
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 37, Number 4, 2007

THE MULTIPLICITY OF SPECTRA OF A
VECTORIAL STURM-LIOUVILLE DIFFERENTIAL

EQUATION OF DIMENSION TWO
AND SOME APPLICATIONS

C.F. YANG, Z.Y. HUANG AND X.P. YANG

ABSTRACT. We consider problems related to the multi-
plicity of the eigenvalues of the following vectorial Sturm-
Liouville differential equation on the interval [0, 1] with respect
to certain homogeneous boundary conditions at the points
x = 0 and x = 1:

(E)

{
(p�u′)′(x) + (λr(x)E2 − Q(x))�u(x) = 0;

�u(0) cosα + �u′(0) sin α = �u(1) cos β + �u′(1) sin β = 0,

where 0 ≤ α, β < 2π, p(x) and r(x) are positive scalar-valued
functions and have absolutely continuous first derivatives with
measurable second derivatives on 0 ≤ x ≤ 1, E2 denotes a
2 × 2 identity matrix, Q(x) is a continuous 2 × 2 real sym-
metric matrix-valued functions on 0 ≤ x ≤ 1, and �u(x) is an
R2-valued function. We present that under certain assump-
tions on the scalar-valued functions p(x), r(x) and the matrix-
valued function Q(x), (E) can only possess finitely many eigen-
values which have multiplicity 2 and find a lower bound mQ,
such that the eigenvalues of (E) with index exceeding mQ are
all simple. These results are applied to find some sufficient
conditions which ensure that the spectra of the following two
potential equations, i = 1, 2:

(qi)

{
(pu′)′(x) + (λr(x) − qi(x))u(x) = 0;

u(0) cosα + u′(0) sin α = u(1) cos β + u′(1) sin β = 0

have finitely many elements in common, and we obtain an
estimate of the number of elements in the intersection of two
spectra.

1. Introduction. As a generalization of the scalar Sturm-Liouville
equations, vectorial Sturm-Liouville equations were recently found to
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be important in the study of particle physics, see [9]. In this paper,
we concentrate mainly on the multiplicity of eigenvalues of a vectorial
Sturm-Liouville differential equation of dimension two. It was known,
see [6], that if the functions r(x) and p(x) are taken as positive and
continuous on [0, 1], furthermore, they are assumed to have absolutely
continuous first derivatives with measurable second derivatives and
q(x) is assumed to be measurable on [0, 1] as well, then the potential
equation

(1.1)

⎧⎨⎩
(pu′)′(x) + (λr(x) − q(x))u(x) = 0;
u(0) cosα + u′(0) sinα = 0,

u(1) cosβ + u′(1) sin β = 0, 0 ≤ α, β < π,

possesses discrete spectra, that all eigenvalues are real, simple, i.e., of
multiplicity one, and that the kth eigenfunction has exactly k− 1 sign-
changed zeros in the interval 0 < x < 1, and the functions form a
complete orthogonal system in the Hilbert space

L2
r[0, 1] =

{
f : [0, 1] −→ C,

∫ 1

0

|f |2r dx < ∞
}

,

where we use the inner product

(f, g) =
∫ 1

0

rf ḡ dx, for any f, g ∈ L2
r[0, 1].

But for the following two-dimensional vectorial Sturm-Liouville differ-
ential equation

(1.2) (p�u ′)′(x) + (λr(x)E2 − Q(x)) �u(x) = 0,

subject to the boundary conditions

(1.3) �u(0) cosα + �u ′(0) sinα = �u(1) cosβ + �u ′(1) sinβ = 0,

where E2 is a 2 × 2 identity matrix, Q(x) =
(

p1(x) −r1(x)

−r1(x) p2(x)

)
, 0 ≤ α,

β < π, pi(x), i = 1, 2, are assumed to be continuous functions
defined on 0 ≤ x ≤ 1 and r1(x) is C1-function on [0, 1], and the
functions r(x) and p(x) are taken as positive scalar-valued functions
and have absolutely continuous first derivatives with measurable second
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derivatives on 0 ≤ x ≤ 1, the multiplicity of the eigenvalues and
properties of the eigenfunctions are not well understood except for the
case when p(x) = r(x) = 1 and sinα = sin β = 0 in (1.2) and (1.3),
see [8]. One purpose of this paper is to investigate the multiplicity
problems of eigenvalues of the equation (1.2) and (1.3). In this work,
using the theory of matrix differential equations and the ideas and
methods in the paper [8], with some modification of course, we obtain
the following theorems.

Theorem 1. If Q(x) =
(

p1(x) −r1(x)

−r1(x) p2(x)

)
, and

∫ 1

0

r1(x)√
r(x)p(x)

dx �= 0,

then except finitely many eigenvalues, all eigenvalues of (1.2) and (1.3)
are simple.

Let σ(q) denote the spectrum of the potential equation (1.1) with the
potential function q(x).

Theorem 2. Suppose q1(x) and q2(x) are two real-valued continuous
functions on 0 ≤ x ≤ 1. If∫ 1

0

q1(x) − q2(x)√
r(x)p(x)

dx �= 0,

then σ(q1) and σ(q2) only have finitely many elements in common.

Theorem 3. Suppose Q(x) =
(

p1(x) −r1(x)

−r1(x) p2(x)

)
, and

∫ 1

0

r1(x)√
r(x)p(x)

dx �= 0.

If λn is an eigenvalue of (1.2) and (1.3) satisfying the following condi-
tion,

λn > Λ∗1 if sin α = 0; λn > Λ∗2 if sin α �= 0,

then λn is a simple eigenvalue.
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It is worth pointing out that Theorem 3 plays an important role in the
estimate of some related eigenvalue problems, see Theorems 4 and 5.

2. The multiplicity of spectra of a vectorial Sturm-Liouville
differential equation of dimension two. To study the eigenvalue
problems (1.2) and (1.3), we now apply the Liouville transformation to
reduce the equation (1.2) and (1.3) to the Liouville normal form. Let

(2.1)
t =

∫ x

0

√
r(s)
p(s)

ds,

ρ(x) = (p(x)r(x))1/4, �y(t) = ρ(x) �u(x),

so that the equation (1.2) and (1.3) is transformed into a vectorial
Sturm-Liouville equation of the form

(2.2) �y ′′(t) + (λE2 − Q̃(t)) �y(t) = 0

on the interval [0, c] subject to the boundary conditions

(2.3) A0 �y(0) + B0 �y ′(0) = Ac �y(c) + Bc �y ′(c) = 0,

where

(2.4)

c =
∫ 1

0

√
r(s)
p(s)

ds,

Q̃(t) =
1

r(x)
Q(x) +

{
p(x)ρ′′(x)
r(x)ρ(x)

+
ρ′(x)
2ρ(x)

(
p(x)
r(x)

)′}
E2,

A0 =
cos α

4
√

r(0)p(0)
− r′(0)p(0) + r(0)p′(0)

4r(0)p(0) 4
√

r(0)p(0)
sin α,

B0 = 4

√
r(0)
p3(0)

sin α,

Ac =
cos β

4
√

r(1)p(1)
− r′(1)p(1) + r(1)p′(1)

4r(1)p(1) 4
√

r(1)p(1)
sin β,

Bc = 4

√
r(1)
p3(1)

sin β.
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Remark 1. The Liouville transformation implies that a real value λ is
an eigenvalue of problem (1.2) and (1.3) if and only if λ is an eigenvalue
of problem (2.2) and (2.3), and the multiplicity of λ as an eigenvalue of
problem (1.2) and (1.3) is equal to the multiplicity of λ as an eigenvalue
of problem (2.2) and (2.3).

Denote

(2.5) Q̃(t) =
(

p̃1(t) −r̃1(t)
−r̃1(t) p̃2(t)

)
,

from (2.4) we see that

(2.6) r̃1(t) =
r1(x)
r(x)

.

We consider the following matrix differential equations:

(2.7)
Y ′′(t) + (λE2 − Q̃(t))Y (t) = 0,

Y (0) = B0E2, Y ′(0) = −A0E2,

where Y (t) is a 2 × 2 matrix-valued function. We use Y (t, λ) to
denote the solution of the initial value problem (2.7). Then λ∗ is an
eigenvalue of problem (1.2) and (1.3), and hence also of problem (2.2)
and (2.3), if and only if AcY (c, λ∗) + BcY

′(c, λ∗) is a singular matrix.
The multiplicity of λ∗ as an eigenvalue of problem (1.2) and (1.3) is
equal to the dimension of the null space of AcY (c, λ∗)+BcY

′(c, λ∗). By
the theory of self-adjoint extensions of vectorial differential operators,
we know that the boundary conditions (1.3) are separated self-adjoint
boundary conditions. It is known that problem (1.2) and (1.3) has a
countably infinite number of real eigenvalues which are bounded from
below, see [4, 6]. Counting the multiplicity of eigenvalues, we arrange
all eigenvalues of problem (1.2) and (1.3) as an ascending sequence

−∞ < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · , lim
m→∞λm = ∞.

The multiplicity of an eigenvalue λ∗ of problem (1.2) and (1.3) is at
most two, and the multiplicity of λ∗ is 2 if and only if AcY (c, λ∗) +
BcY

′(c, λ∗) is a zero matrix.
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The matrix-valued solution Y (t, λ) of the equation (2.7) can now be
recast as a Volterra integral equation, see [1]:

(2.8)
Y (t, λ) = B0 cos(

√
λt)E2 − A0 sin(

√
λt)√

λ
E2

+
∫ t

0

sin(
√

λ(t − s))√
λ

Q̃(s)Y (s, λ) ds.

By Gronwall’s inequality, (2.8) implies that for enough large positive
λ, the asymptotic formula of Y (t, λ) is

(2.9) Y (t, λ)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B0 cos(

√
λt)E2 − A0 sin(

√
λt)√

λ
E2 + O

(
1√
λ

)
for sin α �= 0;

− A0 sin(
√

λt)√
λ

E2 + O

(
1
λ

)
for sin α = 0.

First we give an important lemma.

Lemma 1. If Q(x) =
(

p1(x) −r1(x)

−r1(x) p2(x)

)
, and λ∗ is an eigenvalue of

(2.2) and (2.3) which is multiplicity two, let Y (t, λ∗) = (−→y1 (t),−→y2 (t)),
where −→y1 (t) =

(
y11(t)

y21(t)

)
and −→y2 (t) =

(
y12(t)

y22(t)

)
are two solutions of (2.2)

and (2.3) corresponding to λ∗. There holds

(2.10)
∫ c

0

r1(x)
r(x)

det Y (t, λ∗) dt = 0.

Proof. Since −→y1 (t) and −→y2 (t) are two solutions of (2.2) and (2.3)
corresponding to λ∗, −→y1 (t) and −→y2 (t) satisfy the boundary conditions
of (2.3), that is,

(2.11){
A0 y11(0) + B0 y′

11(0) = 0,
A0 y12(0) + B0 y′

12(0) = 0
and

{
Ac y11(c) + Bc y′

11(c) = 0,

Ac y12(c) + Bc y′
12(c) = 0.

Since A2
0 + B2

0 �= 0 and A2
c + B2

c �= 0, then

(2.12) y11(0)y′
12(0) − y′

11(0)y12(0) = y11(c)y′
12(c) − y′

11(c)y12(c) = 0.
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In addition, −→yi (t) (i = 1, 2) satisfies the equation (2.2), thus
y′′
11(t) + [λ∗ − p̃1(t)] y11(t) + r̃1(t) y21(t) = 0,(2.13)

y′′
12(t) + [λ∗ − p̃1(t)] y12(t) + r̃1(t) y22(t) = 0.(2.14)

By (2.13) and (2.14), we get
y′′
11(t)y12(t) − y11(t)y′′

12(t) = r̃1(t)[y11(t)y22(t) − y12(t)y21(t)],
which can be rewritten as
(2.15)

d

dt
[y′

11(t)y12(t) − y11(t)y′
12(t)] = r̃1(t)[y11(t)y22(t) − y12(t)y21(t)].

Employing (2.12) and integrating (2.15) from t = 0 to t = c, together
with (2.6), we obtain (2.10), thus proving Lemma 1.

Theorem 1. If Q(x) =
(

p1(x) −r1(x)

−r1(x) p2(x)

)
, and∫ 1

0

r1(x)√
r(x)p(x)

dx �= 0,

then except finitely many eigenvalues, all eigenvalues of (1.2) and (1.3)
are simple.

Proof. Suppose, on the contrary, there exist infinitely many eigenval-
ues λn, n = 1, 2, . . . , with multiplicity 2 for problem (1.2) and (1.3),
and hence also for problem (2.2) and (2.3). Denote the solution of (2.7)
for λ = λn by

Y (t, λn) =
(

y11(t, λn) y12(t, λn)
y21(t, λn) y22(t, λn)

)
.

Then, by (2.9), we have

(2.16)

det Y (t, λn)
= y11(t, λn)y22(t, λn) − y12(t, λn)y21(t, λn)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

B2
0

2
+

B2
0 cos(2

√
λn t)

2
+

A2
0 sin2(

√
λn t)

λn

− A0B0 sin(2
√

λn t)√
λn

+ O

(
1√
λn

)
sin α �= 0;

A2
0 sin2(

√
λn t)

λn
+ O

(
1

λ
3/2
n

)
sin α = 0.
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Equations (2.10) and (2.16) imply that

(i) For sin α = 0, then∫ c

0

r1(x)
r(x)

{
1 − cos(2

√
λn t)

2λn
A2

0 + O

(
1

λ
3/2
n

)}
dt = 0,

which is reduced to

(2.17)
∫ c

0

r1(x)
r(x)

dt =
∫ c

0

r1(x)
r(x)

cos(2
√

λn t) dt + O

(
1√
λn

)
.

By (2.17), the Riemann-Lebesgue lemma tells us that if (1.2) and (1.3)
have infinitely many eigenvalues of multiplicity two, then

∫ c

0
r1(x)/r(x)dt

= 0. Together with (2.1) and (2.4), a substitution of variable implies
that

∫ 1

0
r1(x)/

√
r(x)p(x)dx = 0, which contradicts the given assump-

tion;

(ii) For sin α �= 0, then∫ c

0

r1(x)
r(x)

{
B2

0 + B2
0 cos(2

√
λn t)

2
+

A2
0 sin2(

√
λn t)

λn

− A0B0 sin(2
√

λn t)√
λn

}
dt + O

(
1√
λn

)
= 0,

which is equivalent to
(2.18)∫ c

0

r1(x)
r(x)

dt = −
∫ c

0

r1(x)
r(x)

cos(2
√

λn t) dt

− 2A2
0

B2
0λn

∫ c

0

r1(x) sin2(
√

λn t)
r(x)

dt

+
2A0

B0

√
λn

∫ c

0

r1(x) sin(2
√

λn t)
r(x)

dt + O

(
1√
λn

)
,

by (2.18) and the Riemann-Lebesgue lemma, if (1.2) and (1.3) have in-
finitely many eigenvalues of multiplicity two, we get

∫ c

0
r1(x)/r(x) dt =

0, that is,
∫ 1

0
r1(x)/

√
r(x)p(x)dx = 0, leading to a contradiction also.

Thus, if
∫ 1

0
r1(x)/

√
r(x)p(x)dx �= 0, then all, except finitely many,

eigenvalues of (1.2) and (1.3) are simple.
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An important application of Theorem 1 is to study the intersection
of the spectra of two potential equations of the form (1.1). Let σ(q)
denote the spectrum of the potential equation (1.1) with the potential
function q(x).

Theorem 2. Suppose q1(x) and q2(x) are two real-valued continuous
functions on 0 ≤ x ≤ 1. If

(2.19)
∫ 1

0

q1(x) − q2(x)√
r(x)p(x)

dx �= 0,

then σ(q1) and σ(q2) only have finitely many elements in common.

Proof. Denote

Q0(x) =
(

q1(x) 0
0 q2(x)

)
, U(θ) =

(
cos θ − sin θ
sin θ cos θ

)
,

then

Qθ = U∗(θ)Q0(x)U(θ)

=
(

q1(x) cos2 θ + q2(x) sin2 θ (q2(x) − q1(x)) sin θ cos θ
(q2(x) − q1(x)) sin θ cos θ q1(x) sin2 θ + q2(x) cos2 θ

)
,

where θ is a real constant such that sin θ cos θ �= 0. Then for Q(x) =
Qθ(x) in (1.2) and (1.3), where r1(x) = (q1(x) − q2(x)) sin θ cos θ,
the sequence of eigenvalues, counting multiplicity, of (1.2) and (1.3),
consists of elements of σ(q1) and σ(q2), counting multiplicity. By the
assumption that

∫ 1

0
(q1(x) − q2(x))/

√
r(x)p(x)dx �= 0, and it follows

from Theorem 1 that, for Q(x) = Qθ(x), (1.2) and (1.3) have only
finitely many eigenvalues which have multiplicity two, which implies
that σ(q1)∩σ(q2) is a finite set. This completes the proof of Theorem 2.

Example 1. Consider the intersection of spectra of the following
two potential equations{

−u′′(x) + 64π2 u(x) = λ u(x);

u′(0) = u′(1) = 0
(q1)
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and {
−u′′(x) − 64π2 u(x) = λ u(x);

u′(0) = u′(1) = 0.
(q2)

Obviously, ∫ 1

0

q1(x) − q2(x)√
r(x)p(x)

dx = 128π2 �= 0.

Theorem 2 implies that σ(q1)∩σ(q2) only has finitely elements. In fact,
a straightforward computation tells us

σ(q1) = {(n2 + 64)π2 | n = 0, 1, 2, . . . };
σ(q2) = {(n2 − 64)π2 | n = 0, 1, 2, . . . },

thus
σ(q1) ∩ σ(q2) = {80π2, 260π2, 1025π2}.

3. Some estimates related eigenvalue problems. In this
section, to be more precise, we are going to find a lower bound mQ,
such that the eigenvalues of (E) with index exceeding mQ are all simple.
These results are applied to find some sufficient conditions which ensure
that the spectra of two potential equations of the form (1.1) have finitely
many elements in common, and we obtain an estimate of the number
of elements in the intersection of two spectra.

Let Q(x) =
(

p1(x) −r1(x)

−r1(x) p2(x)

)
, where p1(x) and p2(x) are continuous

functions and r1(x) is a C1-function on 0 ≤ x ≤ 1, and let λ1 ≤ λ2 ≤
· · · ≤ λm ≤ · · · denote the sequence of eigenvalues of (1.2) and (1.3). If∫ 1

0
r1(x)/

√
r(x)p(x)dx �= 0, then, by Theorem 1, there exists an index

mQ such that for n ≥ mQ the eigenvalues λn of (1.2) and (1.3) are
simple. Hence there is a natural question: how to estimate mQ? The
estimate has a lot of strong backgrounds and useful applications. In this
section, we shall try to find a lower bound estimate of the number mQ.
This estimate is obviously applicable to the problem of estimating the
number of elements in the intersection of the spectra of two potential
equations.

Let A =
( a11 a12

a21 a22

)
be a 2×2 matrix. Define the maximum norm of A

‖A‖ = sup{|aij |, 1 ≤ i, j ≤ 2}.
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If A and B are 2 × 2 matrices, then we have

(3.1) ‖AB‖ ≤ 2‖A‖ · ‖B‖.

By (2.8) we have

(3.2) ‖Y (t, λ)‖ ≤ |B0| + |A0|√
λ

+
2√
λ

∫ t

0

‖Q̃(s)‖ · ‖Y (s, λ)‖ ds,

together with Gronwall’s inequality, (3.2) tells us that

(3.3)
‖Y (t, λ)‖ ≤

(
|B0| + |A0|√

λ

)
exp

{
2√
λ

∫ t

0

‖Q̃(s)‖ds

}
≤

(
|B0| + |A0|√

λ

)
exp

{
2√
λ

∫ c

0

‖Q̃(s)‖ ds

}
.

In (2.8), denote

(3.4) Y (t, λ) = B0 cos(
√

λ t)E2 − A0 sin(
√

λ t)√
λ

E2 + G(t, λ),

where

(3.5) G(t, λ) = (gij(t, λ))2i,j=1 =
∫ t

0

sin(
√

λ (t − s))√
λ

Q̃(s)Y (s, λ) ds.

Then by (3.3) and (3.5), we have, for 1 ≤ i, j ≤ 2, 0 ≤ t ≤ c,

(3.6)

|gij(t, λ)| ≤ ‖G(t, λ)‖
≤ 2√

λ

(
|B0| + |A0|√

λ

)
exp

{
2√
λ

∫ c

0

‖Q̃(s)‖ ds

}
×

∫ t

0

‖Q̃(s)‖ ds

≤ 2√
λ

(
|B0| + |A0|√

λ

)
exp

{
2√
λ

∫ c

0

‖Q̃(s)‖ ds

}
×

∫ c

0

‖Q̃(s)‖ ds.
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Using (3.4) and (3.6), we get

(3.7)
detY (t, λ) = B2

0 cos2(
√

λ t) +
A2

0 sin2(
√

λ t)
λ

− A0B0 sin(2
√

λ t)√
λ

+ h(t, λ),

where
(3.8)

h(t, λ) =
(

B0 cos(
√

λ t) − A0 sin(
√

λ t)√
λ

)
TraceG(t, λ) + detG(t, λ).

We shall also need the following inequality, which follows from integra-
tion by parts,

(3.9)
∣∣∣∣∫ c

0

r1(x)
r(x)

cos(2
√

λ t) dt

∣∣∣∣ ≤ |r1(1)|
2
√

λ r(1)
+

1
2
√

λ

∫ c

0

∣∣∣∣ d

dt

r1(x)
r(x)

∣∣∣∣ dt.

And by (3.6), (3.7) and (3.8), we have

(3.10)∣∣∣∣∫ c

0

r1(x)
r(x)

h(t, λ) dt

∣∣∣∣
≤

{
4√
λ

(
|B0| + |A0|√

λ

)2 ∫ c

0

‖Q̃(s)‖ ds exp
{

2√
λ

∫ c

0

‖Q̃(s)‖ ds

}

+
8
λ

(
|B0| + |A0|√

λ

)2( ∫ c

0

‖Q̃(s)‖ ds

)2

exp
{

4√
λ

∫ c

0

‖Q̃(s)‖ ds

}}

·
∫ c

0

|r1(x)|
r(x)

dt.

To precisely estimate the number mQ, we introduce two equations

(E1) f1(z) :=
|r1(1)|

2
√

z r(1)
+

1
2
√

z

∫ c

0

∣∣∣∣ d

dt

r1(x)
r(x)

∣∣∣∣ dt

(3.11)

+

{
8√
z

∫ c

0

‖Q̃(s)‖ ds exp
{

2√
z

∫ c

0

‖Q̃(s)‖ ds

}
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+
16
z

( ∫ c

0

‖Q̃(s)‖ ds

)2

exp
{

4√
z

∫ c

0

‖Q̃(s)‖ ds

}}

·
∫ c

0

|r1(x)|
r(x)

dt =
∣∣∣∣ ∫ c

0

r1(x)
r(x)

dt

∣∣∣∣,
(3.12)

(E2) f2(z)

:=
|r1(1)|

2
√

z r(1)
+

1
2
√

z

∫ c

0

∣∣∣∣ d

dt

r1(x)
r(x)

∣∣∣∣ dt

+
2A2

0

B2
0z

∫ c

0

|r1(x)|
r(x)

dt +
2A0

B0
√

z

∫ c

0

|r1(x)|
r(x)

dt

+

{
8

B2
0

√
z

(
|B0| + |A0|√

z

)2 ∫ c

0

‖Q̃(s)‖ ds exp
{

2√
z

∫ c

0

‖Q̃(s)‖ ds

}

+
16

B2
0z

(
|B0|+ |A0|√

z

)2( ∫ c

0

‖Q̃(s)‖ ds

)2

exp
{

4√
z

∫ c

0

‖Q̃(s)‖ ds

}}

·
∫ c

0

|r1(x)|
r(x)

dt =
∣∣∣∣ ∫ c

0

r1(x)
r(x)

dt

∣∣∣∣.
Since f1(z) and f2(z) are strictly monotone decreasing, positive func-
tions and satisfy

lim
z→0

f1(z) = lim
z→0

f2(z) = ∞, lim
z→∞ f1(z) = lim

z→∞ f2(z) = 0,

it is easy to verify that, under the assumption that
∫ 1

0
r1(x)/

√
r(x)p(x)

dx �= 0, equations (E1), (E2) have unique positive solutions, denoted
by Λ∗1 and Λ∗2 respectively.

Remark 2. Employing Newton’s iteration method or bisection
method, we can solve the approximate solutions Λ∗1, Λ∗2 of equations
(E1) and (E2).

From the above discussions, now we are ready to prove the following
result.



1392 C.F. YANG, Z.Y. HUANG AND X.P. YANG

Theorem 3. Suppose Q(x) =
(

p1(x) −r1(x)

−r1(x) p2(x)

)
, where p1(x), p2(x)

are continuous functions and r1(x) is a C1-function on 0 ≤ x ≤ 1, and∫ 1

0

r1(x)√
r(x)p(x)

dx �= 0.

If λn is an eigenvalue of (1.2) and (1.3) satisfying the following condi-
tions,

λn > Λ∗1 if sin α = 0;(3.13)
λn > Λ∗2 if sin α �= 0,(3.14)

then λn is a simple eigenvalue.

Proof. Suppose λn satisfies condition (3.13) or (3.14), but the
multiplicity of λn is two. If Y (t, λn) is the same as Lemma 1, by
Lemma 1, we have the following identity:∫ c

0

r1(x)
r(x)

detY (t, λn) dt = 0.

If sin α = 0, and by (2.4) and (3.7), we have∫ c

0

r1(x)
r(x)

{
A2

0 sin2(
√

λn t)
λn

+ h(t, λn)
}

dt = 0,

which is equivalent to∫ c

0

r1(x)
r(x)

dt =
∫ c

0

r1(x)
r(x)

cos(2
√

λn t) dt − 2λn

A2
0

∫ c

0

r1(x)
r(x)

h(t, λn) dt.

By (3.9) and (3.10), this implies∣∣∣∣ ∫ c

0

r1(x)
r(x)

dt

∣∣∣∣ ≤ |r1(1)|
2
√

λn r(1)
+

1
2
√

λn

∫ c

0

∣∣∣∣ d

dt

r1(x)
r(x)

∣∣∣∣ dt

+

{
8√
λn

∫ c

0

‖Q̃(s)‖ ds exp
{

2√
λn

∫ c

0

‖Q̃(s)‖ds

}

+
16
λn

( ∫ c

0

‖Q̃(s)‖ ds

)2

exp
{

4√
λn

∫ c

0

‖Q̃(s)‖ ds

}}

×
∫ c

0

|r1(x)|
r(x)

dt,
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since the function f1(z) is strictly monotone decreasing and Λ∗1 is a
solution of f1(z) = | ∫ c

0
r1(x)/r(x) dt|, we infer by (3.13),∣∣∣∣∫ c

0

r1(x)
r(x)

dt

∣∣∣∣ ≤ f1(λn) < f1(Λ∗1) =
∣∣∣∣∫ c

0

r1(x)
r(x)

dt

∣∣∣∣ ,

which is absurd.

If sinα �= 0, and by (3.7), we have∫ c

0

r1(x)
r(x)

{
B2

0 cos2(
√

λn t) +
A2

0 sin2(
√

λn t)
λn

− A0B0 sin(2
√

λn t)√
λn

+ h(t, λn)
}

dt = 0,

which is equivalent to∫ c

0

r1(x)
r(x)

dt

= −
∫ c

0

r1(x)
r(x)

cos(2
√

λn t) dt − 2A2
0

B2
0λn

∫ c

0

r1(x)
r(x)

sin2(
√

λn t) dt

+
2A0

B0

√
λn

∫ c

0

r1(x)
r(x)

sin(2
√

λn t) dt − 2
B2

0

∫ c

0

r1(x)
r(x)

h(t, λn) dt,

which, using (3.9) and (3.10), leads to∣∣∣∣ ∫ c

0

r1(x)
r(x)

dt

∣∣∣∣ ≤ |r1(1)|
2
√

λn r(1)
+

1
2
√

λn

∫ c

0

∣∣∣∣ d

dt

r1(x)
r(x)

∣∣∣∣ dt

+
2A2

0

B2
0λn

∫ c

0

|r1(x)|
r(x)

dt +
2A0

B0

√
λn

∫ c

0

|r1(x)|
r(x)

dt

+

{
8

B2
0

√
λn

(
|B0| + |A0|√

λn

)2

×
∫ c

0

‖Q̃(s)‖ ds exp
{

2√
λn

∫ c

0

‖Q̃(s)‖ ds

}
+

16
B2

0λn

(
|B0| + |A0|√

λn

)2( ∫ c

0

‖Q̃(s)‖ ds

)2

× exp
{

4√
λn

∫ c

0

‖Q̃(s)‖ ds

}}
·
∫ c

0

|r1(x)|
r(x)

dt,
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since the function f2(z) is strictly monotone decreasing and Λ∗2 is a
solution of f2(z) = | ∫ c

0
r1(x)/r(x) dt|, by (3.14) we infer,

∣∣∣∣∫ c

0

r1(x)
r(x)

dt

∣∣∣∣ ≤ f2(λn) < f1(Λ∗2) =
∣∣∣∣∫ c

0

r1(x)
r(x)

dt

∣∣∣∣ ,

which is a contradiction also. Thus, the multiplicity of λn satisfying
(3.13) or (3.14) is simple.

It was known, see [5], that the eigenvalues of the boundary value
problem

⎧⎨⎩
(pu′)′(x) + (λr(x) − q(x))u(x) = 0
u(0) cosα + u′(0) sin α = 0 0 ≤ α < π

u(1) cosβ + u′(1) sin β = 0 0 ≤ β < π

are the zeros of the transcendental, entire function ω(λ), where for large
positive λ,
(3.15)

ω(λ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− sin α sin β
p(0) 4

√
r(1)p(1)

p(1) 4
√

r(0)p(0)

√
λ sin(

√
λ c) + O(1)

if sin α sin β �= 0;

sin α
4
√

r(0)p(0)
4
√

r(1)p(1)
cos(

√
λ c)+ O

(
1√
λ

)
if sinα �= 0, sin β = 0;

− sin β
p(0) 4

√
r(1)p(1)

p(1) 4
√

r(0)p(0)
cos(

√
λ c) + O

(
1√
λ

)
if sin α = 0, sin β �= 0;

4
√

r(0)p(0)
4
√

r(1)p(1)
sin(

√
λ c)√
λ

+ O

(
1
λ

)
if sinα = sin β = 0

and

c =
∫ 1

0

√
r(s)
p(s)

ds.
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From the formulae (3.15) we can calculate asymptotic eigenvalues as
follows:
(3.16)

√
λn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
nπ

c
+ O

(
1
n

)
if sin α sin β �= 0 or sin α = sin β = 0;

(n + (1/2))π
c

+ O

(
1
n

)
if sinα �= 0, sin β = 0 or sin α = 0, sin β �= 0.

By the maximum-minimum principle, see [3], we have

λn(Q) = λn(Q̃) ≥ λn(Q̃1),

where λn(Q) is the nth eigenvalue of (1.2) and (1.3), and Q̃1(t) =
s1(t)E2, s1(t) is the smaller characteristic value of the matrix Q̃(t).
Since each eigenvalue of (2.2) and (2.3), with Q̃1(t) replacing Q̃(t), is
of multiplicity two, that is,

λn(Q) : λ1(Q) λ2(Q) λ3(Q) λ4(Q) . . . λn(Q) . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓
λn(Q̃1) : λ1(Q̃1) λ1(Q̃1) λ2(Q̃1) λ2(Q̃1) . . . λ[(n+1)/2](Q̃1) . . . ,

we get

(3.17)

λn(Q) ≥ λ[(n+1)/2](Q̃1)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

([(n + 1)/2])2π2

c2
+ s1

if sinα sin β �= 0 or sin α = sin β = 0;

([(n + 1)/2] + (1/2))2π2

c2
+ s1

if sinα �= 0, sin β = 0 or sin α = 0, sin β �= 0,

where s1 = min0≤t≤c s1(t), and [a] denotes the maximal integer not
greater than real number a. By (3.17), Theorem 3 can be restated as
the following form.
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Theorem 4. Suppose that Q(x) =
(

p1(x) −r1(x)

−r1(x) p2(x)

)
, where p1(x), p2(x)

are continuous functions and r1(x) is a C1-function on 0 ≤ x ≤ 1, and

∫ 1

0

r1(x)√
r(x)p(x)

dx �= 0.

Let mQ be the smallest positive integer which satisfies the following
condition:

([mQ+1
2 ])2π2

c2
+ s1 > Λ∗2 if sin α sin β �= 0;

([mQ+1
2 ] + 1

2 )2π2

c2
+ s1 > Λ∗2 if sin α �= 0, sin β = 0;

([mQ+1
2 ] + 1

2 )2π2

c2
+ s1 > Λ∗1 if sin α = 0, sin β �= 0;

([mQ+1
2 ])2π2

c2
+ s1 > Λ∗1 if sin α = sin β = 0,

where s1 = min0≤t≤c s1(t), s1(t) is the smaller characteristic value
of the matrix Q̃(t) defined by (2.4), and Λ∗1, Λ∗2 are the same as
Theorem 3, then the nth eigenvalue of (1.2) and (1.3) is simple if
n ≥ mQ.

By Theorem 4 and the proof of Theorem 2 we also have the following
result.

Theorem 5. Suppose q1(x) and q2(x) are two real-valued C1-
functions on 0 ≤ x ≤ 1, and

∫ 1

0

q1(x) − q2(x)√
r(x)p(x)

dx �= 0.

Let sq12 = min0≤t≤c sq12(t), where sq12(t) is the smaller characteristic
value of the matrix Q̃(t) with Q(x) = diag (q1(x), q2(x)) in (2.4).
Let nq12 be the smallest positive integer which satisfies the following
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condition:

(3.18)

(nq12 + 1)2π2

c2
+ sq12 > Λ∗2,q12 if sin α sin β �= 0;

(nq12 + (3/2))2π2

c2
+ sq12 > Λ∗2,q12 if sin α �= 0, sin β = 0;

(nq12 + (3/2))2π2

c2
+ sq12 > Λ∗1,q12 if sin α = 0, sin β �= 0;

(nq12 + 1)2π2

c2
+ sq12 > Λ∗1,q12 if sin α = sin β = 0,

where Λ∗1,q12 , Λ∗2,q12 is the root of the equation (E1), (E2), replacing
Q(x) with Qπ/4(x), respectively. Then σ(q1) and σ(q2) have at most
nq12 elements in common.

Proof. Similar to Theorem 2, choosing θ = π/4, we get

Qπ/4(x) =
(

(1/2)(q1(x) + q2(x)) (1/2)(q2(x) − q1(x))
(1/2)(q2(x) − q1(x)) (1/2)(q1(x) + q2(x))

)
,

r1(x) =
1
2
(q1(x) − q2(x)),

and Λ∗1,q12 , Λ∗2,q12 is the root of the equation (E1), (E2), replacing
Q(x) with Qπ/4(x), respectively. Suppose σ(q1) and σ(q2) have at
least nq12 +1 elements in common. Since the sequence of eigenvalues of
(1.2) and (1.3) with Q(x) = Qπ/4(x) consists of elements of σ(q1) and
σ(q2) counting multiplicity, there exists an index n∗, n∗ ≥ 2nq12 + 2,
such that λn∗(Qπ/4) is not simple. But, by (3.17) and (3.18), we have

λn∗(Qπ/4)
≥ λ2nq12+2(Qπ/4)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(nq12 + 1)2π2

c2
+ sq12 > Λ∗2,q12 if sin α sin β �= 0;

(nq12 + (3/2))2π2

c2
+ sq12 > Λ∗2,q12 if sin α �= 0, sin β = 0;

(nq12 + (3/2))2π2

c2
+ sq12 > Λ∗1,q12 if sin α = 0, sin β �= 0;

(nq12 + 1)2π2

c2
+ sq12 > Λ∗1,q12 if sin α = sin β = 0,
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hence

λn∗(Qπ/4) >

{
Λ∗1,q12 if sinα = 0;
Λ∗2,q12 if sinα �= 0,

together with Theorem 3, we see that λn∗(Qπ/4) is simple which
contradicts that λn∗(Qπ/4) is not simple. Thus σ(q1) ∩ σ(q2) has at
most nq12 elements in common. We complete the proof of the theorem.
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