_
(iv) hs9 = (\f+ 1)/(f+ v5),
(V) hs1jo = (V3 +V5)/(V3+1).

For proofs see [17, pages 134, 146, 148].

Theorem 7.5. We have
(1) 7510 = 2+ V2V5 = 2)/(V5 - 1),
(i) ALy = ((2— V2V5 - 2)/(\/5 - 1)'2,
(iii)
1/2

B — 2(—2+2\/5—\/10(—1+\/5)+\/—2+2\/§—2 14+/5+2v/ —2+2v/5)
54 4+/10(14V5)—5v/ —2+2v/5 ’

(iv) b5z = (-2 +2v5 +1/6(3 - v5))/(3 - v5))'/2,

(v) 15 = ((2+2V5+1/6(3 +5))/(3 + V5))'/?,
(vi)

1/2
B — 8+4v/3+3v5+2v/15+21/46+32/3+25v5+12V15
5,9 ™ 5v3+4v5-21/15—-8 ’

(vii)

1/2
’ _ 8+4\/§+3\/§+2x/15+2\/46+32\/§+25\/§+12\/15
5,1/9 — 44334454215

Proof of (i). Setting n = 1 in Theorem 7.3 (i) and then using Theorem
7.4 (i), we find that

(7.1) (V5 —1) <x+%>—4_0.
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Solving the above polynomial equation (7.1) for =, we complete the
proof. o

Proof of (ii). Setting n = 1 in Theorem 7.3 (iii) and then using
Theorem 7.4 (i), we deduce that

(7.2) (1-5) <:c2+ %) +4=0.

Solving the above polynomial equation (7.2), we prove the value of (ii).
O

Proof of (iii). Setting n =1 in Theorem 7.3 (ii), substituting the value
of hy ; from (ii) and solving the resulting polynomial equation for Ay ,
we readily complete the proof. ]

Proofs of (iv)—(vii). Setting n = 3, 1/3, 9, and 1/9 in Theorem
7.3 (iii) and employing the values of hs3, hs1/3, hsg and hs /g
from Theorem 7.4, respectively, and then solving the corresponding
polynomial equations, we complete the proofs. a

8. Explicit evaluations of the Rogers-Ramanujan continued
fraction. In this section, we discuss about the applications of the
parameters hy, ,, h//vc,n: 9k,n and g;cvn to the explicit evaluations of the
famous Rogers-Ramanujan continued fraction R(q), defined by

(5.1) R(g) = L

2 3
a9 9 q
- = = < 1.
1 4141414 i

Theorem 8.1 [3, page 2157]. We have

f%(q) V2(—q) _ ¢*(q)

(8:2) D) W) (@)
and
(8.3) (= _ ¢*(q) Y (—q)

27— ~ () " 2 —g)
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The following relation was stated by Ramanujan [5, page 267] and
first proved by Watson [14]

11 _ pb _ fﬁ(_Q)
84) mg 8 @)= afs(=4°)’
Replacing g by ¢? and —gq, in succession, we find that
1 f6 2
2 P g
and
1 o5 o fG(Q)
(86) s S'la) = af%(a®)’

where S(¢) = —R(—q).

Employing (8.2)~(8.6) and the definitions of Ay, n, hy, ., gk,» and gj ,,,
we easily find the following theorem.

Theorem 8.2. We have
(i) 1/(RS(e"™V™/5)) — 11 — R3(e~™V"/%) = 5/bg'2 15 /a5

(ii) 1/ (B3 (e~2mV"/%)) — 11 — R (e~ 2™V"/%) = 5/Bgd b2 .;
(i) 1/(S3(e~™V"/%)) +11 = §%(e~"V"/%) = 5V/Bg2 hd .

From the above theorem, it is clear that we can find explicit values of
R(e’"\/”_w), R(e’z"\/"_ﬁ) and S(e’”\/”—/5) by using the known values
of hiny My y gkn and g . For example, setting n = 4 in Theorem
8.2 (i) and using Theorem 5.8 (xi) and Theorem 7.5 (ii), or setting
n = 1 in Theorem 8.2 (ii) and using Theorem 4.1 (i) and Theorem
7.4 (i), we find that

(8.7) W —11-R° (e—%/ﬁ) = 5v5.
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Solving (8.7) for R%(e=27/V%), we conclude that

() < { o v8) - (3B )

This was first evaluated by Yi [16, Corollary 4.3].

Similarly, setting n = 1 in Theorem 8.2 (iii) and using Theorem 4.1 (i)
and Theorem 7.4 (i), we obtain

(8.8) 11— 85 (e_”/‘/g> = 5v5.

S5 (e—“/\/g)

Solving (8.8) for S° (e*"/‘/g>, we deduce that
§° (V%) = % { 10 (25 - 11V5) - (5v/5 - 11) } .

This was recorded by Ramanujan [13, page 210] and the first proof
was given by Berndt, Chan and Zhang [9]. Kang [10] and Yi [16] also
established this value.

9. Explicit evaluations of Ramanujan’s cubic continued
fraction. In this section, we discuss the applications of the parameters
Pk,ns R Gkn and gg , to the explicit evaluations of Ramanujan’s
cubic continued fraction G(q), defined by

P qrq® @?+qt P+

G = 1.
(9) TS R R lg| <

From Theorem 4.21 [3, page 48] and the definition of g, and g} ,,,
the following theorem is apparent.

Theorem 9.1. We have
(i) G*(—e™™V™/3) = —1/(1+ 3¢5 ,);

(ii) G3(e V%) = 1/(3¢3,, — 1)-
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Employing the values of g3, for n = 1, 3, 1/3, 9, 1/9, 5, 1/5, 25,
1/25,7,1/7,13,1/13, 49 and 1/49 from Theorems 5.4-5.6 in Theorem
9.1 (i), the values of G(—e ™V"/3) can be found by solving a cubic
equation.

Baruah and Saikia [4], Yi [17] and Adiga et al. [1] also found the
values of G(—e™™V™/3) forn =1, 3, 1/3, 9, 1/9, 5, 1/5, 25, 1/25, 7
and 1/7.

Employing the values of gg,n form=1,2,3,4,7,9, 12, 16, 20, 36
and 64 from Theorems 5.7-5.9 and Theorem 6.7 in Theorem 9.1 (ii),

the values of G(e™" n/ %) can be found by solving a cubic equation.

Ramanathan [11] and Yi [17] also evaluated G (e "V"/3) for n = 1,
2,3, 4,9, and 36.

Remark 9.2. Theorem 5.3 (i)—(iii) imply that if we know g3, then
95.,,, and hence g3 4, can be evaluated. Thus, by Theorem 9.1, if we
know G(—e "™V"/3) then G(e~™V™?) and G(e ?*V™?) can also be
evaluated.

The next theorem follows easily from [5, page 345] and the definitions
of g;c’n and hy .

Theorem 9.1. We have
(i) G(e™™™) = 1/(v/3g5,,, — 1);
(i) G(—e=™™) = (1 — V3ho ) /2.
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