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K-THEORY OF CREPANT RESOLUTIONS OF
COMPLEX ORBIFOLDS WITH SU(2) SINGULARITIES

CHRISTOPHER SEATON

ABSTRACT. We show that if @ is a closed, reduced,
complex orbifold of dimension n such that every local group
acts as a subgroup of SU(2) < SU(n), then the K-theory
of the unique crepant resolution of @ is isomorphic to the
orbifold K-theory of Q.

1. Introduction. Let @ be a reduced, compact, complex orbifold of
dimension n, i.e., a compact Hausdorff space locally modeled on C"/G
where G is a finite group which acts effectively on C™ with a fixed-point
set of codimension at least 2 (for details of the definition and further
background, see [3]). Then a crepant resolution of ) is given by a
pair (Y, ) where Y is a smooth complex manifold of dimension n and
m:Y — @ is a surjective map which is biholomorphic away from the
singular set of @, such that 7*Kg = Ky where Ko and Ky denote
the canonical line bundles of @ and Y, respectively (see [7] for details).
In [11], it is conjectured that if 7 : ¥ — @ is a crepant resolution of
a Gorenstein orbifold @), i.e., an orbifold such that all groups act as
subgroups of SU(n), then the orbifold K-theory of @ is isomorphic to
the ordinary K-theory of Y. For the case of a global quotient of C",
this has been verified for n = 2 in [10] and, for Abelian groups and a
specific choice of crepant resolution for n = 3 in [5]. Here, we apply
the ‘local’ results in the case n = 2 to the case of a general orbifold
with such singularities.

The K-theory of an orbifold can be defined in several different ways.
First, it can be defined in the usual way in terms of equivalence classes
of orbifold vector bundles, see [1]. As well, it is well known that a
reduced orbifold @ can be expressed as the quotient P/G where P is
a smooth manifold and G is a compact Lie group [8]. In the case of
a real orbifold, P can be taken to be the orthonormal frame bundle
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of @ with respect to a Riemannian metric and G = O(n). Similarly,
in the complex case, P can be taken to be the unitary frame bundle
and G = U(n). Hence, the orbifold K-theory of @ is defined as the
G-equivariant K-theory K¢g(P). See [1, 9] for more details.

In Section 2, we describe the structure of the singular set ¥ of @
in the case in question and state the main result. In Section 3, we
interpret this decomposition in terms of ideals of the C*-algebra of @
and prove the result.

2. The decomposition of ¥ and statement of the result. Let
Q@ be a closed, reduced, complex orbifold with dim¢ @ = n, and fix
a Hermitian metric on 7'Q) throughout. Then each point p € Q is
contained in a neighborhood modeled by C"/G, where p corresponds
to the origin in C™ and G, < U(n). Suppose that each of the local
groups G, act as a subgroup of SU(2) < SU(n), and then each point
p is locally modeled by C"/G, = C" 2 x (C?*/G,). Suppose further
that () admits a crepant resolution 7 : Y — @ so that Y is a closed
complex n-manifold. By Proposition 9.1.4 of [7], (Y, 7) is a local product
resolution, which in this context means the following, see [7, 9.1.2] for
the general definition:

Fix p € @, and then there is a neighborhood U, > p modeled by
C"/G,. By hypothesis, U, =2 V x W/G, where V x {0} = C" % is
the fixed point set of G, W 22 C? is the orthogonal complement of V
in C™ (for some choice of Gp-invariant metric on C™), and we identify
G, < SU(n) with its restriction G, < SU(2). Then for a resolution
(Y, mp) of W/Gp, welet ¢: V x W/G, — C™*/G)p, T the ball of radius
R > 0 about the origin in C"/Gp and U := (id x mp) "H(T) C V X Y.
There is a local isomorphism ¢ : (V x Y,)\U — Y such that the
following diagram commutes

Vx Y\ —Y Ly

Jid X Jﬂ'
(V x W/GN\T —2—c/a,.

Hence, each of the singular points in a neighborhood of p is resolved
by V x Y,. Moreover, as (Y,7) is a crepant resolution of @, (Y}, m,)
is a crepant resolution of C?/G, [7, Proposition 9.1.5], and hence is
the unique crepant resolution of C?/ Gp. It is clear that a crepant
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resolution of ) can be formed by patching together local products of
the unique crepant resolutions of C?/G,, but we now see that this is
the only crepant resolution of ). Moreover, if S denotes a connected
component of the singular set ¥ of @, then a neighborhood of S can
be covered by a finite number of charts as above, so that the isotropy
subgroups of any p, ¢ € S are conjugate in SU(2). Moreover, each such
chart C"/G? = V x W/G) restricts to a complex manifold chart of
dimension n — 2 for S.

We summarize this discussion in the following.

Lemma 2.1. Let Q) be a closed, reduced, complex orbifold of complex
dimension n, and suppose each of the local groups G, acts on @ as a
subgroup of SU(2). Then there is a unique crepant resolution (Y, ) of
Q. The singular set X of Q is given by

for some k finite, where each S; is a connected, closed, complex (n—2)-
manifold and the (conjugacy class of the) isotropy subgroup G, < SU(2)
of p is constant on S;. Moreover, if N; is a sufficiently small tubular
neighborhood of S; in Q, then N; = S; x C? /G, and n~*(N;) = St xY;

where Y; is the unique crepant resolution of CQ/GP.

Such a decomposition may be possible for orbifolds with SU(3)
singularities; in this case, components of the singular set have (n — 2)-
and (n — 3)-dimensional components. The latter are closed manifolds,
but the former may be open. However, the techniques in this paper
do not easily extend to this case. For finite subgroups of SU(3),
crepant resolutions are not unique. While a local isomorphism has
been constructed for abelian subgroups of SU(3), see [5], this is for a
specific choice of resolution.

Using the decomposition given in this lemma, we will show the
following:

Theorem 2.2. Let QQ be a closed, reduced, complex orbifold of
complex dimension n, and suppose each of the local groups Gy, acts
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on Q as a subgroup of SU(2). Let (Y,n) denote the unique crepant
resolution of Q, and then

orb(Q) = K*(Y)

as additive groups.

For any n-dimensional orbifold that admits a crepant resolution, the
local groups can be chosen to be subgroups of SU(n), see [7]. Therefore,
we have as an immediate corollary:

Corollary 2.3. Let Q be a two-dimensional complex orbifold which
admits a crepant resolution (Y, ). Then

orb(Q) = K*(Y)

as additive groups.

3. Proof of Theorem 2.2. In order to prove Theorem 2.2, we will
show that K,(A) = K,(B) where A is the C*-algebra of @ and B the
C*-algebra of Y. So fix an orbifold @ that satisfies the hypotheses of
Theorem 2.2, and let k, S;, N;, etc., be as given in Lemma 2.1. We
assume that the IV; are chosen small enough so that N; N IV; = & for
i 7.

For each 4, let N] be a smaller tubular neighborhood of S; so that
S; C N! C N} C N;, and let Ny := Q\ U¥_; NI. Then {N;}¢_, is an
open cover of () such that Ny contains no singular points. Note that
the restriction m|,-1(y,) is a biholomorphism onto Ng.

Let P denote the unitary frame bundle of @), and then Q@ = P/U(n).
Let A := C*(Q) denote the C*-algebra C(P) x4 U(n) of @ where « is
the action of U(n) on C(P) induced by the usual action on P, and let
AY denote the dense subalgebra L!(U(n),C(P),a) of C(P) x4 U(n).
Let I? denote the ideal in A° consisting of functions ¢ such that ¢(g)
vanishes on Pjg, for each g € U(n), i.e., I = L*(U(n), Co(P\Pjs, ), );
as usual, P/g, denotes the restriction of P to S1), and let I; be the
closure of I in A. Similarly, for each j with 1 < j < k, set

.=r <U(n), Co (P\ LJJ Psi> , a)

i=1
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to be the ideal of functions ¢ in A° such that for each g € U(n), ¢(g)
vanishes on the fibers over Si,S55,...,85;, and I; the closure of I]Q in
A. Then we have the ideals

IyCIly ,C---CIL Cly:=A.
Note that, for each j with 1 < j < k, I;/I;11 = C(Ps
and I = Co(Pn,) Xa U(n).

Similarly, let B := C(Y) denote the algebra of continuous func-
tions on Y, and let J; denote the ideal of functions which vanish on

ﬂ’l(nglS,-). Then we have

Xq U(n),

j+1)

JkCJk71C"'CJ1CJ0::B,

with Jj/Jj+1 = C(W_l(Sj+1)) and Jp = C()(’/T_I(No)).

Recall that 7 restricts to a biholomorphism
Tx=1(Np) * W_I(NO) — Ng.
Hence, as the action of U(n) is free on Py,

K (Ix) = K« (Co(Pn,) ¥a U(n))

= Kir(ny (Ping)
naturally, by the Green-Julg theorem
([2, Theorems 20.2.7 and 11.7.1]),

> K* (P, /U (n)
as the U(n) action is free on Ny,

= K*(No)

= K*(n~'(No))

= K. (Jk)-

Therefore, there is a natural isomorphism
(3.1) K.(I) & K. (Jg)-

Hence, Theorem 2.2 holds for orbifolds such that k£ = 0, i.e., manifolds.
The next lemma gives an inductive step which, along with the previous
result, yields the theorem.
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Lemma 3.1. Suppose
K.(I;) = K.(J;)
naturally for some j with 1 < j < k. Then

K.(Ij—1) = Ku(Jj-1).

Proof. Note that I; is an ideal in I; 1, with I; ;/I; = C(Ps;) Xa
U(n). Similarly, J; is an ideal in J;_; with J;_1/J; = C(7~1(S;)). We
have the standard exact sequences

Ko(I]) —>K0(IJ,1) —)Ko(ijl/IJ)

fﬂ Ja
Ki(Lj-1/1;) «—— Ki(lj—1) < Ki(Ij)

and
Ko(J;) ———— Ko(Jj1) —— Ko(Jj-1/J;)

6[ Jé)
Ky (Jj1/Jj) ——— Ki(Jj1) «——— Ku(Jj).
So if we show that K, (I;_1/I;) = K,(J;_1/J;) naturally, by the Five

lemma, we are done.

Note that I;_1/I; is the C*-algebra of the quotient orbifold Pis, /U(n),
which is given by the smooth manifold S; with the trivial action of G;
(here, G; denotes a choice from the conjugacy class of isotropy groups
G, for p € S;). Hence, I;_1/I; = C(S;) ® C*(Gy). Similarly, we have

Jj-1/J; = C(r7(S;))
= C(5; x Y;)
= C(S;) ® C(Y;),
where Y; is the preimage of the origin in the unique crepant resolution

of C*/G;. However, Ko(C*(G,)) = R(G) [2, Proposition 11.1.1 and
Corollary 11.1.2] which is naturally isomorphic to K°(Y;) by [10,
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Section 4.3]; see also 5], and K°(Y;) = Ko(C(Y;)), so that Ko(C*(G;))
and K (C(Y;)) are isomorphic. With this, by the Kiinneth theorem for
tensor products [2, Theorem 23.1.3],

00— Ko(C(S;)) ® Ko(C™(G;)) — > Ko(C(S;) ® C*(G;)) ——

| |

0 =7 Ko(C(55)) ® Ko(C(Yj)) — > Ko(C(S;)®C(Y;) ——

——— Tor (Ko(C(5;)), Ko(C™(G;))) —————0

|

—— 7 Tor (Ko(C(S;)), Ko(C(Yj))) — 0
and the Five lemma, we have a natural isomorphism
Ko(C(S;) ® C7(Gy)) = Ko(C(S;) ® C(Y))).
So
Ko(Ij-1/1;) = Ko(Jj-1/J;).-

For the K groups, we note that by [2, Corollary 11.1.2], K;(C*(G;)) =
0. As well, K;(C(Y;)) =2 K'(Y;), and it is known that Y; is diffeomor-
phic to a finite collection of 2-spheres which intersect at most transver-
sally at one point, see [7]. Therefore, K!(Y;) = 0. Here, the hypothesis
that all groups act as subgroups of SU(2) is crucial. For subgroups of
SU(3), the topology of the resolution is not understood sufficiently to
compute the K; groups.

With this, we again apply the Kiinneth theorem and Five lemma

0 ——  Ki1(C(S;)) ® Ko(C"(G;)) ® Ko(C(S5)) ® K1(C*(Gj)) —> K1(C(8;) ® C*(G;))

| |

o — K1(C(55)) ® Ko(C(Y;)) ® Ko(C(S5)) ® K1(C(Y;)) — K1(C(S;) ® C(Yj))

- = Tor (K1(C(5;)), Ko(C"(G;))) ® Tor (Ko(C(S;)), K1(C*(Gj))) —————————————0

|

C T Tor (K1(C(55)), Ko(C(Y;))) ® Tor (Ko(C(55)), K1(C(Y}))) 0
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Therefore, we have a natural isomorphism
K1(C(S5) ® C*(Gy)) = K1 (C(55) © C(Y5)),

and
Ki(Ij 1/I;) = K:1(Jj-1/J;). O

Now, as K, (Ix) = K.(Jy), repeated application of Lemma 3.1 yields
that K,(A) = K,.(B), and hence we have proven Theorem 2.2.
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