ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 37, Number 4, 2007

GENERALIZED S-TYPE LIE ALGEBRAS

KI-BONG NAM

ABSTRACT. The generalized W-type Lie algebra $W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ is introduced in the paper [5] using exponential functions. We define generalized S-type Lie algebras $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ over **F** and $S_p(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ over **F**_p. We show that the Lie algebras $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ and $S_p(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ are simple.

1. **Preliminaries.** Let \mathbf{F} be a field of characteristic zero (not necessarily algebraically closed) and $\mathbf{F}_{\mathbf{p}}$ a field of characteristic p (not necessarily algebraically closed). Throughout this paper, \mathbf{N} and \mathbf{Z} will denote the nonnegative integers and the integers, respectively. Let \mathbf{F}^{\bullet} be the multiplicative group of nonzero elements of \mathbf{F} . Let $\mathbf{F}[x_1, \ldots, x_m]$ be the polynomial ring in indeterminates x_1, \ldots, x_m . Throughout this paper, let us assume that m > 1. Let us define the \mathbf{F} -algebra $V(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ spanned by

(1)
$$\{e^{a_1x_1}\cdots e^{a_mx_m}x_1^{i_1}\cdots x_m^{i_m} \mid a_1,\ldots,a_m \in \mathbf{Z}, i_1,\ldots,i_m \in \mathbf{N}\}$$

where m is a fixed nonnegative integer and $e^{a_w x_w}$, $1 \le w \le m$, denotes the exponential function. We define the Lie algebra $W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ over **F** which holds the following two conditions:

(i) $W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ is the set $\{g\partial_u \mid g \in V(e^{\pm x_1}, \ldots, e^{\pm x_m}, m), 1 \le u \le m\}$ with the obvious addition,

(ii) the Lie bracket on $W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ is given as follows: $[g_1\partial_u, g_2\partial_v] = g_1\partial_u(g_2)\partial_v - g_2\partial_v(g_1)\partial_u$, for $g_1, g_2 \in V(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, $1 \leq u \leq m$, where $\partial_u, 1 \leq u \leq m$, denotes the partial derivative with respect to x_u .

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 17B40, 17B56. Key words and phrases. Simple, Witt algebra, special Lie algebra, generators,

Key words and phrases. Simple, Witt algebra, special Lie algebra, generators, graded, ad-diagonal.

Received by the editors on March 18, 2004, and in revised form on Feb. 17, 2005.

The Lie algebra $W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ has the standard basis

$$B_{W(e^{\pm x_{1},\ldots,e^{\pm x_{m}},m)} = \{e^{a_{1}x_{1}}\cdots e^{a_{m}x_{m}}x_{1}^{i_{1}}\cdots x_{m}^{i_{m}}\partial_{u} \mid a_{1},\ldots,a_{m} \in \mathbf{Z}, \\ i_{1},\ldots,i_{m} \in \mathbf{N}, \ 1 \le u \le m\}.$$

For each basis term $e^{a_1x_1} \cdots e^{a_mx_m} x_1^{i_1} \cdots x_m^{i_m} \partial_u$ of $W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, we call $e^{a_1x_1} \cdots e^{a_mx_m}$ the exponential part, $x_1^{i_1} \cdots x_m^{i_m}$ the polynomial part, a_v the exponent of x_v , and i_v the degree of x_v , $1 \le v \le m$. The Lie algebra $W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ is \mathbf{Z}^m -graded as follows:

(3)
$$W(e^{\pm x_1}, \dots, e^{\pm x_m}, m) = \bigoplus_{(a_1, \dots, a_m) \in \mathbf{Z}^m} W_{(a_1, \dots, a_m)}$$

where $W_{(a_1,\ldots,a_m)}$ is the vector subspace of $W(e^{\pm x_1},\ldots,e^{\pm x_m},m)$ spanned by

$$\{e^{a_1x_1}\cdots e^{a_mx_m}x_1^{i_1}\cdots x_m^{i_m}\partial_u \mid i_1,\ldots,i_m \in \mathbf{N}, \ 1 \le u \le m\}.$$

We call $W_{(a_1,\ldots,a_m)}$ the (a_1,\ldots,a_m) -homogeneous component. The $(0,\ldots,0)$ -homogeneous component $W_{(0,\ldots,0)}$ is the well-known Witt algebra $W^+(m)$ which is simple [6]. Every homogeneous component $W_{(a_1,\ldots,a_m)}$ is a $W_{(0,\ldots,0)}$ -module [1]. The generalized special type Lie algebra $S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$ is a Lie subalgebra of $W(e^{\pm x_1},\ldots,e^{\pm x_m},m)$ with elements

$$\left\{ \sum_{k \in I, 1 \le t \le m} g_{k,t} \partial_t \right|$$
$$\sum_{k \in I, 1 \le t \le m} \partial_t(g_{k,t}) = 0, \ g_{k,t} \in V(e^{\pm x_1}, \dots, e^{\pm x_m}, m) \right\}$$

where $\sum_{k,1 \leq t \leq m} g_{k,t}\partial_t$ has only finitely many nonzero terms [**6**] and I is an index set. Note that $x_i\partial_i \notin S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$ and $(x_i\partial_i - x_j\partial_j) \in S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$ for $1 \leq i,j \leq m$. For the element $(x_i\partial_i - x_j\partial_j) \in S(e^{\pm x_1},\ldots,e^{\pm x_m},m), 1 \leq i,j \leq m$, it is convenient to use the parenthesis () of $(x_i\partial_i - x_j\partial_j)$, because $x_i\partial_i$ and $x_j\partial_j$ are not

in $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$. The Lie subalgebra $\overline{S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)}$ of $S(e^{x_1}, \ldots, e^{x_m}, m)$ is generated by

$$G_{\overline{S(e^{\pm x_1},\ldots,e^{\pm x_m},m)}} = \left\{ e^{a_1x_1} \cdots \widehat{e^{a_tx_t}} e^{a_{t+1}x_{t+1}} \cdots e^{a_mx_m} x_1^{i_1} \cdots \widehat{x_t^{i_t}} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t \mid a_1,\ldots,a_m \in \mathbf{Z}, \ i_1,\ldots,i_m \in \mathbf{N}, \ 1 \le t \le m \right\}$$

where $\widehat{e^{a_t x_t}}$ and $\widehat{x_t^{i_t}}$ mean that those factors are omitted. In the Lie algebra $W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, if n = 0, then we have the Witt algebra $W^+(m)$ [6]. Similarly, we have the special type Lie algebra $S^+(m)$ in the paper [6] with the set of elements

$$\left\{\sum_{k\in J,1\leq v\leq m}f_{k,v}\partial_{v} \mid \sum_{k\in J,1\leq v\leq m}\partial_{v}(f_{k,v})=0, \ f_{k}\in\mathbf{F}[x_{1},\ldots,x_{m}]\right\}$$

where J is an index set. The Lie subalgebra $\overline{S^+(m)}$ of $S^+(m)$ is generated by

$$G_{\overline{S^+(m)}} = \left\{ x_1^{i_1} \cdots \widehat{x_t^{i_t}} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t \mid i_1, \dots, i_m \in \mathbf{N}, \ 1 \le t \le m \right\}.$$

The Lie algebra $\overline{S^+(m)}$ has the standard basis

(4)
$$B_{\overline{S^{+}(m)}} = \left\{ \left[x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t}, x_{1}^{i_{1}} \cdots \widehat{x_{v}^{i_{v}}} x_{v+1}^{i_{v+1}} \cdots x_{m}^{i_{m}} \partial_{v} \right] \middle| \\ i_{1}, \dots, j_{m} \in \mathbf{N}, \ 1 \le t, v \le m \right\}.$$

We may find a basis $B_{\overline{S(e^{\pm x_1},\ldots,e^{\pm x_m},m)}}$ of $\overline{S(e^{\pm x_1},\ldots,e^{\pm x_m},m)}$ as $B_{\overline{S^+(m)}}$ in (4). Since the Lie algebra $W(e^{\pm x_1},\ldots,e^{\pm x_m},m)$ is \mathbf{Z}^m -graded, $S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$ is \mathbf{Z}^m -graded naturally as follows:

(5)
$$S(e^{\pm x_1},\ldots,e^{\pm x_m},m) = \bigoplus_{(a_1,\ldots,a_m)\in\mathbf{Z}^m} S_{(a_1,\ldots,a_m)}.$$

The $(0, \ldots, 0)$ -homogeneous component $S_{(0,\ldots,0)}$ is the well-known special type Lie algebra $S^+(m)$ in the paper [**6**] and $S_{(a_1,\ldots,a_m)}$ is a vector subspace of $W_{(a_1,\ldots,a_m)}$.

For any basis elements $e^{a_1x_1} \cdots e^{a_mx_m} x_1^{i_1} \cdots x_m^{i_m} \partial_t$ and $e^{b_1x_1} \cdots e^{b_mx_m} \times x_1^{j_1} \cdots x_m^{j_m} \partial_v$ in $W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, we may define the order $>_L$ as follows:

$$c_1 e^{a_1 x_1} \cdots e^{a_m x_m} x_1^{i_1} \cdots x_m^{i_m} \partial_t >_L c_2 e^{b_1 x_1} \cdots e^{b_m x_m} x_1^{j_1} \cdots x_m^{j_m} \partial_v$$

if and only if $a_1 > b_1$, or $a_1 = b_1$ and $i_1 > i_2$, or ..., or $a_1 = b_1, \ldots, i_m = j_m$, and v < t for any $c_1, c_2 \in \mathbf{F}^{\bullet}$. Thus we may consider that a Lie subalgebra of $W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ has the order $>_L$. Naturally, the Lie algebra $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ has the order $>_L$. Let S be a subset of a Lie algebra L. An element $l \in L$ is ad-diagonal with respect to S, if [l, s] = cs holds for any $s \in S$ where c is a fixed scalar which depends on l and s. The Lie algebra $\overline{S^+(m)}$ has the ad-diagonals $\{\sum_{u,v \in K} c_{u,v}(x_u \partial_u - x_v \partial_v) \mid 1 \leq u, v \leq m, c_{u,v} \in \mathbf{F}, K \subset \{1, \ldots, m\}\}$ with respect to $B_{\overline{S^+(m)}}$ in $\overline{S^+(m)}$. Let $\mathbf{F_p}$ be a field of characteristic p (not necessarily algebraically closed) and $\mathbf{Z_p}$ denote the prime field where p is a prime number. Let us assume that m is a fixed positive integer such that $m \geq 1$. Let us define the $\mathbf{F_p}$ -algebra $V_p(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ spanned by

$$\{e^{a_1x_1}\cdots e^{a_mx_m}x_1^{i_1}\cdots x_m^{i_m}\partial_u \mid a_1,\ldots,a_m,i_1,\ldots,i_m \in \mathbf{Z}_{\mathbf{p}}, \ 1 \le u \le m\}$$

where *m* is a fixed nonnegative integer, $e^{a_w x_w}$, $1 \le w \le m$, denotes the exponential function (formally), and ∂_u , $1 \le u \le m$, denotes the partial derivative with respect to x_u . We may define the *W*-type Lie algebra $W_p(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ over $\mathbf{F}_{\mathbf{p}}$ as $W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ and *S*-type Lie algebra $S_p(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ over $\mathbf{F}_{\mathbf{p}}$ as $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$. The Lie algebra $W_p(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ is simple [5]. The Lie algebra $S_p(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ has a similar $\mathbf{Z}_{\mathbf{p}}^m$ -gradation in (5).

2. Generalized S-type Lie algebra over F or F_p.

Proposition 1. The Lie algebra $S^+(m)$ and the Lie algebra $\overline{S^+(m)}$ are the same.

Proof. Since the Lie algebra $\overline{S^+(m)}$ is a subalgebra of $S^+(m)$, it is enough to show that $S^+(m) \subset \overline{S^+(m)}$. Let l be any element of $S^+(m)$.

It is enough to show that the element l is the sum of basis elements in $B_{\overline{S^+(m)}}$ of $\overline{S^+(m)}$. Let us prove this proposition by induction on the number of basis terms of l which are in $B_{W^+(m)} \cap S^+(m)$. If l has only one basis term in $B_{W^+(m)} \cap S^+(m)$, then l is a generator of $G_{\overline{S^+(m)}}$ in (1). Thus there is nothing to prove. Let us assume that we have proven the proposition when l has k basis terms in $B_{W^+(m)} \cap S^+(m)$. If l has a basis term l_1 in $G_{\overline{S^+(m)}}$, then $l - cl_1$ has at most k basis terms in $B_{W^+(m)} \cap S^+(m)$. If l has a basis term l_1 in $G_{\overline{S^+(m)}}$, then $l - cl_1$ has at most k basis terms in $B_{W^+(m)} \cap S^+(m)$ by taking an appropriate scalar c. By induction, $l - cl_1 \in \overline{S^+(m)}$, i.e., $l \in \overline{S^+(m)}$. Without loss of generality, we may assume that l has the following form $c_1 x_1^{i_1+1} x_2^{i_2} \cdots x_m^{i_m} \partial_1 + c_2 x_1^{i_1} \cdots x_t^{i_t+1} x_{t+1}^{i_t+1} \cdots x_m^{i_m} \partial_t + *$ where $i_1 \neq 0$, * is the sum of remaining terms of l and $c_1 \in \mathbf{F}^{\bullet}$. We have that

$$l + \frac{c_1}{i_1 + 1} \left[x_1^{i_1 + 1} \partial_t, \quad x_2^{i_2} \cdots x_t^{i_t + 1} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_1 \right] \in \overline{S^+(m)}$$

by induction. Since

$$\frac{c_1}{i_1+1} \left[x_1^{i_1+1} \partial_t, \quad x_2^{i_2} \cdots x_t^{i_t+1} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_1 \right] \in \overline{S^+(m)},$$

we have that $l \in \overline{S^+(m)}$ by induction. Therefore, we have proven the proposition. \Box

Proposition 2. The Lie algebra $\overline{S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)}$ and the Lie algebra $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ are the same.

Proof. Since the Lie algebra $\overline{S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)}$ is a subalgebra of $\underline{S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)}$, it is enough to show that $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m) \subset \overline{S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)}$. Let l be any element of $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$. It is enough to show that the element l is the sum of basis elements in $B_{\overline{S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)}}$. If l is in the $(0, \ldots, 0)$ -homogeneous component $S_{(0, \ldots, 0)}$ of $\overline{S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)}$, then there is nothing to prove by Proposition 1. Let us prove this proposition by induction on the number of terms of l in $B_{W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)} \cap S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ and the number of exponents of basis terms of l in $B_{W(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)}$. If l has only one basis term, then l is a generator in $G_{\overline{S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)}}$.

in (1). Thus there is nothing to prove. Let us assume that we have proven the proposition when l has k terms in $B_{W(e^{\pm x_1},\ldots,e^{\pm x_m},m)} \cap S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$. Let us assume that l has k+1 basis terms in $B_{W(e^{\pm x_1},\ldots,e^{\pm x_m},m)} \cap S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$. By Proposition 1, without loss of generality, we may assume that l has the form as follows:

$$l = c_1 e^{a_1 x_1} \cdots e^{a_u x_u} \cdots e^{a_m x_m} x_1^{i_1} \cdots x_m^{i_m} \partial_1$$
$$+ c_2 e^{a_1 x_1} \cdots e^{a_u x_u} \cdots e^{a_m x_m} x_1^{i_1} \cdots x_m^{i_m} \partial_u + *$$

where $c_1, c_2 \in \mathbf{F}$, * is the sum of the remaining terms of l, and $a_1, a_u \neq 0$. Let us prove the proposition by the degree i_1 of x_1 . Since $a_u \neq 0$, we have that

(7)
$$l_1 = l - \frac{c_1}{a_u} \left[e^{a_1 x_1} x_1^{i_1} \partial_u, e^{a_2 x_2} \cdots e^{a_m x_m} x_2^{i_2} \cdots x_m^{i_m} \partial_1 \right].$$

If $i_1 = 0$, then l_1 has k + 1 terms or k terms in $B_{W(e^{\pm x_1},\ldots,e^{\pm x_m},m)} \cap S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$. If l_1 has k terms, then there is nothing to prove by induction. Let us assume that l_1 has k + 1 terms. Without loss of generality, we may assume that u = m by (7), i.e.,

$$l_1 = c_3 e^{a_1 x_1} \cdots e^{a_m x_m} x_1^{i_1} \cdots x_m^{i_m} \partial_m + **$$

where $c_3 \in \mathbf{F}$, ** is the sum of the remaining terms of l_1 . Since $e^{a_1x_1} \cdots e^{a_mx_m}x_1^{i_1} \cdots x_m^{i_m}\partial_n$ is the maximal term of l_1 , if $c_3 \neq 0$, then $l_1 \notin S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, i.e., $l \notin S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ by (7). This contradiction shows that l_1 has at most k terms. This implies that $l_1 \in S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ by induction. Thus we may assume that

(8)
$$l = l_1 + \frac{c_1}{a_u} \left[e^{a_1 x_1} x_1^{i_1} \partial_u, e^{a_2 x_2} \cdots e^{a_m x_m} x_2^{i_2} \cdots x_m^{i_m} \partial_1 \right].$$

This implies that l is the sum of elements in $B_{W(e^{\pm x_1},\ldots,e^{\pm x_m},m)} \cap S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$. Therefore we have proved the proposition.

By Proposition 1 and Proposition 2, the basis $B_{\overline{S^+(m)}}$ is the standard basis of $S^+(m)$ and $B_{\overline{S(e^{\pm x_1},\ldots,e^{\pm x_m},m)}}$ is the standard basis of $S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$. A similar result of Proposition 2 for the Lie algebra $S_p(e^{\pm x_1},\ldots,e^{\pm x_m},m)$ holds.

Note 1. The $(0, \ldots, 0)$ -homogeneous component $S_{(0, \ldots, 0)}$ of

$$S(e^{\pm x_1},\ldots,e^{\pm x_m},m),$$

respectively

$$\overline{S_p(e^{\pm x_1},\ldots,e^{\pm x_m},m)}$$

in (5) is the simple Lie algebra $S^+(m)$ in the paper [6], respectively [5].

Lemma 1. The only Lie ideal of $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, respectively $S_p(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, which contains a nonzero element in $S_{(0,\ldots,0)}$ is $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, respectively $S_p(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, where $S_{(0,\ldots,0)}$ is the $(0,\ldots,0)$ -homogeneous component of $S(e^{\pm x_1},\ldots, e^{\pm x_m}, m)$, $e^{\pm x_m}, m)$, respectively $S_p(e^{\pm x_1},\ldots, e^{\pm x_m}, m)$, in (5).

Proof. Let I be a nonzero ideal of $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, respectively $S_p(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, which contains an element in $S_{(0,\ldots,0)}$. Since $S_{(0,\ldots,0)}$ is simple [6], $S_{(0,\ldots,0)} \subset I$. For any element $e^{a_1 x_1} \cdots e^{a_m x_m} x_1^{i_1} \cdots x_t^{i_t} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t \in S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, $1 \le t \le m$, we have that

$$\begin{split} [\partial_1, e^{a_1 x_1} \cdots e^{a_m x_m} x_1^{i_1} \cdots \widehat{x_t^{i_t}} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t] \\ &= a_1 e^{a_1 x_1} \cdots e^{a_m x_m} x_1^{i_1} \cdots \widehat{x_t^{i_t}} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t \\ &+ i_1 e^{a_1 x_1} \cdots e^{a_m x_m} x_1^{i_1 - 1} x_2^{i_2} \cdots \widehat{x_t^{i_t}} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t \in I \end{split}$$

where $a_1 \neq 0$. By induction on i_1 in (9), we know that $e^{a_1x_1} \cdots e^{a_mx_m} x_1^{i_1} \cdots \widehat{x_t^{i_t}} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t \in I$. For any element $e^{a_1x_1} \cdots \widehat{e^{a_tx_t}} \cdots e^{a_mx_m} x_1^{i_1} \cdots \widehat{x_t^{i_t}} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t \in S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m), 1 \leq t \leq m$, without loss of generality, we may assume that $i_k \neq 0, n \leq k \leq m$. By

$$\begin{aligned} [\partial_k, e^{a_1 x_1} \cdots \widehat{e^{a_t x_t}} \cdots e^{a_m x_m} x_1^{i_1} \cdots \widehat{x_t^{i_t}} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t] \\ &= i_k e^{a_1 x_1} \cdots \widehat{e^{a_t x_t}} \cdots e^{a_m x_m} x_1^{i_1} \cdots \widehat{x_t^{i_t-1}} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t \in I. \end{aligned}$$

By induction on i_k of $e^{a_1x_1}\cdots \widehat{e^{a_tx_t}}\cdots e^{a_mx_m}x_1^{i_1}\cdots \widehat{x_t^{i_t}}x_{t+1}^{i_{t+1}}\cdots x_m^{i_m}\partial_t$, we have that $e^{a_1x_1}\cdots \widehat{e^{a_tx_t}}\cdots e^{a_mx_m}x_1^{i_1}\cdots \widehat{x_t^{i_t}}x_{t+1}^{i_{t+1}}\cdots x_m^{i_m}\partial_t \in I$. This

implies that $I = S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, respectively $I = S_p(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$. Therefore we have proven the lemma.

Theorem 1. The Lie algebra $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, respectively $S_p(e^{\pm x_1}, \ldots, e^{\pm x_n}, m)$, is simple.

Proof. Let I be a nonzero ideal of $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, respectively $S_p(e^{\pm x_1}, \ldots, e^{\pm x_n}, m)$, and l a nonzero element in I. Let us prove the theorem by induction on the number of different homogeneous components of l which contains a basis term of l. If l has one homogeneous component and $l \in S_{(0,\ldots,0)}$, then there is nothing to prove by Lemma 1. Let us assume that l has one homogeneous component which is not in $S_{(0,\ldots,0)}$. Let us prove that l is in $S_{(0,\ldots,0)}$ by induction on the number of basis terms of l in $B_{\overline{S(e^{\pm x_1},\ldots,e^{\pm x_m},m)}}$. If l has one basis term, then l has the form $e^{a_1x_1}\cdots \widehat{e^{a_tx_t}}\cdots e^{a_mx_m}x_1^{i_1}\cdots \widehat{x_t^{i_t}}x_{t+1}^{i_{t+1}}\cdots x_m^{i_m}\partial_t$, $c \in \mathbf{F}$, such that at least one of $a_1,\ldots,a_{k-1},a_k,\ldots$ and a_m is not zero. Otherwise, there is nothing to prove by Lemma 1. Let us assume that k < m; by taking $e^{-a_1x_1}\cdots e^{-a_mx_m}\partial_t$, we have that

$$\begin{bmatrix} e^{-a_1x_1}\cdots e^{-a_mx_m}\partial_t, e^{a_1x_1}\cdots \widehat{e^{a_tx_t}}\cdots e^{a_mx_m}x_1^{i_1}\\\cdots \widehat{x_t^{i_t}}x_{t+1}^{i_{t+1}}\cdots x_m^{i_m}\partial_t \end{bmatrix} \in I.$$

Let us assume that $k \leq n, l = e^{a_1 x_1} \cdots \widehat{e^{a_t x_t}} \cdots e^{a_m x_m} x_1^{i_1} \cdots \widehat{x_t^{i_t}} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t, a_1$. Then we have that $0 \neq [e^{-a_1 x_1} \cdots e^{-a_m x_m} \partial_t, e^{a_1 x_1} \cdots \widehat{e^{a_t x_t}} \cdots e^{a_m x_m} x_1^{i_1} \cdots \widehat{x_t^{i_t}} x_{t+1}^{i_{t+1}} \cdots x_m^{i_m} \partial_t] \in S_0$. This implies that the ideal $S_{(0,\ldots,0)} \subset I = S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$, respectively $I = S_p(e^{\pm x_1},\ldots,e^{\pm x_m},m)$, $e^{\pm x_m},m)$, by Lemma 1. By induction, we may assume that if l has k homogeneous components, then the ideal $I = S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$, respectively $S_p(e^{\pm x_1},\ldots,e^{\pm x_m},m)$. Let us assume that l has k+1 homogeneous components which contains a basis term of l. If l has a term in $S_{(0,\ldots,0)}$, then there is nothing to prove by taking an appropriate $\partial_v, v \in I$, since

(10)
$$0 \neq [\partial_v, [\partial_v, [\dots, [\partial_v, l] \dots]] \in I$$

where we have applied the Lie bracket appropriate times in (10) so that $[\partial_v, [\partial_v, [\dots, [\partial_v, l] \dots]]$ has at most k homogeneous components.

This implies that $[e^{-a_1x_1}\cdots e^{-a_mx_m}\partial_v, l]$ has a nonzero basis term in $S_{(0,\ldots,0)}$. Thus we have proven the theorem by Lemma 1. Similarly to (10), we can find an element in I such that it is the sum of terms in at most k different homogeneous components of $S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$, respectively $S_p(e^{\pm x_1},\ldots,e^{\pm x_m},m)$. By induction, we can prove that $I = S(e^{\pm x_1},\ldots,e^{\pm x_m},m)$, respectively $I = S_p(e^{\pm x_1},\ldots,e^{\pm x_m},m)$. Therefore we have proven the theorem. \Box

3. Conjectures and questions. This is a good place to pose the following questions. The Lie algebra $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$ has the Lie subalgebra S_m spanned by $\{(x_u\partial_u - x_v\partial_v), x_u\partial_v \mid 1 \le u, v \le m\}$ which is isomorphic to $sl_m(\mathbf{F})$ as Lie algebras [1].

Question 1. Is there a Lie subalgebra A of $S^+(m)$ which is isomorphic to the Lie algebra $sl_m(\mathbf{F})$ such that $A \neq S_m$?

Question 2. For any Lie algebra automorphism θ of $S^+(m)$, does the equality $\theta((x_u\partial_u - x_v\partial_v)) = c(x_w\partial_w - x_p\partial_p)$ hold for $c \in \mathbf{F}^{\bullet}$ where $1 \leq u, v, w, p \leq m$?

Question 3. For any Lie algebra automorphism θ of $S^+(2)$, does the equality $\theta(S_m) = S_m$ hold?

Thus we have the following interesting conjecture.

Conjecture. For any Lie algebra automorphism θ of $S(e^{\pm x_1}, \ldots, e^{\pm x_m}, m)$, $\theta((x_u\partial_u - x_v\partial_v)) = c(x_w\partial_w - x_p\partial_p)$ and $\theta(S_m) = S_m$ hold where $1 \leq u, v, w, p \leq m$ and $c \in \mathbf{F}$.

REFERENCES

1. J.E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1987, pp. 7–21.

2. V.G. Kac, Description of filtered Lie algebra with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR Ser. Mat. **38** (1974), 832–834.

3. N. Kawamoto, Generalizations of Witt algebras over a field of characteristic zero, Hiroshima Math. J. **16** (1986), 417–426.

4. Ki-Bong Nam, Generalized W and H type Lie algebras, Algebra Colloq. **6** (1999), 329–340.

5. ———, *Modular W and H type Lie algebras*, Bull. of South Eastern Asian Math., vol. 26, Springer Verlag, New York, 2002, pp. 249–259.

6. A.N. Rudakov, Groups of automorphisms of infinite-dimensional simple Lie algebras, Math. USSR-Izv. 3 (1969), 707–722.

Department of Mathematics, 800 West Main Street, University of Wisconsin-Whitewater, Whitewater, WI 53190 E-mail address: namkQuww.edu