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GLOBAL ATTRACTORS FOR
CROSS DIFFUSION SYSTEMS ON
DOMAINS OF ARBITRARY DIMENSION

HENDRIK KUIPER AND LE DUNG

ABSTRACT. A general triangular cross diffusion system
given on a domain of arbitrary dimension n is considered. It
will be shown that (L°°, LP) boundedness implies uniformly
boundedness. The general result is then applied to several sys-
tems to obtain global existence. In some cases, the existence
of a global attractor is also proven.

1. Introduction. Ever since the fundamental work by Amann, see
[2-5], there has been much interest in the study of strongly coupled
parabolic systems. The question of local existence of solutions was
settled by Amann’s work but global existence results seem to be
answered in only very few cases.

In this paper we will consider a class of triangular cross diffusion
systems given on an open bounded domain €2 in R® with n > 1. Let
us consider quasilinear/linear differential operators

Ay (u,v) = V(P(z,u,v)Vu + R(z,u,v)Vv),
A, (v) = V(Q(z,v)Vv) + c(x)v,
and the following parabolic system
ou/ot = Ay (u,v) + g(u,v) x€Q,t>0,
(1.1) {(’)v/@t:Av(v)—i-f(u,v) zeQ, t>0,
with mixed boundary conditions for z € 92 and t > 0
(1.2) { X(z)[(0v/0n)(z,t) + a(z)v(z, t)] + (1 — x(z))v(z,t) =0,
X(z)[(Ou/On)(z,t) + B(z)u(z,t)] + (1 — x(z))u(z,t) = 0,

where X is a given function on 9Q with values in {0,1}. The initial
conditions are described by

(1.3) v(z,0) = v (z), u(z,0)=u’(z), z€Q
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for nonnegative functions v°,u’ in W1?(Q) for some p > n, see [2].
In (1.1), P and @ represent the self-diffusion pressures, and R is the
cross-diffusion pressure acting on the population u by v.

We are interested not only in the question of global existence of
solutions to (1.1) but also in long time dynamics of the solutions. The
assumptions on the parameters defining (1.1) will be specified later in
Section 3 and they are general enough to cover many interesting models
investigated in literature. Furthermore, our conclusion is far stronger,
in some cases, than what has been known about these systems. To
demonstrate this, in the next section, we will first discuss some well-
studied systems and state our findings, which are the consequences of
our general Theorem 6. Roughly speaking, we establish the following.

A solution (u,v) of (1.1) exists globally in time if the norms ||v(+,t)]co
and [[u(:,t)||n/2, or even |[u(-,t)||1, do not blow up in finite time. More-
over, if these norms of the solutions are ultimately uniformly bounded,
then an absorbing set exists, and therefore there is a compact global
attractor, with finite Hausdorff dimension, attracting all solutions.

Our main vehicle is the LP estimates proven in Lemma 3.5. This
was done, in various applications, by several authors using well-known
energy estimates or Lyapunov functional methods, see [7, 20, 33].
However, we want to remark that a crucial use of imbedding inequalities
in those works forced the assumption on the dimension n being at
most 2. In particular, the authors of [20, 30] used energy estimate
methods and a special version of Gagliardo-Nirenberg’s inequality,
which is valid only when n < 2, to establish that L? norms of solutions
do not blow up in finite time. Similar results were obtained for an
electrochemistry model considered in [7] using the Lyapunov functional
approach. It should be noted that the three-dimensional case was also
studied in [7[ assuming that a priori L? estimates were given. This
hypothesis is however not established in [7] and is difficult to verify.
Here, starting with a weaker assumption on a priori L' estimates,
we combine the energy method with semigroup theory and integro-
differential inequalities to obtain LP estimates for arbitrary dimension
n. Furthermore, our approach also gives bounds that are ultimately
independent of initial data, a crucial fact in establishing the existence
of global attractors. The energy estimate and Lyapunov functional
methods mentioned above do not provide such estimates.
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Another fact that distinguishes our paper from the other works is that
the functional spaces considered here are the Banach spaces WP (Q),
with p > n, while other authors usually studied the problems in the
Hilbert spaces H'(Q2) or H?(£2). This Hilbert space setting is closely
linked to the restriction that the dimension of the domain be at most
two. Similar to our approach were the works [12] where the spatial
region is assumed to be a compact Riemannian manifold without
boundary and [14] where only LP estimates were derived. We also
note the related work [35] where the concept of exponential attractors
was used in a Hilbert space setting to prove the existence of a global
attractor for certain one-dimensional chemotaxis models.

Our assumption on (1.1) and the main results, together with their
proofs, will be given in Section 3. Finally, in Section 4, we provide the
proof of the theorems for the examples in Section 2.

2. Applications. In this section, we will apply our theorems
in Section 3 to several cross diffusion parabolic systems modeling
biological and ecological phenomena. Most of them have been studied
by authors assuming that the domain € is two dimensional. In only
very few cases can they establish global existence results. It will be
shown in Section 4 that the conditions of our theorems are fulfilled to
give global existence results without any restriction on the dimension
of © or the size of initial data. Moreover, we can further assert the
existence of global attractors.

Perhaps the most famous model is the Keller-Segel model of two
parabolic partial differential equations, which describes the aggregation
of the cellular slime mold Dictyostelium discoideum, see [22]. After
some simplifying assumptions one is led to the following system:

8U/at = dlA’U, + 012V(UV1}),
(2.1) 0v/0t = d2 Av + bu — cv,
Ou/On = Ov/d0n =0, z €00, t>0.

The constants b, ¢ are taken to be positive. This system has attracted
much attention in recent years but many authors assumed that the
dimension of the domain Q is at most two. It was conjectured by
Nanjundiah, Childress and Percus, [6], that there is a threshold number
¢, such that, if the L' norm of the initial data ||u(z,0)||1 < c«, then
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the solution exists globally in time and, if ||u(z,0)|l; > c«, then the
solution u can form a delta function singularity in finite time. The
latter case is referred to as chemotactic collapse. The arguments were
heuristic, making use of numerical computations for the stationary
problem, but recent studies (e.g. [11, 21, 34]) have confirmed their
validity rigorously.

In order to prove global existence result for this type of systems one
must obviously introduce some modifications. For example in [12, 13,
19] the authors use the choice of the chemotactic sensitivity function to
ensure the existence of a global solution. We shall consider a modified
version of the Keller-Segel on arbitrary dimensional domains:

au/at = V[(dl + oznu)Vu] + 0412V(UVU),
(2.2) O0v/0t = doAv + bu — cv,
Ou/On = 0v/on = 0, xz €00, t>0.

Here, being inspired by porous media models and (2.3) below, we
introduced the “crowding effect” in the model by adding the term a;1u
in the diffusion coefficient of u. Another type of “crowding effect” was
also introduced in the off diagonal diffusion term, R of (1.1), in [12]
that allowed an invariant region to exist and gave the global existence.
In our case, such an approach does not seem to apply. However, (2.2)
is a special case of the general model (1.1), and our Theorem 5 applies
here to conclude that

Theorem 1. Consider the modified Keller-Segel model (2.2) on a
bounded domain Q0 of any dimension n. For any given initial data in
WLP(Q), p > n, the solutions to (2.2) exist globally in time.

It should be noted that our definition of solution corresponds to that
used by Amann ([2, 3, 4]) and will be precisely stated in the next
section. It should also be noted that at present there is a wealth of
results on finite-time blowup of solutions, e.g., [15, 18, 19, 42]. The
reader is referred to the extensive survey articles by Horstmann [16,
17].

Our next example is a cross diffusion model in population dynamics.
Shigesada, Kawasaki and Teramoto, see [37], proposed to study the
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following nonlinear parabolic system

Ou/0t = Al(dy + a11u + a12v)u] + u(a; — byu — ¢1v),
Ov/0t = A[(da + aoru + agv)v] + v(az — bau — cov),
Ou/0n = 0v/dn = 0, z €0Q,t >0,
u(z,0) = u®(z),v(z,0) = v°(z), x € .

(2.3)

Here,  is a bounded domain in R" and the initial data u°,+° are

nonnegative functions.

When «;; = 0, the above system is the well known Lotka Volterra
competition-diffusion system which has been studied intensively. For
nonzero «;j, (2.3) is a strongly coupled parabolic system. Yagi, see [41,
43], investigated the global existence problem for (2.3) which is given
on a two-dimensional domain. Under certain conditions on oy;’s, he
proved that solutions to (2.3) cease to exist in finite time if and only if
their LP norms blow up. Recently, Lou, Ni and Wu in [33] studied the
case when as; = 0 and n = 2 and established global existence results
for the system

Ou/ot = Al(dy + a11u + aav)u] + u(a; — byu — c1v),
(2.4) 0v/0t = A[(d2 + az2v)v] + v(ag — bau — cv),
Ou/0n = 0v/dn = 0, z €00,t>0.

In [27], we discussed not only global existence but also long time
dynamics of solutions to a class of cross diffusion systems which includes
(2.4). Again, we had to assume that the dimension of the domain ( is
two. We have here a better result.

Theorem 2. Consider (2.4) on a bounded domain Q of any dimen-
sionn. The dynamical system associated with (2.4) possesses a compact
global attractor if either

i) age =0 and n is arbitrary;

ii) or age >0 and n = 2.

Finally, we look at a system modeling bio-reactors with chemotactic
effect.
Ou/ot = V(d1Vu) + V(u®(S)VS) + u(f(S) — k),
(2.5) 05/0t = d2 AS — yuf(S),
Ou/On + au =0,05/0n + BS = Sy, x € 00Q,t>0.
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Here, k, «, 3,~ are positive constants and ®(.5), f(S) are continuous
functions, and f(S) > 0. This system was studied in [28, 40] where
Q is assumed to be an interval in R. In [23], arbitrary dimensional
domains are considered, and a Lyapunov function technique is used to
establish global existence assuming some condition on the size of initial
data for S. However, this method does not seem to cover (1.1). For
higher dimensional domains, coexistence problems were investigated in
[31, 32]. Introducing the “crowding effect” term «;;u in the diffusion
coefficient for u, see also [12], we are led to the following system.

+u(f(S) — k),
05/0t = d2AS — yuf(S),
Ou/On+ au=0, 095/0n+ BS =Sy, x € 0,t > 0.

(2.6)

Although the boundary condition in (2.6) is of Robin type, our proof
can be easily modified to cover this case. Our Theorem 6 applies again
and asserts that

Theorem 3. Consider (2.6) on a bounded domain Q of any dimen-
sionn. The dynamical system associated with (2.6) possesses a compact
global attractor in W1P(Q,R?) for any p > n.

3. Main results. In this section, we will specify our assumptions
on the general system (1.1) and state our main results. First we state
precisely what we mean by a solution. We follow Amann [5].

Let C*~ denote the functions whose derivatives of order (k — 1) are
Lipschitz continuous. For 1 < i, < m, we assume

aij,a,-,b,- S 02_(5 X Rm,Rme)’
ap,c € C' (2 x R™, R™*™).

Using the summation convention we define for each n € R™ the
following elliptic operator and boundary operator:

Amu == =0 (a;k(-,n)0ku + a;(-,m)u) + b (-,n)05u + ag (-, n)u,

and
B(n)u :=v?vyo(a;x (-, n)0ku + a;(+,n)u) + (-, n)you,
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interpreted in the sense of traces. Their formal adjoints are
A# () = ~0; (afy (- )0k + af (- m)u) + b (-, ) By + aff (),
and
B* (n)u = v7y0(afy, (- mu + aff (-, m)u) + (-, m)rou,

where, letting the left superscript ! denote transpose,

# oot #._tp. #o_t # .t # .t
ajy i='akj, aj :=bj, bj:='a;, ag:='ap, " :="c

Let a, and b, denote the principal symbols for A and B: a,(z,n,&) :=
aij(wan)gié‘ja and bw(xanag) = Viaij(xan)gjv where g = (517527' te
€™) € R™. We assume that, for each 7, the operator A(n) is normally
elliptic. By this is meant that for each z € Q, n € R™, and ¢ € R®
with ||€|| = 1 the spectrum of a,(z,n,§) C C; := {z € C| Rez > 0}.
We also assume that B satisfies the normal complementing condition
(Lopatinskii-Shapiro condition) with respect to .A. This means that
for each (z,€) in the tangent bundle of 92 and each A € C; with
(&,A) # (0,0), 0 is the only exponentially decaying solution on the half
line for:

A+ ar(z,§ +v(z)id)]u=0, ¢>0, br(z, &+ v(x)id:)u(0) = 0.

It is not difficult to see that our problems satisfy these restrictions.
Consider the problem

Ou+ A(w)u = f(-,u) in Qx(0,00)
(3.1) B(u)u = g( u) on 0N x (0,00)
u(-,0) on

where we assume that f and g are Lipschitz continuous. We define

Wip = {(w1,wa, ... ,wy) | w; € W;(Q) and B(w)w = g(-,w) Vi}.

We say that u : [0,7] — W7z is a weak W, z-solution of the above
problem on [0, T if

u € C([0, T}, W: %) NC((0,T), W 5N CH(0,T), W5,

and satisfies u(0) = ug. We then have the following existence theorem:
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Theorem (Amann). Suppose that n/q < s < (1+1/q) A(2—n/q).
Then the above boundary value problem has for each ug € W;B(Q)
a unique mazrimal weak W;’B(Q)—solution. If this solution remains
bounded in W;”B for some p > 1 then the solution exists on all of
[0,00). Moreover, if g = 0, then the solution is in fact a classical
solution. That is to say,

u € C(Qx[0,T])NC* (2 x (0,T)),

u(0) = ug, and u satisfies the parabolic partial differential equation and
boundary conditions pointwise.

In order to simplify the statements of our theorems and proofs, we
will make use of the following terminology.

Definition 4. Consider the initial-boundary value problem (1.1), (1.2)
and (1.3). Assume that there exists a solution (u,v) defined on a
subinterval I = (0,a) of R}, 0 < a < co. We define

(32) Or={w:I—->R:w(t)<Cy, Vtel for some constant Cp}.

(3.3)
Pr={w:I = R: we Oqy for each b < a. Moreover, if I = (0, c0),

then for some constant C' independent of «°, v* we have
limsupw(t) < C}.

t—oc0

Examples of functions in P; include w(t) = e~||u’||.. On the other
hand, if ||u(-,t)]|co, ||v(, t)||co, as functions in ¢, belong to Or, then (3.2)
says that the supremum norms of the solutions to (1.1) do not blow up
in any finite time interval. This implies that the solution exists globally,
see [2]. We remark that the constant Cj in (3.2) may depend on the
initial data u°, v°. On the other hand, if ||u(, t)||co and ||v(+,t)||co are in
Pr, then again I = (0,00). Moreover, (3.3) says that these supremum
norms can be majorized eventually by a universal constant independent
of the initial data. This property implies that there is an absorbing ball
for the solution and therefore shows the existence of the global attractor
if certain compactness is proven, see [9].
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If w € Py, then we will also say that w is ultimately uniformly bounded.

We will consider the following conditions on the parameters of the
system.

(H1) There are differentiable functions P(u,v), R(u,v) such that A,
is given by
Ay (u,v) = V(P(u,v)Vu + R(u,v) Vo).

There exist a continuous function ® and positive constants C, d such
that

(3.4) P(u,v) > d(14+u) >0, Yu>D0,

(3.5) |R(u,v)| < ®(v)u.

Moreover, the partial derivatives of P, R with respect to u,v can be
majorized by some powers of u,v.

The operator A, is regular linear elliptic in divergence form. That
is, for some functions Q(z,t) and c(z,t),

(3.6) A,(v) =V(Q(z,t)Vv) + ¢(z, t)v, Q(z,t)>d >0, c(z,t) <0.

We assume that VQ(z,t) and c(z,t) are Holder continuous in (z,t).

We will be interested only in nonnegative solutions, which are relevant
in many applications. Therefore, we will assume that the solution u, v
stay nonnegative if the initial data u®,v° are nonnegative functions.
Conditions on f, g that guarantee such positive invariance can be found
in [24]. Moreover, we will impose the following assumption on the
reaction terms.

(H2) There exists a nonnegative continuous function C'(v) such that

any  HE)SCONT 0, g < CE)L+ )
' for all w,v > 0 and p > 0.

Local existence of solutions for (1.1) was established, in its most
general setting, in [3]. Our first result is the following regularity result
that can be used to obtain global existence.
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Theorem 5. Assume (H1) and (H2). Let (u,v) be a nonnegative
solution to (1.1) with mazimal existence interval I. If ||v(-,t)|c and
llu(-, t)||1 are in Of, then there exists v > 1 such that

(3.8) lv( e @),  lul,t)ller @) € Or-

If we have better bounds on the norms of the solutions, then a
stronger conclusion follows.

Theorem 6. Assume (H1) and (H2). Let (u,v) be a nonnegative
solution to (1.1) with its mazimal existence interval I. If the Holder
norms of VQ,c, ||v(-,t)|lcc and ||u(-,t)||1 are in Pr, then there exists
v > 1 such that

(3.9) oG )llov@)s  MluCt)llev@) € Pr-

It is now standard that the above theorem immediately gives the
following.

Theorem 7. Assume the conditions of Theorem 6. Suppose that,
for every solution (u,v) of (1.1), with its mazimal existence interval
I, we have ||v(-,t)||co and ||u(-,t)||1 are in P;. Then the solutions of
(1.1) exist globally. Moreover, there exists an absorbing ball where all
solutions will enter eventually. Thus, if system (1.1) is autonomous,
then there is a compact global attractor in WYP(Q,R?) with finite
Hausdorff dimension which attracts all solutions.

The reader is referred to [9] for the definition and further properties of
global attractors. The estimates in (3.9) also provided the compactness
needed in proving the existence of global attractors, see [9, 39].
Furthermore, when the system is autonomous, this uniform estimate
of higher norms and the general theory in [3] shows that the semiflow
is smooth (at least C') and its linearization is compact. The fact
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that the global attractor has finite fractal dimension then immediately
follows from the well-known theory, e.g., see [39].

We can also allow A, to be a quasilinear operator given by

(3.10) A, (v) = V(Q(v)Vv) + c(z, t)v, Q(v) >d>0,

for some differentiable function ). However, we can only assert the
following

Theorem 8. Assume as in Theorem 5, respectively Theorem 6,
but with A, described as in (3.10). The conclusions of Theorem 5,
respectively Theorem 6, continue to hold if ||v(-,t)|lec and ||u(-,t)|, are
in Oy, respectively Py, for some p > n/2.

This theorem improves our previous result [27] where we had to
assume that ||u(-,t)||, are in Py for some p > n.

Remark 3.1. The assumption [|v(-,t)||l € Pr can be weakened by
assuming only that ||v(-,t)||, € Pr for some r sufficiently large such
that || f(u,v)(+,t)||co € Pr for some g > n/2. This is due to the results
of [25] which assert that the weaker assumption implies the stronger
one. We also remark that the assumption on g in (3.7) could be relaxed
to g(u, v)u? < C(v)(1+ uPt+A) for some appropriate A > 0. A simple
use of Sobolev imbedding inequality in the proof of Lemma 3.5 will
cover this case.

In the proof we will use w(t),w1(t),... to denote various functions in
Op or P;. Moreover, as the interval I is understood, we will also omit
them in the dependencies of Oy, P;.

The proof of Theorems 5 and 6 will be based on several lemmas. We
first state some standard facts from the theory of parabolic equations.

For any t > 7 > 0, we denote Q; = Q x [0,¢] and Q. = Q x [7,¢].
For r € (1,00) and @ as one of the cylinders Q¢, Q-,, let W21(Q) be
the Banach space of functions u € L"(Q) having generalized derivatives
ut, Optt, Oz u with finite L™ (Q) norms, see [25, page 5.
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Let us consider the parabolic equation

0v/ot = A(t)v+ fo(z,t) € Q,¢>0,
(3.11) Ov/on(z,t) =0 xz €00, t>0,
v(z,0) = vo(z) x €,

here A(t) is a uniformly regular elliptic operator (with domain of
definition W2(Q2))

(3.12) A(t)v = a;j(z, t)0;v + bi(z,t)0v + c(z, t)v.

For simplicity, we consider in (3.11) the Neumann boundary condi-
tion. The discussion below holds equally well for Dirichlet or Robin
boundary conditions. If the coefficients of the operator A(t) are uni-
formly Holder continuous in a cylinder @, and (A + A(s)) ! exists
for all A > 0 and s € [r,¢] then it is well known that (see, e.g., [8,
Sections 1.19 and I1.16-17]) there exists an evolution operator U(t, s)
for (3.11) such that the abstract integral version of (3.11) in L” is

(3.13) o(t) = U(t, )o(r) + / U(t, 5)F(s) ds,

where F(s)(z) = fo(z,t). Moreover, for each t > 0, r > 1 and
any 8 > 0, the fractional power AP(t), with its domain of definition
D(AB(t)) in L™(2), of A(t) is well defined [8]. We recall the following
imbeddings, see [10].

(3.14) D(AB(t)) c CH(Q), if 28 > p+n/r,

and

(3.15) D(AP(t)) c Wh(Q), if28>1—n/q+n/r.
Next, we collect some well-known facts about (3.11).

Lemma 3.2. Let r € (1,00) and f(-,t) € L"(Q). Assume that the
coefficients of the operator A(t) are in C*(Q2 x (0,00)) for some a > 0.
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Moreover, there exists 6y > 0 such that (A + A(t))™! exzists for all
A > =6 and allt > 0. For any 8 € [0,1], we have
(3.16)

t
142 (@)v(@)ll- < Cot™Pe=*"|lvollr +CB/0 (¢t =)= fo (-, 5)ll ds

for some constants §,Cz > 0 depending on the C*(Q2 x (0,00)) norms
of the coefficients of A(t).

Proof. We apply A®(t) to both sides of (3.13), take the L” norm and
then make use the inequality [8, (16.38)]. o

Remark 3.3. The inequality (16.38) appears in [8] where the condition
(13.2) [8, page 153] was assumed. However, the reader may refer
to [38, Theorem 2] where the same inequality is obtained without
condition [8, (13.2)]. In our case, the assumption on the Holder norms
of the coefficients of A(t) guarantees the validity of the key smoothness
assumption [38, 0.11].

We now go back to the solutions of Theorem 6. For brevity, we will
write P for P; ¢ with various C' dependent on the constant C' stated
in Theorem 6.

We first have the following estimates for the component v and its
spatial derivative.

Lemma 3.4. There exist nonnegative functions wg,w defined on
the maximal interval of existence I of v such that wg € Pr and the
followings hold for v.

i) For some § > 0, r > 1, B € (0,1) such that 28 > p+ n/r, we
have

(3.17) lv(-, t)|lon(n) < wolt) +/0 (t —s)Pe 3 =)y(s)||u(-, s)||, ds.

ii) For some 6 > 0, r > 1, B € (0,1) such that 28 >1—n/q+n/r,
we have
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(3.18) |Jv(-, t)[lwr.aq) < wolt) +/0 (t—5)"Pe =)y (s)||lu(-, s)| ds.

Moreover, w belongs to O, respectively Pr, if ||v(-,t)||lco does.

Proof. Setting A(t) = A,(v) — kv and fo(z,t) = f(u,v) + kv for
k > 0 sufficiently large, we see that v satisfies (3.11). We find that the
conditions of Lemma 3.2 are verified. If ||v(:,t)]lc € Or, respectively

Pr, we have || foll, < w(t)(1+ |lu(-, s)]|,), for some function w(t) € Oy,
respectively Pr. Hence, (3.16) of Lemma 3.2 gives

1A@® o (@)l < Cat™ e |lvol

+ CB/O (t— ) e 0w (s) (1 + [|u(:, s)||,) ds.

From the imbedding (3.14), (3.17) now follows. The proof of (3.18)
is similar as one uses the imbedding (3.15). o

From now on we will suppress I from Oy and P;. We will show that
the LP norm of u is in the class O or P for any p > 1. In fact, this is
the crucial step in proving Theorem 6.

Lemma 3.5. Given the conditions of Theorem 5, respectively Theo-
rem 6, for any finite p > 1, there exists a function w, € O, respectively
P, such that

(3.19) a5 8)llp < wp()-

The idea of the proof is to derive certain differential inequalities for
the LP norm of u. To this end, we have to control the norm of Vv
that occurs in the equation of u by using the equation for v. This
requires that we first study certain functional differential inequalities
before giving a proof of this lemma.

For a function y : Rt — R, let us consider the following inequality

(3.20) y(t) < Ft,y), y(0) =y, te(0,00),
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where F is a functional from R* x C(R',R) into R. The following
lemma gives a global estimate for y but the estimate is still dependent
on the initial data.

Lemma 3.6. Assume (3.20) and

(F1) Suppose that there is a function F(y,Y) : R2 — R such that
Flt,y) < Fy(t),Y) ify(s) <Y for all s € [0,2].

(F2) There exists a real M such that F(y,Y) <0 ify,Y > M.
Then there exists a finite My such that y(t) < My for all t > 0.

Remark 3.7. In (F1), the inequality F(t,y) < F(y(t),Y) is not
pointwise. It requires that y(s) <Y on the interval s € [0,¢] not just
that y(t) < Y. Such situation usually happens when f(t,y) contains
integrals of y(¢) over [0, ¢].

The above constant M still depends on the initial data yo. Moreover,
the function F' may depend on yg too. Next, we consider conditions
which guarantee uniform estimates for y(¢).

Proposition 9. Assume (3.20) and assume that

(G1) There exists a continuous function G(y,Y) : R? — R such that
for 1 sufficiently large, if t > 7 and y(s) <Y for every s € [1,t]| then
there exists ™' > T such that

(3.21) F(t,y) <Gy),Y), i t>17' >

(G2) The set {z : G(z,2) = 0} is not empty and z, = sup{z :
G(z,2) =0} < 0. Moreover, G(M, M) <0 for all M > z,.

(G3) For y,Y > z., G(y,Y) is increasing in Y and decreasing in y.
If limsup,_, . y(t) < oo, then

(3.22) limsup y(¢) < 2.

t— o0
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The proofs of the above statements are elementary and can be found
in [27].

Remark 3.8. Examples of functions F, G satisfying the conditions of
the above two lemmas includes

(3.23) F(y(t),Y), G(y(t),Y) = —Ay"(t)+ D(y" +1)+y° (B+CY")",

with positive constants A, B, C, D, n, 8, 9, k satisfies n > 6 + k9 and
n>-v.

Lemma 3.9. Given the conditions of Theorem 5, respectively The-
orem 6. For any p > max{n/2,1}, we set y(t) = [,uPdz. We can
find B € (0,1) and positive constants A, B,C and functions w; € O,
respectively P, such that the following inequality holds

(324) Ty <~y + (wo(t) + [u(- )1}y + Be(t)

+Cy0{“’1(t)+/0 (¢ = )77 e Dwa(s)l[u, 5) 55" () ds} '

Here, n = (p+1)/p, 6 = (p—1)/p and 9 = (r —1)/r(p 1),
¢=(p—r)/r(p—1). Moreover, n > 0+ 29.

Proof. We assume the conditions of Theorem 6 as the proof for
the other case is identical. We multiply the equation for u by uP~!
and integrate over (2. Using integration by parts and noting that the
boundary integrals are all zero thanks to the boundary condition on u,
we see that

/u”_liudw—i-/P(u,v)VuV(up_l)
o dt Q

< /Q(—R(u, V)V (P~ Vo + g(u, v)uP ™) de.

Using the conditions (3.4) and (3.5), we derive (for some positive
constants C(d, p), €, C(g,d,p))
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/P(u,v)VuV(up_l)dazZC(d,p)/u”_1|Vu|2 dz,
Q Q
—/R(u,v)V(up_l)Vvdx
Q
SC(d,p)/up_1<I>(v)Vqudm
Q

§6/ P~ |\ Vul|? dz
Q

+ C(e,d,p) / uP 1 ®%(v)|Vu|? da.
Q

Together with (3.7), we obtain

d
—/updac—i—Cl(s,d,p)/up_1|Vu|2d:v

< Cs(e,d,p) /Q(up_1<1>2(v)|Vv\2 + O ) (W + 1)) da.

Furthermore, the second term on the left can be estimated by

/up_1|Vu|2dw:C’(p)/ IV (uPH)/2)|2 g
Q Q

2
>C’/ uptt dw—C(/ u(p+1)/2d:v>
- Q Q
(p+1)/p
ZC(/U”dm) —C'Hu||1/updm.
Q Q

Here, we have used the Holder’s inequality

2 2
(/ pPt1)/2 d:z:) = </ ul/2yp/? dx) < ||u||1/ uP de.
Q Q Q

We next consider the first integral on the right of (3.25). By our
assumption on L norm of v, ®(v) < wy(t) for some w; € P. Using
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the Holder inequality, we have

(p—1)/p 1/p
/ upflq)2(v)‘v,u|2 dr < w%(t)(/ uP dw) </ |V’U‘2P dl’)
Q Q Q

= wi(y? V7| Voll3,.

As p > max{n/2, 1}, there exists r € (1,p) such that
1 1 1 1
3.26 —+—>—->-.
( ) n * 2p  r p

This implies 2 > 1 — n/2p + n/r. Hence, we can find 8 € (0,1) such
that 26 > 1 —n/2p+n/r. From (3.18), with ¢ = 2p > r, we have

t
[Vollzp < wol?) +/ (t =) Pe " w(s)[lul-, s)]| ds.
0

Applying the above estimates in (3.25), we derive the following
inequality for y(t)

d
(3:27) Zy+C(dp)y"”
2

t
< oy funlt) + [ (0= 50 to)lut o)], ds
0
+ Clwa(t) + llullr)y + Bwa(t).
As 1 < r < p, we can use Holder’s inequality

lalle < el ully = fulli =y

with A = (1-1/r)/(1-1/p) = p(r —1)/r(p —1). Applying this in
(3.27) and re-indexing the functions w;, we prove (3.24). The last
assertion of the lemma follows from the following equivalent inequalities

1 1 2(r—1 1 1
p+l _p (r )(:) (r—1)

p r(p—1) p rip-1)
S rp—Tr>pPr—p<E=p>Tr.

n>0+20 <

This completes the proof. a
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We are now ready to give the proof of Lemma 3.5.

Proof. Assume first the conditions of Theorem 5. From (3.24), we
deduce the following integro-differential inequality

(338) Ly <Ay +an(D)y+ Bus(t) + Oy wolt) + K(0)

where
K(t) := /0 (t — s)"Pe™ =)y (s)y? (s) ds

for some wg,w;,w € O (because ||u(-,¢)|ly € O). We will show that
Lemma 3.6 can be used here to assert that y(¢) is bounded in any finite
interval. This means ||ul|, € O. We define the functional

(3.29) F(t,y) = —Ay" + w1 (t)y + B + Oyl {w(t) + K (t)}2.

Since w; € O, we can find a positive constant C,,, which may still
depend on the initial data, such that w;(t) < C,, for all t > 0. Let

t [e’e]
Ci = sup/ (t— s)_ﬂe_‘;(t_s) ds < / sPe™% ds < oo,
0 0

t>0

because 8 € (0,1) and 6 > 0. We then set

F(y,Y)=—-Ay" + C,(y + B) + Cy*(C.,, + C.,C1Y")*.

Because n > 6 + 29, by Lemma 3.9 and Remark 3.8, the functionals
F, F satisfy conditions (F1) and (F2). Hence, Lemma 3.6 applies and
gives

(3.30) y(t) < Co(v°,u®), Vit >0,

for some constant Co(v°, u®) which may still depend on the initial data
since F' does. We have shown that y(¢) € O.

We now seek for uniform estimates and assume the conditions of
Theorem 6. From Lemma 3.9 we again obtain (3.28) with w; are now
in P. If a function w belongs to P, by Definition 4, we can find 7, > 0
such that w(s) < Co = Cu + 1 if s > 71. We emphasize the fact that
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C» is independent of the initial data. Let ¢t > 7 > 7 and assume that
y(s) <Y for all s € [,t]. Let us write

K(t) = /0 "t — 5)Fe3=5) y(5)y? (s) ds

¢
+ / (t — s)Pe =y (s)y? (s) ds = Jy + Jo.

By (3.30), there exists some constant C'(v°, u°) such that w(s)y?(s) <
C(v°,u®) for every s. Hence, we can find 7/ > 7 such that J; < 1 if
t > 7'. Thus,

K(t) <14 CuC.Y?, where

t
Cy,= sup / (t—s)Pe =% ds < co.

t>71,7>0
Therefore, for t > 7/ we have f(t,y) < G(y(t),Y) with
(3.31) G(y(1),Y) = —Ay" (1) + Coo(y + B) + 3’ (Coo + 1+ Coc C.Y )"

We see that G is independent of the initial data and satisfies
(G.1)-(G.3) as n > 0 + 29, see Remark 3.8. Therefore, Proposition 9
applies here to conclude the proof. a

We now give

Proof of Theorem 5 and Theorem 6. Having established the fact that
llu(-, t)|lp € O, respectively |lu(-,t)||, € P, for any p > 1, we can follow
the proof of [27, Theorem 2] to assert (3.8), respectively (3.9). o

Proof of Theorem 8. We set

(z,t)
Vie,t) = /0 Qs) ds,

and multiply the equation for v by Q(v) to find that

88—‘; = Q(’u(x,t))AV + Q('U(x’t))f(u’ 'U)'
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Since we assume that |[v(,t)||cc € P and (3.7) holds, we see that
f(u,v) € Ly,(Q) for p = n > n/2. Moreover, ||f(u(-,t),v(-t))|, € P.
Regularity theory for quasilinear parabolic equations, see [25, 29],
asserts that there is an o > 0 such that v € C*%/2(Q x (0,00))
with uniformly bounded norm. So is Q(v(z,t)). Now, we can regard
Q(v(z,t))A as a linear regular elliptic operator with Holder continuous
coefficient (whose norm is also ultimately uniformly bounded) so that
Lemma 3.4 is applicable. We then follow the proof of Theorem 6 to
complete our proof. o

4. Proof of examples. We conclude our paper with the proof of
our theorems stated in Section 2. The proof is mainly the verification
of the assumptions required by our main results. In some cases, we also
need certain minor modifications.

4.1 Proof of Theorem 1. By integrating the equation for u we easily
see that the L! norm of u is conserved so that [ju(-,t)|[; € O but
|lu(-,t)]]1 is not in P. Using this in the equation of v, we find that
lv(-,t)]]1 € P. However, it is not so easy to show that ||v(-,t)s € O
and therefore our theorems, as they were stated, are not immediately
applicable here.

However, a careful inspection of the proof of Lemma 3.9 reveals that
the only places where we make use of the assumption |[v(+,t)]|e € O,
respectively ||v(+,t)]|lco € P, to derive (3.24) are when we estimate ®(v)
and ||Vv||2p, in (3.18). In this case, ®(v) = aq2, a constant. Moreover,
if we define A, (v) = d2Av — cv and f(u,v) = bu, which is independent
of v and thus C(v) = constant in (3.7), we then find that the proof of
Lemma 3.9 is still in force to get (3.24). Thus, ||u(-,¢)||; € O implies
that ||u(-,t)||lcc € O. Using this in the equation for v, we can easily
prove that ||v(-,t)]|ec € O.

4.2 Proof of Theorem 2. It is easy to see that (2.4) is a special
case of (1.1) with P(u,v) = d; + 2aj1u + aj2v, R(u,v) = ajau and
Q(v) = d2 + 2ai2. The fact that ||[v(:,t)||c and ||u(-,t)||1 are in P is
easy to show, see [27]. If age = 0, then the conditions of Theorem 6
are fulfilled. When n = 2 and agp # 0, it is also proven in [27] that
llu(-, t)]|2 € P and Theorem 8 can apply.
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4.3 Proof of Theorem 3. By comparison principles, one can show
easily that ||S(-,t)||cc € P. Multiplying the equation of u by v and
adding the result to the equation of S, we can easily prove that
lu(-,t)|]]s € P by integrating over Q. This fact has been proven in
[28] where we assumed that a1; = 0 and n = 1. Applying our general
result to the case ay; > 0, we obtain the theorem.
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