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H-CONTACT UNIT TANGENT SPHERE BUNDLES
G. CALVARUSO AND D. PERRONE

ABSTRACT. We study how the geometry of a Riemannian
manifold (M, g) is influenced by the property that its unit
tangent sphere bundle (T4 M, n,g) is H-contact, that is, the
characteristic vector field £ of T1 M is harmonic.

1. Introduction. The study of the geometric properties of a
Riemannian manifold (M, g) via the investigation of its unit tangent
sphere bundle T7 M, is a well known and interesting research field in
Riemannian geometry. 77 M can be equipped with its “natural” metric
gs (the one induced by the Sasaki metric of the tangent bundle), as well
as with the contact metric g of its standard contact metric structure
(1,3). In both cases, geometrical properties of T3 M influence those of
the base manifold M itself, and conversely.

For example, all the information about the geodesics of (M, g) is en-
coded in the geodesic flow on 77 M, which is precisely the characteristic
vector field ¢ of its standard contact metric structure (7, 7). Rieman-
nian manifolds whose unit tangent sphere bundle is either K-contact
or (strongly) p-symmetric or a (k, u)-space, were completely classified,
see [3, 8, 23]. We can refer to [12] for a survey about the contact
metric geometry of 77 M.

Recently, many authors have studied the harmonicity of unit vector
fields in several geometric situations, see, for example, [14] for a survey.
If (M,g) is a compact and orientable Riemannian manifold, a unit
vector field V' of M is called harmonic if it is a critical point for the
energy functional restricted to the set of all unit vector fields of M,
(24, 25].

An interesting geometrical situation, in which a distinguished vector
field appears in a natural way, is given by a contact manifold (M,n)
where we have the characteristic vector field £&. On the other hand, &
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plays a fundamental role in the geometry of a contact metric manifold
(M,n,g) [2]. Moreover, the first examples of harmonic vector fields,
Hopfs vector fields, are in fact the characteristic vector fields of the
standard Sasakian structure on odd-dimensional spheres. So, it is
natural to study the harmonicity of the characteristic vector field of
a contact metric manifold, see [20] for a survey. A contact metric
manifold (M,n,g) whose characteristic vector field £ is a harmonic
vector field is called an H-contact manifold [19]. In the same paper,
the second author proved that (M,n,g) is H-contact if and only if
¢ is an eigenvector for the Ricci operator. Such a characterization
also makes clear that the class of H-contact metric manifolds extends
several interesting classes of contact metric manifolds, like Sasakian,
K-contact, (strongly) locally p-symmetric and (k, u)-spaces.

Boeckx and Vanhecke [10] proved that the geodesic flow of a two-
point homogeneous space is harmonic, that is, the unit tangent sphere
bundle over a two-point homogeneous space is H-contact. In the same
paper, the converse was proved to hold when the base manifold M
is either two- or three-dimensional. Up to our knowledge, the general
problem of characterizing H-contact unit tangent sphere bundles is still
open. More explicitly, in this paper we shall deal with the following
question, which was first asked in [10]:

Question 1.1. Are the two-point homogeneous spaces the only Rie-
mannian manifolds whose unit tangent sphere bundles are H -contact,
that is, have a harmonic geodesic flow?

The paper is organized in the following way. Section 2 and Section 3
will be devoted to recall some basic facts and results about unit tangent
sphere bundles and H-contact spaces, respectively.

In Section 4, we assume that the base manifold (M,g) is locally
reducible, and we prove that 71 M is H-contact if and only if (M, g) is
locally flat.

In Section 5, as a consequence of a more general result, we prove that
the unit tangent sphere bundle T3 M of a conformally flat Riemannian
manifold (M, g) is H-contact if and only if (M, g) has constant sectional
curvature.
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In Section 6, we assume that M itself carries a contact metric
structure, and we characterize the property that T3 M is H-contact
in some interesting classes of contact metric manifolds. In Section 7,
the base manifold is supposed to carry a Kahler structure, and we get
that a four-dimensional K&hler manifold (M, g,J) which is not Ricci-
flat, has constant holomorphic sectional curvature if and only if Ty M
is H-contact. Moreover, we consider Bochner-Kahler manifolds with
H-contact unit tangent sphere bundle.

2. The unit tangent sphere bundle and its natural contact
metric structure. A contact manifold is a (2n + 1)-dimensional
manifold M equipped with a global 1-form n such that n A (dn)™ # 0
everywhere on M. It has an underlying almost contact structure
(n, ¢, &) where £ is a global vector field, called the characteristic vector
field, and ¢ a global tensor of type (1.1) such that

nE) =1, ©£=0, np=0, ¢*’=-T+n®¢.
A Riemannian metric g can be found such that
n=g9@&,), dp=g(,9), g(,p)=—g(¢,")

We refer to (M,n,g) or to (M,n,g,€,¢) as a contact metric (or
Riemannian) manifold. If L denotes the Lie differentiation, we denote
by h and [ the operators defined by

1
h=SLep, X =R(X, ).

The tensor h is symmetric and satisfies

(21) V&= —ph, Vep=0, hp=—ph, h{=0.

A K-contact manifold is a contact metric manifold (M, 7, g) such that
¢ is a Killing vector field with respect to g. Clearly, M is K-contact if
and only if h = 0. Moreover, M is K-contact if and only if

Qg = 2”&7

where @ is the Ricci operator of (M, g).
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A contact metric manifold (M,n,g) is a Sasakian manifold if its
curvature tensor satisfies

R(X,Y)E =n(Y)X —n(X)Y,

for all vector fields X and Y. Any Sasakian manifold is K-contact,
and the converse also holds for three-dimensional spaces. It is easy to
prove that, if M is a contact metric three-manifold of constant sectional
curvature 1, then M is necessarily Sasakian. We refer to [2] for more
information about contact metric manifolds.

A contact metric manifold (M,n,g) is said to be an H-contact
manifold if £ is a harmonic vector field. The following characterization
was proved in [19].

Theorem 2.1 [19]. A contact metric manifold (M,n, g) is H-contact
if and only if & is an eigenvector of @, and hence

Q¢ = (2n — tr h?)E.

It should be noted that the class of H-contact metric manifolds is very
large. In particular, K-contact spaces (and hence, Sasakian manifolds),
(k, u)-spaces, (strongly) locally ¢-symmetric spaces are all examples of
H-contact manifolds. We refer to [18, 19] and the survey [20] for more
details on H-contact spaces.

Next, let # : TM — M be the tangent bundle of an n-dimensional
Riemannian manifold (M,g). The tangent space to TM at a point
(z,u) splits into the direct sum of the vertical subspace VI'M(, ) =
ker 7,|(4,4) and the horizontal subspace HT'M, ) with respect to the
Levi Civita connection V of M. If X is a vector field on M, X" and
X7 will denote respectively the horizontal and the vertical lift of X on
TM. The map X — X", respectively X — X, is an isomorphism
between T, M and HT M, ), respectively, T, M and VI'M(, ,). The
Sasaki metric gg on T'M is defined by

9s(A,B) = g(7.A,7.B) + g(KA, KB),

where A, B are the vector field on TM and K is the connection map
corresponding to the Levi Civita connection of M. T'M admits an
almost complex structure J defined by JX" = XV and JX? = —X".
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The unit tangent sphere bundle 7 : Ty M — M is the hypersurface of
TM defined by ' M = {(x,u) € TM : g,(u,u) = 1}. We shall denote
again by gg the metric induced on 73 M by the Sasaki metric of T'M.

The geodesic flow of (M,g) is the horizontal vector field of TM

defined by
g, =—JN =’ 0"
u - Ozt )’

where (z,u) € TM, N is the unit vector normal to Ty M and u =
u'(8/0z") in local coordinates. If (x,z) € Ty M, then &', is tangent to
TiM. Hence, £ can be considered as a vector field on Ty M. Let 7’
be the 1-form on 77 M dual to £ with respect to gg, and ¢’ the (1,1)
tensor given by ¢'X = JX —n/(X)N. Then

_ 1 1
(577]7 ‘Pag) = <§nla 2517 ‘10/7 ZQS>

is the standard contact metric structure on 77 M.

We now describe the Ricci tensor of (Th1M,n,g). In general, the
vertical lift of a vector (field) is not tangent to T3 M. For this reason,
the tangential lift of X € T, M is defined by

-V

X(tw,u) =(X-gX,u)u)’=X",

where we put X = X — g(X,u). Since gs = 43, the Riemannian
connection, the curvature tensor of type (1,3) and the Ricci tensor of
(T1 M, gs) coincide with the corresponding ones of (71 M, g). Consider
z € M, and let {e1,...,e, = u} be an orthonormal basis of T, M.
Then, {2e},...,2e! |,2e" ... ,2e" | ¢ = 2u"} is an orthonormal
basis of T,71 M, where z = (z,u). Computing explicitly the Ricci
tensor g of (TyM,n,g), we have (see for example [9])
2:(X"Y") = (n— 2)(92(X,Y) — g2(X, u)g:(Y, u))
2.2 1
(2.2) +3 ;gw(R(u,X)ei,R(u,Y)ei),

(23) (XY = (Vao)eX, V) - (Vaxo)a(w, V),
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(24) @z(Xh,Yh) X Y - _Zgz U 61 X R(’LL 62) )

where V, R(X,Y) = [Vx,Vy]| — Vixy] and ¢ are respectively the
Levi-Civita connection, the curvature tensor and the Ricci tensor of
M. By @ we shall denote the Ricci operator of Ty M

3. Harmonicity of the geodesic flow on 77 M. In this section, we
shall recall some basic facts about harmonic vector fields and H-contact
metric manifolds.

A unit vector field V on a Riemannian manifold (M, g) determines a
map between (M, g) itself and its unit tangent sphere bundle (71 M, gs).
If M™ is compact and orientable, the energy of V is defined as the
energy of the corresponding map:

E(V) /||dV|| dv = Tvol (M, ) + /||VV|| v,

V is called harmonic if it is a critical point for E in the set of all unit
vector fields of M.

The corresponding critical point condition
(3.1) “AV is collinear to V,”

where AV = —tr V2V is the rough Laplacian of (M,g), has been
determined in [24, 25].

Note that (3.1) also makes sense when M is non-orientable or non-
compact. For this reason, (3.1) has been taken as definition of a
harmonic vector field on an arbitrary Riemannian manifold [13]. For
further details and references about harmonic vector fields, we can refer

o [14].

Consider now the unit tangent sphere bundle (T1M,7,g) of an
n-dimensional Riemannian manifold (M,g). Let z = (z,u) be a
point of TyM and {ej,...,e, = u} an orthonormal basis of T, M.
Then, the corresponding orthonormal basis of 1,77 M is given by
{2et,...,2et | 2eh, ... 2" | € = 2u"}. From Theorem 2.1 it fol-

lows that (TyM,n,g) is H-contact, that is, its characteristic vector
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field ¢ = 2u” is an eigenvector for the Ricci operator, if and only if

0:(6,X") =0 forall X €T,M,
0.(6,X") =0 forall XLE¢.

Then, from (2.3) and (2.4) we respectively get

(3.2)
(Vuo)z(u, X) = (Vx0)z(u,u) forall X eT,M,

(3.3)
20.(X,u) = ng (R(u,€;)X, R(u,e;)u) forall X lu.
i=1

Since u is an arbitrary unit vector tangent to M at z, it is easy to show
that (3.2) is equivalent to requiring that the Ricci tensor is a Codazzi
tensor, that is,

(3.4) (Vxo)(Y,Z) = (Vyo)(X, Z),

for all tangent vector fields X, Y, Z. So, we get the following
characterization of H-contact unit tangent sphere bundles:

Proposition 3.1. The unit tangent sphere bundle (TyM,n,§) of a
Riemannian manifold (M, g) is H-contact if and only if

(a) the Ricci tensor ¢ of (M, g) is a Codazzi tensor, and

(b) (3.3) holds, for allz € M and {es,... ,e, = u} orthonormal basis
of T,M.

According to Proposition 3.1, the harmonicity of the characteristic
vector field of 71 M is reflected by curvature conditions (3.3) and (3.4)
on the base manifold (M, g). Condition (3.4) is well known and has
been investigated by several authors. It is interesting to note that the
curvature of (M, g) is said to be harmonic when (3.4) holds. On the
other hand, (3.3) is a quite new curvature condition, to which a clear
geometric meaning is not associated yet. As we showed, (3.3) expresses
the fact that Q¢ is orthogonal to the horizontal vectors of the contact
distribution Ker n. Some results of this paper, more precisely the results
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of Sections 4 and 5, help to understand which kind of Riemannian
manifolds can satisfy (3.3). In particular, we get that the condition
(3.3) characterizes the harmonicity of the geodesic flow of 73 M when
(M, g) is a locally reducible Riemannian manifold or its Weyl conformal
tensor vanishes.

4. H-contact unit tangent sphere bundle over a reducible
manifold. We start by proving the main result of this section:

Theorem 4.1. A Riemannian manifold (M,g) is (locally) flat if
and only if it is locally reducible and Q& is orthogonal to the horizontal
vectors of Kern.

Proof. The “if” part is obvious, since a locally flat manifold trivially
satisfies condition (b) of Proposition 3.1.

In order to prove the converse, assume that M is locally isometric
to a Riemannian product M’ x M". Let ¢ = (z',2") be a point of
M, v € TyyM' and v" € T,»M" arbitrary unit vectors. Consider

{el,...,e.. =v'} and {ef,... e’ = v"} orthonormal bases of T, M’
and T,»M", respectively, where r = dimM’', s = dim M" and n =
r+s=dim M. Then, {e},... ,e.,ef,... e’} is an orthonormal basis

of T, M. We now build new orthonormal bases of T, M, considering,
for all a € R, the vectors

{Ela v 7En717U = En}

1 ! n

o / / " "
- {ela"' y€p_15€15 -+ €51, 72(_0’67‘4_63

1
1+a )’\/l—i—a2

Applying (3.3) to 0z(En-1,U), we get

(4.1) 20:(En-1,U) = nigz(R(U, E)E,_1,R(U, E;)U).

Since M is locally isometric to M’ x M", it is easy to check that

_a
T 1+4a

!

(42) Qw(EnflaU) (_le’(egﬂﬂer) + Q,z/”(els/’els/))a
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where ¢’ and g¢” denote the Ricci tensor of M’ and M", respectively,
and we used the previous definition of E,,_; and U. Using again the
definition of {E,... ,E, 1,U = E,} in order to compute the second
term of the formula (4.1), some routine calculations give
(4.3)

n—1

ng(R(U,Ei)Enfl,R(U,Ei)U)= Ty ZHR’ (e, eh)enl3
=1

||RII " /I /I||2
€s5 €4 2

where R’ and R” are respectively the curvature tensor of M’ and
M", and the lengths of the vectors are calculated with respect to the
Riemannian metrics ¢’ of M’ and g’ of M", respectively.

Using (4.2) and (4.3) in (4.1), we obtain
(44)  —Ri+a’Ry +2(1+a”) (g (e}, €7) — gfu(el,€f)) =0,

where we put Ry = Y, ||R' (e}, €f)e; ||] and Ry = =, ||R" (e}, €] )el [I3-
Note that R; > 0 and R, > 0.

Since {Ey,...,FEn_1,U = E,} is an orthonormal basis of T, M for
all a € R, and, by hypothesis, (3.4) holds with respect to an arbitrary
orthonormal basis of T, M, (4.4) must hold for all a € R.. In particular,
from (4.4) it follows that
(45)

(QQm( €rs r) 291”( g’ s)+R2)a’ +(2Qz ( €rs r) 291”( g? .’sl) Rl) 0

for all @ # 0. So, the coefficients of the polynomial in (4.5) must vanish,
that is,

29:1:’( €ry r)_2gz”( lsl’ lsl)+R _2Qm( €ry r)_2ga:”( ;/7 .’sl) R _0

from which it follows at once that Ry = —Rs. But R; > 0 and Ry > 0.
Therefore, Ry = Ry = 0 and so, R'(el.,ef)el. =0foralli=1,...,r and
R'(ef,ei)el = 0 foralli =1,...,s. Hence, R, = R, = 0, where
Ry = R( V)V denotes the Jacobz operator. So, R , =0 and R/, =0,
for all v' € T,y M' and v"” € T, M" respectively. ThlS implies at once
that M’ and M" are flat, from which it follows that M itself is locally

flat. O
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From Theorem 4.1 it follows a positive answer to Question 1.1 when
the base manifold is locally reducible. In fact, taking into account
Proposition 3.1, we obtain at once the following

Theorem 4.2. Let (M,g) be a locally reducible Riemannian man-
ifold. Then, the unit tangent sphere bundle Ty M is H-contact if and
only if (M, g) is locally flat.

Recently, Boeckx [7] characterized locally reducible unit tangent
sphere bundles in the following way.

Theorem 4.3 [7]. The unit tangent sphere bundle Ty M of a Rieman-
nian manifold M, of dimension greater than two, is locally reducible if
and only if the base manifold has a flat factor.

Theorem 4.3 was proved equipping 771 M with its natural metric gs.
Since the contact metric g of 77 M is homothetic to gg, the same result
holds for (T71M,g). According to Theorem 4.3, the local reducibility
of Th M implies the local reducibility of the base manifold M, since
M must have a flat factor. So, from Theorem 4.2 we obtain at once
the following characterization of flat Riemannian manifolds via some
curvature conditions on their unit tangent sphere bundles:

Theorem 4.4. A Riemannian manifold (M, g) is locally flat if and
only if its unit tangent sphere bundle Ty M 1s locally reducible and H -
contact.

We can also use Theorem 4.1 to study semi-symmetric spaces whose
unit tangent sphere bundle is H-contact. A semi-symmetric space is a
Riemannian manifold (M, g) such that its curvature tensor R satisfies
the condition

R(X,Y)-R =0,

for all vector fields X, Y on M, where R(X,Y) acts as a derivation
on R. This is equivalent to requiring that the curvature tensor of
(M, g) at a point p € M, R, is the same as the curvature tensor of a
symmetric space (which may change with the point p). So, locally
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symmetric spaces are obviously semi-symmetric. In any dimension
greater than two, there do exist examples of semi-symmetric spaces
which are not locally symmetric. Szabd [22] proved a local structure
theorem. This theorem states that for every n-dimensional semi-
symmetric space, there exists an everywhere dense open subset U
such that, around every point of U, the space is locally isometric to
a direct product of symmetric spaces, two-dimensional Riemannian
spaces, elliptic, hyperbolic, Euclidean and Kahlerian cones, and spaces
foliated by (n — 2)-dimensional Euclidean spaces.

Assume now that (M,g) is a semi-symmetric space with an H-
contact unit tangent sphere bundle. Then, the Ricci tensor of (M, g)
is a Codazzi tensor and so, by a result of [4], (M, g) must be locally
symmetric. Moreover, if (M, g) is locally reducible, then Theorem 4.1
implies that (M, g) is flat. So, we get the following

Theorem 4.5. Let (M,g) be a semi-symmetric space. If Ty M is
an H-contact manifold, then either (M,g) is locally flat or it is an
wrreducible locally symmetric space.

5. H-contact unit tangent sphere bundle over a conformally
flat manifold. As is well known, a Riemannian manifold (M, g) is
said to be (locally) conformally flat if for any point p € M there exist
a neighborhood U of p and a positive smooth function f : U — R such
that fg is a flat metric. The study of conformally flat Riemannian
manifolds is a classical field of research in Riemannian geometry.

Let p be a point of M and {ey, ... ,e,} any orthonormal basis of the
tangent space T,M. If (M, g) is conformally flat, we have

1
Rijkn = —— (9ik0jn + 9jn0ik — GinQjk — 9jkOih)
(5.1) n-2

- m(gikgjh = GinGjk)-

Formula (5.1) expresses in local coordinates the property that the
Weyl conformal curvature tensor W vanishes. W = 0 characterizes
conformally flat Riemannian manifolds of dimension n > 4, while it is
satisfied by any three-dimensional Riemannian manifold.
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In [10, Proposition 2], it was proved that if £ is harmonic on 77 M and
dim M = 2 or 3, then (M, g) has constant curvature. We now extend
this result, by proving the following

Theorem 5.1. Let (M, g) be a Riemannian manifold with vanishing
Weyl conformal curvature tensor. M has constant sectional curvature
if and only if Q& is orthogonal to the horizontal vectors of Kern.

Proof. If (M, g) has constant sectional curvature, routine calculations
show that (b) of Proposition 3.4 holds, since both terms of (3.4) vanish,
for all z € M and {ey,...,e,} orthonormal basis of T, M. In other
words, Q¢ of (T1 M, 7, ) is orthogonal to the horizontal vectors of Ker 1.

Conversely, suppose now that (M, g) is a Riemannian manifold such
that W = 0 and (b) of Proposition 3.4 holds. Let = be a point of M and
{e},...,e,} an orthonormal basis of T, M, of eigenvectors of the Ricci
operator Q of (M, g), that is, oz (e}, €},) = 0Ok, forallk,h =1,... ,n,
where by 01, ... , 0, we denote the Ricci eigenvalues. Fix arbitrarily two
indices ¢ # j. Then, for any 6 € R, the set

{er, - yen—1,en} = {e/k #14,5} U{v = —sinfe; + cos fe}
U {u = cos fe; + sin fe}
is a new orthonormal basis of T, M.

Since vlu and {e1,...,e, = u} is an orthonormal basis of T, M,
applying (3.4) to compute g, (v,u), we get

(5.2) 20, (v,u) = Z 9z (R(u, e-)v, R(u, e, )u).

We can use (5.1) in order to compute the second term of (5.2). We first
note that, since {e},... el } is a basis of Ricci eigenvectors, from (5.1)
it easily follows that

R(el.,el)el = K€,

for all » £ s =1,...,n, where we put
(53) Krs — Or + Os _ T

n-2 (n—-1)(n-2)"

Note that K,; = K., for all r #£ s.
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Next, we compute g,(R(u,e.)v, R(u,e.)u), for all r = 1,...,n.
Taking into account the fact that

er for some k #£14,j,if r<n—1,
er=1cv ifr=n-1,
u if r =n,

we get

(54) g(R(u,er)v, R(u,er)u)

(Kjr — K;1,) sinf cos (K, cos® 0 + Ky, sin?4),
if r <n —1, where e, = e},

0 ifr=n-1,

0 if r =n.

Using (5.4) in (5.2), we obtain

5.5) 20z(v,u) = K — K;) sin 6 cos (K, cos® 0 + K ., sin” 6).
j J
k#i,j

On the other hand,
(5.6) 0z(v,u) = (0j — 0;) sinf cos 6.

Using (5.6) in (5.5), we get

(5.7)  2(0i — o) — D (Kjr — Kix)(Kix cos’ 0 + K sin® 6) = 0
k#i,j

for all # € R such that sinfcosd # 0. From (5.3) it follows that
Qi — Qj
K — Ky, = 2—9
’ F n—2

for all k #4,j. So, (5.7) becomes

1
(5.8)  (ei— 9;’){2 + o= > (Kik cos® 0 + Ky, sin® 0)} =0.
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Since (5.8) holds for all # € R such that sinfcos6 # 0, from (5.8) it
follows that o; = ¢;. Hence, all the Ricci eigenvalues coincide, and so
(M, g) is an Einstein manifold. Since (M, g) is conformally flat, we can
conclude that (M, g) has constant sectional curvature. O

If (TyM,n,g) is H-contact, then Q¢ is orthogonal to the horizontal
vectors of Kern, by Proposition 3.1. Therefore, from Theorem 5.1, we
get the following

Theorem 5.2. Let (M,g) be a conformally flat Riemannian mani-
fold. Then, (T1yM,n,g) is H-contact if and only if (M, g) has constant
sectional curvature. In this case, T1M is (strongly) o-symmetric and
a (k, p)-space.

6. H-contact unit tangent sphere bundles over contact
metric manifolds. In this section, we give a positive answer to
Question 1.1 when M belongs to the class of Sasakian manifolds or,
more generally, it is a (k, u)-space. We first deal with the Sasakian
case, by proving the following

Theorem 6.1. Let (M,n,g) be a Sasakian manifold. Then, Ty M
is H-contact if and only if (M, g) has constant sectional curvature +1.
In this case, T1 M 1is K -contact.

Proof. If (M, g) has constant sectional curvature +1, then 71 M is
K-contact [23], and so it is H-contact.

Assume now that T3 M is H-contact. Then, Proposition 3.1 holds.
In particular, the Ricci tensor g of (M, g) is a Codazzi tensor. Since
(M,n, g) is Sasakian, this implies that (M, g) is Einstein [1].

Next, let ¢ be the characteristic vector field of (M,n,g) at a point
x € M and u € T, M a unit vector different from +¢ and not orthogonal
to & Put v = g,(§,u)u — . Hence, v is orthogonal to u but not to
€. Consider an orthonormal basis {e1,...,e, = u} of T, M, where
n = dim M. Since (M, g) is Einstein, ¢, (u,v) = 0. Hence, from (3.3)
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we have
(6.1) Zgw (u, e, )v, R(u, e, )u) = 0.

Since M is Sasakian, its curvature tensor satisfies
(6.2) R(X,Y)§ =n(Y)X —n(X)Y,

for all X,Y € T, M. Taking into account (6.2) and v = g,(§, u)u — &,
(6.1) becomes

g2(6:0) (3 IB(uen)ul? ~ ofu ) ) =0

r

that is, since u is not orthogonal to &,
w) =Y R, e )ull.
T

Next, by definition we have

ZRuer,uer = Zgz (u, e )u,e).

Hence, (6.3) yields

(6.4) Zgz (u, er)u, R(u, e, )u+e,) =0,

for all w not orthogonal to &.

Note that {ey,... ,e, = u} is an arbitrary orthonormal basis of T, M
including u. Suppose now that {e;,...,e, = u} is an orthonormal
basis of eigenvectors for the symmetric endomorphism R, = R(-,u)u
(Jacobi operator), that is, R,(e;) = Ae; for all ¢ = 1,...,n. Then

from (6.4) we get
> A —1),
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that is,
(6.5) A=A

For r = n, we have e, = v and R,u = 0. So, in (6.5), r runs from 1 to
n— 1.

Since (M, g) is Sasakian and Einstein, we also have

T T
0z (u,u) = Egm(u,u) == n— 1.

Hence, from (6.3) we also get

Z)\zznfl,

that is, A1,..., An_1 satisfy the system
A=n-—1
(6.6) 2 P
YA =n—1
It is easy to show that A\; = --- = A,,_; = 1 is the only solution of (6.6).

In fact, the hyperplane ) A, = n—1is tangent to the Euclidean sphere
>, A2 =n—1at the point (A1,..., A1) = (1,...,1).

We can now conclude that (M, g) has constant sectional curvature

+1. In fact, we first note that, since A\, =1 forallr=1,... ,n—1, we
have
(6.7) R.e, = e,

and so, K(u,e.) = R(u,e,,u,e.) =1 forall r =1,...,n —1. Next,
let v € T, M be any unit vector orthogonal to u. Using (6.7), easy
calculations show that K(u,v) = 1. Because u is an arbitrary unit
tangent vector not orthogonal to &, so far we have proved that

(6.8) K(u,v) =1 whenever either u or v is not orthogonal to &,

that is, either u or v does not belong to Kern. Thus, we are left with
the case when u,v € Kern. In this case, consider a new orthonormal
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basis {e; = u,es = v,e3,...,e,}, where es,... ,e, are chosen so that
none of them is orthogonal to £. Using (6.8) and the fact that (M, g)
is an Einstein Sasakian manifold, we have

TL(TL - 1) =7 = ZRUU = 2Rq912 + n(n - 1) -2,
i7]
from which it follows that also K (u,v) = Rj212 = 1. Therefore, (M, g)
has constant sectional curvature 1 and T3 M is K-contact [23]. O

We now consider the case of a (k, 1)-space. A contact metric manifold
(M,n, g) is said to be a (k, u)-space if its characteristic vector field &
belongs to the (k, u)-nullity distribution, that is, it satisfies

(6.9) R(X,Y)¢=k(n(Y)X —n(X)Y)+ pn(Y)hX —n(X)hY),

for all tangent vectors X and Y. (k,u)-spaces are a well-known class
of contact metric manifolds which generalizes the class of Sasakian
manifolds. They were introduced and first studied in [3]. A full
classification of non-Sasakian (k, ut)-spaces can be found in [6].

In [3] the curvature tensor of a non Sasakian (k,u)-space was de-
termined. In particular, the Ricci operator @) is completely described
by
(6.10)

QX = [2(n—1) —np]X +[2(n— 1)+ wlhX +[2(1 ) +n(2k+w)n(X)E.

It was also remarked in [3] that, for 4 = 2(1 — n), Q is of the form
(6.11) QX = aX + by(X)¢

and so, the (k, u)-space (M,n,g) is an n-Einstein space.

Differentiating (6.10) by a tangent vector field Y, one can express the
covariant derivative of @), and so, of g, in terms of  and h. Explicitly,
we obtain

(Vxo)(Y,Z2) = [2(n - 1) + plg((Vxh)Y, Z)
(6.12) +[2(1 — n) + n(2k + u)]
x {9(Y, (Vx&n(Z)) + 9(Z,(VxEn(Y))}.
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(k, u)-spaces whose Ricci tensor is a Codazzi tensor were studied in
[17], where the following result was proved.

Theorem 6.2 [17]. Let (M,n,g) be a (k,u)-space with harmonic
curvature. Then, M is either an Finstein Sasakian manifold, or an
n-Einstein manifold, or locally isometric to a Riemannian product
Rt x S"(4) (including a flat contact metric structure for n = 1).

We are now ready to prove the following

Theorem 6.3. Let (M,n,g) be a (k,u)-space. Then, TYM is H-
contact if and only if either M is flat (and three-dimensional) or M
has constant sectional curvature +1.

Proof. As we already remarked, if M has constant sectional cur-
vature, then T) M is H-contact. Conversely, assume that (M,g) is a
(k, u)-space with H-contact unit tangent sphere bundle. According to
Proposition 3.1, the Ricci tensor g of (M, g) is a Codazzi tensor. Hence,
(M, g) must be one of the manifolds listed in Theorem 6.2.

If M is an Einstein Sasakian manifold, from Theorem 6.1 it follows
that M has constant sectional curvature +1. In the sequel, we shall
assume (M,n,g) is non Sasakian. If (M,g) is locally isometric to
R"*! x S™(4), Theorem 4.1 implies that M is flat, and so n = 1.
Therefore, we are left with the case when (M, g) is a non Sasakian
n-Einstein (k, pu)-space whose unit tangent sphere bundle T3 M is H-
contact. Taking into account Theorem 4.1, we can assume that (M, g)
is locally irreducible and we shall prove that this case cannot occur.

Since (M, g) is a non Sasakian (k,u)-space, it is (strongly) locally
p-symmetric [5, 8]. We do not need here a detailed description of
(strongly) locally p-symmetric spaces and we can refer to [6] for more
information and results about them. We just point out that a (strongly)
locally ¢-symmetric space satisfies an infinity number of curvature
conditions. Among the others, we have

(Vup)(u,u) =0,
(Vup)(§,€) =0,

for all u € Kern. Taking into account the fact that p is also a Codazzi
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tensor, we obtain that
Vo=0<= (Vep)(u,v) =0 for all u,v € Kern.
Consider u,v € Kern. According to (6.12), we have
(Ven)(u,0) = (201 — 1) + g((Veh)(u,v) = 0,
since (M, g) is n-Einstein, and so u = 2(1 — n). Thus, (M, g) is Ricci-

parallel. Being irreducible, (M, g) must be an Einstein manifold [16].
We remark that from (6.10) it follows that

Q€ = 2nk¢,
Qu=(2(n —1) —nu)u,

where u € Ker7. Since M is Einstein, we must have
2nk =2(n —1) — npy,
that is, taking into account p = 2(1 —n),

n?—1

n

(6.13) k=

We know from Theorem 6.2 that in the non Sasakian case we have
k < 1. According to (6.13), this can occur only if n = 1, in which case
k =0, again by (6.13), and p = 2(1 — n) = 0. Therefore, (6.10) gives
@ = 0, that is, being three-dimensional, (M, g) should be flat, which
contradicts the assumption that (M, g) is irreducible and this ends the
proof. |

Remark 6.4. If (M,n,g) is a non Sasakian (k, u)-space, then the
property “I1 M is H-contact” is not equivalent to “I7 M is K-contact”.
In fact, according to Theorems 6.1 and 6.3, a three-dimensional flat
manifold is a (non-Sasakian) (k,u)-space whose unit tangent sphere
bundle is H-contact but not K-contact.

7. H-contact unit tangent sphere bundles over Kihler man-
ifolds. We first prove the following.
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Proposition 7.1. Let (M,g,J) be a Kdhler manifold. If Th'M is
H-contact, then M is a Kdhler-FEinstein space.

Proof. Let (M, g,J) be a K&hler manifold whose unit tangent sphere
bundle is H-contact. If M is locally reducible, Theorem 4.1 implies at
once that M is flat, in particular, it is an Einstein manifold. Assume
now that M is locally irreducible. According to Proposition 3.1, g is a
Codazzi tensor. Therefore, M is Ricci-parallel, as was proved in [16].
Since M is locally irreducible, it again must be an Einstein manifold,
see for example [16]. o

Note that a compact Kahler-Einstein space with nonnegative sec-
tional curvature is locally symmetric [15]. Therefore, as a consequence
of Proposition 7.1, we have

Proposition 7.2. Let (M,g,J) be a compact Kihler manifold with
nonnegative sectional curvature. If Ty M is H-contact, then M is a
Kahler-FEinstein locally symmetric space.

When dim M = 4, we can improve Proposition 7.2 by proving the
following

Theorem 7.3. Let (M, g,J) be a four-dimensional Kdihler manifold.
Suppose that M satisfies one of the following properties:

a) M has either nonnegative or non positive sectional curvature, or
b) M is not Ricci-flat.

Then, T1M is H-contact if and only if M has constant holomorphic
sectional curvature.

Proof. Let (M, g, J) be a four-dimensional Kahler manifold, satisfying
either a) or b). If (M, g, J) has constant holomorphic sectional curva-
ture, then 71 M is H-contact [10]. Conversely, assume now that Ty M
is H-contact. From Proposition 7.1 it follows that M is Einstein. So,
at any point z € M there exists an adapted Singer-Thorpe basis, that
is, an orthonormal basis {e;, es = Jey, e3,eq = Jes} of T, M, such that
the components of the curvature tensor with respect to {e1,ez2,es,es}
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are given by

Ri212 = R3q34 = a, Ry234 = «,

(7.1) Ry313 = R2424 = b, R340 = B,
Ri414 = Ra323 = ¢, Ryg23 =7,
Rijrr, =0 whenever three indices differ

and moreover,
(7.2) a=b+c=1/4—a, B=-b, v=—c,

see for example [21]. Starting from {ej, ez, e3,€4}, we now build new
orthonormal bases of 1, M, considering, for all § € R,

{e}, eh,e5,eh} = {e1,e2,v = —sinfes + cosfey,u = cosfes + sin fey }.

Applying (3.4) to the orthogonal vectors u and v, standard calculations
give

3
0=20,(v,u) = Zgz(R(u, el )v, R(u, e}.)u)
r=1

= (sin?§ — cos? 0){(b — ¢)? — (B — 7)*}.

So, it suffices to consider § € R such that sin® # # cos? 6, to conclude
that (b —¢)? = (8 — v)%. Proceeding in a similar way, starting from
orthonormal bases of type {e1,e3,v = — sin fes + cos feq, u = cos fes +
sinfes} and {e;,eq,v = —sinfey + cosfez,u = cosfey + sinfez}, we
also obtain that (a — b)? = (o — 8)? and (a — ¢)? = (a — ¥)%. So, the
curvature components with respect to the adapted Singer-Thorpe basis
{e1, e2, €3, €4} satisfy

a=b+c=71/4-aq,
B =—b,
v =—c
(a—b)*=(a=p)?
(b—c)* =(8-7)?%
(a—c)* = (a—9)>

If the sectional curvature of M is either nonnegative or non positive,
we only have to consider the solutions of (7.3) such that a, b and ¢
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have the same sign. It is easy to prove that the only solutions of (7.3),
compatible with this condition, are

- fooben

and
c=b,
a=4b

7.5 ’

(75) a = 2b,
B=~=-b

Clearly, (7.4) corresponds to a flat metric, that is, M is locally isometric
to C2. As concerns (7.5), note that the scalar curvature 7 of (M, g)
is constant and 7/4 = a + b+ ¢ = 6b (with b # 0, otherwise we
have again a flat metric). So, b is constant and (7.4) implies that all
the curvature components with respect to the adapted Singer-Thorpe
basis {ej,es,es,e4} are constant. In other words, (M,g) is a four-
dimensional curvature homogeneous Einstein space. It follows from
an unpublished theorem by Derdzinski that such a space is locally
symmetric [9, page 409]. So, (M, g) must be locally isometric to one
of the two-point homogeneous spaces R*, §*, H*, CP? or CH?, or to
one of the product manifolds $% x §% or H? x H?. Taking into account
Theorem 4.1 and the fact that M is Kahler, we can conclude that M
has constant holomorphic sectional curvature.

Suppose now that the scalar curvature 7 of (M, g) is different from
zero at some point. Since M is Einstein, 7 # 0 at any point and this
is equivalent to requiring that M is not Ricci-flat. It is easy to prove
that the only solution of (7.3) for which 7 # 0 is given by (7.5). As
we proved already, (7.5) corresponds to a Kdhler manifold of constant
(non-vanishing) holomorphic sectional curvature. O

A Kahler manifold is said to be Bochner-Kdhler if its conformal
curvature Bochner tensor vanishes. Such manifolds are also called
Bochner-flat. Bochner-Kéhler manifolds are the Kahler analogous of
conformally flat Riemannian manifolds. At first, one might expect the
theory of Bochner-Kahler manifolds to parallel the theory of confor-
mally flat Riemannian manifolds, but one soon finds apparent differ-
ences. Bochner-Kihler manifolds have nontrivial local geometry and
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they do not have a global isometric uniformization. Bryant’s paper
[11] provides an explicit local classification of Bochner-K&hler metrics
and an in-depth study of their global geometry, including a classifi-
cation of the compact and complete Bochner-Kahler manifolds. In
particular, a Bochner-K&hler manifold is Einstein if and only if it has
constant holomorphic sectional curvature. Taking into account that
a Kahler manifold with H-contact unit tangent sphere bundle is Ein-
stein (Proposition 7.1), we obtain at once the following new result on
Bochner-Kahler manifolds.

Theorem 7.4. Let (M,g,J) be a Bochner-flat Kahler manifold.
Then, Ty M is H-contact if and only if (M, g, J) has constant holomor-
phic sectional curvature.
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