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GENERALIZED S-TYPE LIE ALGEBRAS

KI-BONG NAM

ABSTRACT. The generalized W -type Lie algebra W (e±x1 ,
. . . , e±xm , m) is introduced in the paper [5] using exponen-
tial functions. We define generalized S-type Lie algebras
S(e±x1 , . . . , e±xm , m) over F and Sp(e±x1 , . . . , e±xm , m)
over Fp. We show that the Lie algebras S(e±x1 , . . . , e±xm , m)
and Sp(e±x1 , . . . , e±xm , m) are simple.

1. Preliminaries. Let F be a field of characteristic zero (not
necessarily algebraically closed) and Fp a field of characteristic p (not
necessarily algebraically closed). Throughout this paper, N and Z will
denote the nonnegative integers and the integers, respectively. Let F•

be the multiplicative group of nonzero elements of F. Let F[x1, . . . , xm]
be the polynomial ring in indeterminates x1, . . . , xm. Throughout
this paper, let us assume that m > 1. Let us define the F-algebra
V (e±x1 , . . . , e±xm , m) spanned by

(1) {ea1x1 · · · eamxmxi1
1 · · ·xim

m | a1, . . . , am ∈ Z, i1, . . . , im ∈ N}

where m is a fixed nonnegative integer and eawxw , 1 ≤ w ≤ m, denotes
the exponential function. We define the Lie algebra W (e±x1 , . . . ,
e±xm , m) over F which holds the following two conditions:

(i) W (e±x1 , . . . , e±xm , m) is the set {g∂u | g ∈ V (e±x1 , . . . , e±xm , m),
1 ≤ u ≤ m} with the obvious addition,

(ii) the Lie bracket on W (e±x1 , . . . , e±xm , m) is given as follows:
[g1∂u, g2∂v] = g1∂u(g2)∂v − g2∂v(g1)∂u, for g1, g2 ∈ V (e±x1 , . . . ,
e±xm , m), 1 ≤ u ≤ m, where ∂u, 1 ≤ u ≤ m, denotes the partial
derivative with respect to xu.
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The Lie algebra W (e±x1 , . . . , e±xm , m) has the standard basis

(2)

BW (e±x1 ,... ,e±xm ,m) = {ea1x1 · · · eamxmxi1
1 · · ·xim

m ∂u | a1, . . . , am ∈ Z,

i1, . . . , im ∈ N, 1 ≤ u ≤ m}.

For each basis term ea1x1 · · · eamxmxi1
1 · · ·xim

m ∂u of W (e±x1 , . . . , e±xm ,
m), we call ea1x1 · · · eamxm the exponential part, xi1

1 · · ·xim
m the polyno-

mial part, av the exponent of xv, and iv the degree of xv, 1 ≤ v ≤ m.
The Lie algebra W (e±x1 , . . . , e±xm , m) is Zm-graded as follows:

(3) W (e±x1 , . . . , e±xm , m) =
⊕

(a1,... ,am)∈Zm

W(a1,... ,am)

where W(a1,... ,am) is the vector subspace of W (e±x1 , . . . , e±xm , m)
spanned by

{ea1x1 · · · eamxmxi1
1 · · ·xim

m ∂u | i1, . . . , im ∈ N, 1 ≤ u ≤ m}.

We call W(a1,... ,am) the (a1, . . . , am)-homogeneous component. The
(0, . . . , 0)-homogeneous component W(0,... ,0) is the well-known Witt
algebra W+(m) which is simple [6]. Every homogeneous compo-
nent W(a1,... ,am) is a W(0,... ,0)-module [1]. The generalized spe-
cial type Lie algebra S(e±x1 , . . . , e±xm , m) is a Lie subalgebra of
W (e±x1 , . . . , e±xm , m) with elements

{ ∑
k∈I,1≤t≤m

gk,t∂t

∣∣∣
∑

k∈I,1≤t≤m

∂t(gk,t) = 0, gk,t ∈ V (e±x1 , . . . , e±xm , m)
}

where
∑

k,1≤t≤m gk,t∂t has only finitely many nonzero terms [6] and I

is an index set. Note that xi∂i /∈ S(e±x1 , . . . , e±xm , m) and (xi∂i −
xj∂j) ∈ S(e±x1 , . . . , e±xm , m) for 1 ≤ i, j ≤ m. For the element
(xi∂i − xj∂j) ∈ S(e±x1 , . . . , e±xm , m), 1 ≤ i, j ≤ m, it is convenient to
use the parenthesis ( ) of (xi∂i −xj∂j), because xi∂i and xj∂j are not
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in S(e±x1 , . . . , e±xm , m). The Lie subalgebra S(e±x1 , . . . , e±xm , m) of
S(ex1 , . . . , exm , m) is generated by

G
S(e±x1 ,... ,e±xm ,m)

=
{
ea1x1 · · · êatxteat+1xt+1 · · · eamxmxi1

1 · · · x̂it
t x

it+1
t+1 · · ·xim

m ∂t

∣∣
a1, . . . , am ∈ Z, i1, . . . , im ∈ N, 1 ≤ t ≤ m

}
where êatxt and x̂it

t mean that those factors are omitted. In the Lie
algebra W (e±x1 , . . . , e±xm , m), if n = 0, then we have the Witt algebra
W+(m) [6]. Similarly, we have the special type Lie algebra S+(m) in
the paper [6] with the set of elements

{ ∑
k∈J,1≤v≤m

fk,v∂v

∣∣∣ ∑
k∈J,1≤v≤m

∂v(fk,v) = 0, fk ∈ F[x1, . . . , xm]
}

where J is an index set. The Lie subalgebra S+(m) of S+(m) is
generated by

G
S+(m)

=
{
xi1

1 · · · x̂it
t x

it+1
t+1 · · ·xim

m ∂t | i1, . . . , im ∈ N, 1 ≤ t ≤ m
}
.

The Lie algebra S+(m) has the standard basis

(4) B
S+(m)

=
{[

xi1
1 · · · x̂it

t x
it+1
t+1 · · ·xim

m ∂t, x
i1
1 · · · x̂iv

v x
iv+1
v+1 · · ·xim

m ∂v

] ∣∣
i1, . . . , jm ∈ N, 1 ≤ t, v ≤ m

}
.

We may find a basis B
S(e±x1 ,... ,e±xm ,m)

of S(e±x1 , . . . , e±xm , m) as
B

S+(m)
in (4). Since the Lie algebra W (e±x1 , . . . , e±xm , m) is Zm-

graded, S(e±x1 , . . . , e±xm , m) is Zm-graded naturally as follows:

(5) S(e±x1 , . . . , e±xm , m) =
⊕

(a1,... ,am)∈Zm

S(a1,... ,am).

The (0, . . . , 0)-homogeneous component S(0,... ,0) is the well-known spe-
cial type Lie algebra S+(m) in the paper [6] and S(a1,... ,am) is a vector
subspace of W(a1,... ,am).
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For any basis elements ea1x1 · · · eamxmxi1
1 · · ·xim

m ∂t and eb1x1 · · · ebmxm×
xj1

1 · · ·xjm
m ∂v in W (e±x1 , . . . , e±xm , m), we may define the order >L as

follows:

c1e
a1x1 · · · eamxmxi1

1 · · ·xim
m ∂t >L c2e

b1x1 · · · ebmxmxj1
1 · · ·xjm

m ∂v

if and only if a1 > b1, or a1 = b1 and i1 > i2, or . . . , or a1 = b1, . . . ,
im = jm, and v < t for any c1, c2 ∈ F•. Thus we may consider that a
Lie subalgebra of W (e±x1 , . . . , e±xm , m) has the order >L. Naturally,
the Lie algebra S(e±x1 , . . . , e±xm , m) has the order >L. Let S be a
subset of a Lie algebra L. An element l ∈ L is ad-diagonal with
respect to S, if [l, s] = cs holds for any s ∈ S where c is a fixed
scalar which depends on l and s. The Lie algebra S+(m) has the ad-
diagonals {∑u,v∈K cu,v(xu∂u − xv∂v) | 1 ≤ u, v ≤ m, cu,v ∈ F, K ⊂
{1, . . . , m}} with respect to B

S+(m)
in S+(m). Let Fp be a field of

characteristic p (not necessarily algebraically closed) and Zp denote
the prime field where p is a prime number. Let us assume that m is a
fixed positive integer such that m ≥ 1. Let us define the Fp-algebra
Vp(e±x1 , . . . , e±xm , m) spanned by

(6)

{ea1x1 · · · eamxmxi1
1 · · ·xim

m ∂u | a1, . . . , am, i1, . . . , im∈ Zp, 1 ≤ u ≤ m}

where m is a fixed nonnegative integer, eawxw , 1 ≤ w ≤ m, denotes the
exponential function (formally), and ∂u, 1 ≤ u ≤ m, denotes the partial
derivative with respect to xu. We may define the W -type Lie algebra
Wp(e±x1 , . . . , e±xm , m) over Fp as W (e±x1 , . . . , e±xm , m) and S-type
Lie algebra Sp(e±x1 , . . . , e±xm , m) over Fp as S(e±x1 , . . . , e±xm , m).
The Lie algebra Wp(e±x1 , . . . , e±xm , m) is simple [5]. The Lie algebra
Sp(e±x1 , . . . , e±xm , m) has a similar Zp

m-gradation in (5).

2. Generalized S-type Lie algebra over F or Fp.

Proposition 1. The Lie algebra S+(m) and the Lie algebra S+(m)
are the same.

Proof. Since the Lie algebra S+(m) is a subalgebra of S+(m), it is
enough to show that S+(m) ⊂ S+(m). Let l be any element of S+(m).
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It is enough to show that the element l is the sum of basis elements in
B

S+(m)
of S+(m). Let us prove this proposition by induction on the

number of basis terms of l which are in BW+(m) ∩S+(m). If l has only
one basis term in BW+(m) ∩ S+(m), then l is a generator of G

S+(m)

in (1). Thus there is nothing to prove. Let us assume that we have
proven the proposition when l has k basis terms in BW+(m) ∩ S+(m).
Let us assume that l has k + 1 basis terms in BW+(m) ∩ S+(m). If
l has a basis term l1 in G

S+(m)
, then l − cl1 has at most k basis

terms in BW+(m) ∩ S+(m) by taking an appropriate scalar c. By
induction, l− cl1 ∈ S+(m), i.e., l ∈ S+(m). Without loss of generality,
we may assume that l has the following form c1x

i1+1
1 xi2

2 · · ·xim
m ∂1 +

c2x
i1
1 · · ·xit+1

t x
it+1
t+1 · · ·xim

m ∂t +∗ where i1 �= 0, ∗ is the sum of remaining
terms of l and c1 ∈ F•. We have that

l +
c1

i1 + 1
[xi1+1

1 ∂t, xi2
2 · · ·xit+1

t x
it+1
t+1 · · ·xim

m ∂1] ∈ S+(m)

by induction. Since

c1

i1 + 1
[xi1+1

1 ∂t, xi2
2 · · ·xit+1

t x
it+1
t+1 · · ·xim

m ∂1] ∈ S+(m),

we have that l ∈ S+(m) by induction. Therefore, we have proven the
proposition.

Proposition 2. The Lie algebra S(e±x1 , . . . , e±xm , m) and the Lie
algebra S(e±x1 , . . . , e±xm , m) are the same.

Proof. Since the Lie algebra S(e±x1 , . . . , e±xm , m) is a subalgebra of
S(e±x1 , . . . , e±xm , m), it is enough to show that S(e±x1 , . . . , e±xm , m) ⊂
S(e±x1 , . . . , e±xm , m). Let l be any element of S(e±x1 , . . . , e±xm , m).
It is enough to show that the element l is the sum of basis elements
in B

S(e±x1 ,... ,e±xm ,m)
. If l is in the (0, . . . , 0)-homogeneous component

S(0,... ,0) of S(e±x1 , . . . , e±xm , m), then there is nothing to prove by
Proposition 1. Let us prove this proposition by induction on the num-
ber of terms of l in BW (e±x1 ,... ,e±xm ,m) ∩S(e±x1 , . . . , e±xm , m) and the
number of exponents of basis terms of l in BW (e±x1 ,... ,e±xm ,m). If l
has only one basis term, then l is a generator in G

S(e±x1 ,... ,e±xm ,m)
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in (1). Thus there is nothing to prove. Let us assume that we have
proven the proposition when l has k terms in BW (e±x1 ,... ,e±xm ,m) ∩
S(e±x1 , . . . , e±xm , m). Let us assume that l has k + 1 basis terms in
BW (e±x1 ,... ,e±xm ,m)∩S(e±x1 , . . . , e±xm , m). By Proposition 1, without
loss of generality, we may assume that l has the form as follows:

l = c1e
a1x1 · · · eauxu · · · eamxmxi1

1 · · ·xim
m ∂1

+ c2e
a1x1 · · · eauxu · · · eamxmxi1

1 · · ·xim
m ∂u + ∗

where c1, c2 ∈ F, ∗ is the sum of the remaining terms of l, and
a1, au �= 0. Let us prove the proposition by the degree i1 of x1. Since
au �= 0, we have that

(7) l1 = l − c1

au
[ea1x1xi1

1 ∂u, ea2x2 · · · eamxmxi2
2 · · ·xim

m ∂1].

If i1 = 0, then l1 has k + 1 terms or k terms in BW (e±x1 ,... ,e±xm ,m) ∩
S(e±x1 , . . . , e±xm , m). If l1 has k terms, then there is nothing to prove
by induction. Let us assume that l1 has k + 1 terms. Without loss of
generality, we may assume that u = m by (7), i.e.,

l1 = c3e
a1x1 · · · eamxmxi1

1 · · ·xim
m ∂m + ∗∗

where c3 ∈ F, ∗∗ is the sum of the remaining terms of l1. Since
ea1x1 · · · eamxmxi1

1 . . . xim
m ∂n is the maximal term of l1, if c3 �= 0, then

l1 /∈ S(e±x1 , . . . , e±xm , m), i.e., l /∈ S(e±x1 , . . . , e±xm , m) by (7). This
contradiction shows that l1 has at most k terms. This implies that
l1 ∈ S(e±x1 , . . . , e±xm , m) by induction. Thus we may assume that

(8) l = l1 +
c1

au
[ea1x1xi1

1 ∂u, ea2x2 · · · eamxmxi2
2 · · ·xim

m ∂1].

This implies that l is the sum of elements in BW (e±x1 ,... ,e±xm ,m) ∩
S(e±x1 , . . . , e±xm , m). Therefore we have proved the proposition.

By Proposition 1 and Proposition 2, the basis B
S+(m)

is the stan-
dard basis of S+(m) and B

S(e±x1 ,... ,e±xm ,m)
is the standard basis of

S(e±x1 , . . . , e±xm , m). A similar result of Proposition 2 for the Lie
algebra Sp(e±x1 , . . . , e±xm , m) holds.



GENERALIZED S-TYPE LIE ALGEBRAS 1297

Note 1. The (0, . . . , 0)-homogeneous component S(0,... ,0) of

S(e±x1 , . . . , e±xm , m),

respectively
Sp(e±x1 , . . . , e±xm , m),

in (5) is the simple Lie algebra S+(m) in the paper [6], respectively [5].

Lemma 1. The only Lie ideal of S(e±x1 , . . . , e±xm , m), respec-
tively Sp(e±x1 , . . . , e±xm , m), which contains a nonzero element in
S(0,... ,0) is S(e±x1 , . . . , e±xm , m), respectively Sp(e±x1 , . . . , e±xm , m),
where S(0,... ,0) is the (0, . . . , 0)-homogeneous component of S(e±x1 , . . . ,
e±xm , m), respectively Sp(e±x1 , . . . , e±xm , m), in (5).

Proof. Let I be a nonzero ideal of S(e±x1 , . . . , e±xm , m), respectively
Sp(e±x1 , . . . , e±xm , m), which contains an element in S(0,... ,0). Since
S(0,... ,0) is simple [6], S(0,... ,0) ⊂ I. For any element ea1x1 · · · eamxmxi1

1

· · · x̂it
t x

it+1
t+1 · · ·xim

m ∂t ∈ S(e±x1 , . . . , e±xm , m), 1 ≤ t ≤ m, we have that

[∂1, e
a1x1 · · · eamxmxi1

1 · · · x̂it
t x

it+1
t+1 · · ·xim

m ∂t]

= a1e
a1x1 · · · eamxmxi1

1 · · · x̂it
t x

it+1
t+1 · · ·xim

m ∂t

+ i1e
a1x1 · · · eamxmxi1−1

1 xi2
2 · · · x̂it

t x
it+1
t+1 · · ·xim

m ∂t ∈ I

where a1 �= 0. By induction on i1 in (9), we know that ea1x1 · · · eamxmxi1
1

· · · x̂it
t x

it+1
t+1 · · · xim

m ∂t ∈ I. For any element ea1x1 · · · êatxt · · · eamxmxi1
1

· · · x̂it
t x

it+1
t+1 · · ·xim

m ∂t ∈ S(e±x1 , . . . , e±xm , m), 1 ≤ t ≤ m, without loss
of generality, we may assume that ik �= 0, n ≤ k ≤ m. By

[∂k, ea1x1 · · · êatxt · · · eamxmxi1
1 · · · x̂it

t x
it+1
t+1 · · ·xim

m ∂t]

= ikea1x1 · · · êatxt · · · eamxmxi1
1 · · · ̂xit−1

t x
it+1
t+1 · · ·xim

m ∂t ∈ I.

By induction on ik of ea1x1 · · · êatxt · · · eamxmxi1
1 · · · x̂it

t x
it+1
t+1 · · ·xim

m ∂t,

we have that ea1x1 · · · êatxt · · · eamxmxi1
1 · · · x̂it

t x
it+1
t+1 · · ·xim

m ∂t ∈ I. This
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implies that I = S(e±x1 , . . . , e±xm , m), respectively I = Sp(e±x1 , . . . ,
e±xm , m). Therefore we have proven the lemma.

Theorem 1. The Lie algebra S(e±x1 , . . . , e±xm , m), respectively
Sp(e±x1 , . . . , e±xn , m), is simple.

Proof. Let I be a nonzero ideal of S(e±x1 , . . . , e±xm , m), respectively
Sp(e±x1 , . . . , e±xn , m), and l a nonzero element in I. Let us prove the
theorem by induction on the number of different homogeneous compo-
nents of l which contains a basis term of l. If l has one homogeneous
component and l ∈ S(0,... ,0), then there is nothing to prove by Lemma 1.
Let us assume that l has one homogeneous component which is not in
S(0,... ,0). Let us prove that l is in S(0,... ,0) by induction on the number
of basis terms of l in B

S(e±x1 ,... ,e±xm ,m)
. If l has one basis term, then

l has the form ea1x1 · · · êatxt · · · eamxmxi1
1 · · · x̂it

t x
it+1
t+1 · · ·xim

m ∂t, c ∈ F,
such that at least one of a1, . . . , ak−1, ak, . . . and am is not zero. Oth-
erwise, there is nothing to prove by Lemma 1. Let us assume that
k < m; by taking e−a1x1 · · · e−amxm∂t, we have that

[e−a1x1 · · · e−amxm∂t, e
a1x1 · · · êatxt · · · eamxmxi1

1

· · · x̂it
t x

it+1
t+1 · · ·xim

m ∂t] ∈ I.

Let us assume that k ≤ n, l = ea1x1 · · · êatxt · · · eamxmxi1
1 · · · x̂it

t x
it+1
t+1 · · ·

xim
m ∂t, a1. Then we have that 0 �= [e−a1x1 · · · e−amxm∂t, e

a1x1 · · · êatxt

· · · eamxmxi1
1 · · · x̂it

t x
it+1
t+1 · · ·xim

m ∂t] ∈ S0. This implies that the ideal
S(0,... ,0) ⊂ I = S(e±x1 , . . . , e±xm , m), respectively I = Sp(e±x1 , . . . ,
e±xm , m), by Lemma 1. By induction, we may assume that if l has
k homogeneous components, then the ideal I = S(e±x1 , . . . , e±xm , m),
respectively Sp(e±x1 , . . . , e±xm , m). Let us assume that l has k + 1
homogeneous components which contains a basis term of l. If l has a
term in S(0,... ,0), then there is nothing to prove by taking an appropriate
∂v, v ∈ I, since

(10) 0 �= [∂v, [∂v, [. . . , [∂v, l] . . . ] ∈ I

where we have applied the Lie bracket appropriate times in (10) so
that [∂v, [∂v, [. . . , [∂v, l] . . . ] has at most k homogeneous components.
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This implies that [e−a1x1 · · · e−amxm∂v, l] has a nonzero basis term in
S(0,... ,0). Thus we have proven the theorem by Lemma 1. Similarly to
(10), we can find an element in I such that it is the sum of terms in
at most k different homogeneous components of S(e±x1 , . . . , e±xm , m),
respectively Sp(e±x1 , . . . , e±xm , m). By induction, we can prove that
I = S(e±x1 , . . . , e±xm , m), respectively I = Sp(e±x1 , . . . , e±xm , m).
Therefore we have proven the theorem.

3. Conjectures and questions. This is a good place to pose the
following questions. The Lie algebra S(e±x1 , . . . , e±xm , m) has the Lie
subalgebra Sm spanned by {(xu∂u −xv∂v), xu∂v | 1 ≤ u, v ≤ m} which
is isomorphic to slm(F) as Lie algebras [1].

Question 1. Is there a Lie subalgebra A of S+(m) which is isomorphic
to the Lie algebra slm(F) such that A �= Sm?

Question 2. For any Lie algebra automorphism θ of S+(m), does the
equality θ((xu∂u − xv∂v)) = c(xw∂w − xp∂p) hold for c ∈ F• where
1 ≤ u, v, w, p ≤ m?

Question 3. For any Lie algebra automorphism θ of S+(2), does the
equality θ(Sm) = Sm hold?

Thus we have the following interesting conjecture.

Conjecture. For any Lie algebra automorphism θ of S(e±x1 , . . . ,
e±xm , m), θ((xu∂u − xv∂v)) = c(xw∂w − xp∂p) and θ(Sm) = Sm hold
where 1 ≤ u, v, w, p ≤ m and c ∈ F.
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