GENERALIZED S-TYPE LIE ALGEBRAS

KI-BONG NAM

Abstract

The generalized W-type Lie algebra $W\left(e^{ \pm x_{1}}\right.$, $\left.\ldots, e^{ \pm x_{m}}, m\right)$ is introduced in the paper [5] using exponential functions. We define generalized S-type Lie algebras $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ over \mathbf{F} and $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ over $\mathbf{F}_{\mathbf{p}}$. We show that the Lie algebras $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ and $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ are simple.

1. Preliminaries. Let \mathbf{F} be a field of characteristic zero (not necessarily algebraically closed) and $\mathbf{F}_{\mathbf{p}}$ a field of characteristic p (not necessarily algebraically closed). Throughout this paper, \mathbf{N} and \mathbf{Z} will denote the nonnegative integers and the integers, respectively. Let \mathbf{F}^{\bullet} be the multiplicative group of nonzero elements of \mathbf{F}. Let $\mathbf{F}\left[x_{1}, \ldots, x_{m}\right]$ be the polynomial ring in indeterminates x_{1}, \ldots, x_{m}. Throughout this paper, let us assume that $m>1$. Let us define the \mathbf{F}-algebra $V\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ spanned by

$$
\begin{equation*}
\left\{e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \mid a_{1}, \ldots, a_{m} \in \mathbf{Z}, i_{1}, \ldots, i_{m} \in \mathbf{N}\right\} \tag{1}
\end{equation*}
$$

where m is a fixed nonnegative integer and $e^{a_{w} x_{w}}, 1 \leq w \leq m$, denotes the exponential function. We define the Lie algebra $W\left(e^{ \pm x_{1}}, \ldots\right.$, $\left.e^{ \pm x_{m}}, m\right)$ over \mathbf{F} which holds the following two conditions:
(i) $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ is the set $\left\{g \partial_{u} \mid g \in V\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)\right.$, $1 \leq u \leq m\}$ with the obvious addition,
(ii) the Lie bracket on $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ is given as follows: $\left[g_{1} \partial_{u}, g_{2} \partial_{v}\right]=g_{1} \partial_{u}\left(g_{2}\right) \partial_{v}-g_{2} \partial_{v}\left(g_{1}\right) \partial_{u}$, for $g_{1}, g_{2} \in V\left(e^{ \pm x_{1}}, \ldots\right.$, $\left.e^{ \pm x_{m}}, m\right), 1 \leq u \leq m$, where $\partial_{u}, 1 \leq u \leq m$, denotes the partial derivative with respect to x_{u}.

[^0]The Lie algebra $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ has the standard basis
(2)

$$
\begin{array}{r}
B_{W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}=\left\{e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \partial_{u} \mid a_{1}, \ldots, a_{m} \in \mathbf{Z}\right. \\
\left.i_{1}, \ldots, i_{m} \in \mathbf{N}, 1 \leq u \leq m\right\}
\end{array}
$$

For each basis term $e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \partial_{u}$ of $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}\right.$, m), we call $e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}}$ the exponential part, $x_{1}^{i_{1}} \cdots x_{m}^{i_{m}}$ the polynomial part, a_{v} the exponent of x_{v}, and i_{v} the degree of $x_{v}, 1 \leq v \leq m$. The Lie algebra $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ is \mathbf{Z}^{m}-graded as follows:

$$
\begin{equation*}
W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)=\bigoplus_{\left(a_{1}, \ldots, a_{m}\right) \in \mathbf{Z}^{m}} W_{\left(a_{1}, \ldots, a_{m}\right)} \tag{3}
\end{equation*}
$$

where $W_{\left(a_{1}, \ldots, a_{m}\right)}$ is the vector subspace of $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ spanned by

$$
\left\{e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \partial_{u} \mid i_{1}, \ldots, i_{m} \in \mathbf{N}, 1 \leq u \leq m\right\}
$$

We call $W_{\left(a_{1}, \ldots, a_{m}\right)}$ the $\left(a_{1}, \ldots, a_{m}\right)$-homogeneous component. The $(0, \ldots, 0)$-homogeneous component $W_{(0, \ldots, 0)}$ is the well-known Witt algebra $W^{+}(m)$ which is simple [6]. Every homogeneous component $W_{\left(a_{1}, \ldots, a_{m}\right)}$ is a $W_{(0, \ldots, 0)}$-module $[\mathbf{1}]$. The generalized special type Lie algebra $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ is a Lie subalgebra of $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ with elements

$$
\begin{aligned}
&\left\{\sum_{k \in I, 1 \leq t \leq m} g_{k, t} \partial_{t} \mid\right. \\
&\left.\sum_{k \in I, 1 \leq t \leq m} \partial_{t}\left(g_{k, t}\right)=0, g_{k, t} \in V\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)\right\}
\end{aligned}
$$

where $\sum_{k, 1 \leq t \leq m} g_{k, t} \partial_{t}$ has only finitely many nonzero terms $[\mathbf{6}]$ and I is an index set. Note that $x_{i} \partial_{i} \notin S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ and $\left(x_{i} \partial_{i}-\right.$ $\left.x_{j} \partial_{j}\right) \in S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ for $1 \leq i, j \leq m$. For the element $\left(x_{i} \partial_{i}-x_{j} \partial_{j}\right) \in S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right), 1 \leq i, j \leq m$, it is convenient to use the parenthesis (\quad) of $\left(x_{i} \partial_{i}-x_{j} \partial_{j}\right)$, because $x_{i} \partial_{i}$ and $x_{j} \partial_{j}$ are not
in $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$. The Lie subalgebra $\overline{S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}$ of $S\left(e^{x_{1}}, \ldots, e^{x_{m}}, m\right)$ is generated by

$$
\begin{aligned}
& G \overline{S\left(e^{ \pm x_{1}}, \ldots, e^{\left. \pm x_{m}, m\right)}\right.} \\
& \quad=\left\{e^{a_{1} x_{1}} \cdots \widehat{e^{a_{t} x_{t}}} e^{a_{t+1} x_{t+1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t}\right. \\
& \\
& \left.\quad a_{1}, \ldots, a_{m} \in \mathbf{Z}, i_{1}, \ldots, i_{m} \in \mathbf{N}, 1 \leq t \leq m\right\}
\end{aligned}
$$

where $\widehat{e^{a_{t} x_{t}}}$ and $\widehat{x_{t}^{i_{t}}}$ mean that those factors are omitted. In the Lie algebra $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, if $n=0$, then we have the Witt algebra $W^{+}(m)[6]$. Similarly, we have the special type Lie algebra $S^{+}(m)$ in the paper [6] with the set of elements

$$
\left\{\sum_{k \in J, 1 \leq v \leq m} f_{k, v} \partial_{v} \mid \sum_{k \in J, 1 \leq v \leq m} \partial_{v}\left(f_{k, v}\right)=0, f_{k} \in \mathbf{F}\left[x_{1}, \ldots, x_{m}\right]\right\}
$$

where J is an index set. The Lie subalgebra $\overline{S^{+}(m)}$ of $S^{+}(m)$ is generated by

$$
G_{\overline{S^{+}(m)}}=\left\{x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{i}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t} \mid i_{1}, \ldots, i_{m} \in \mathbf{N}, 1 \leq t \leq m\right\}
$$

The Lie algebra $\overline{S^{+}(m)}$ has the standard basis

$$
\begin{array}{r}
B_{\overline{S^{+}(m)}}=\left\{\left[x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t}, x_{1}^{i_{1}} \cdots \widehat{x_{v}^{i_{v}}} x_{v+1}^{i_{v+1}} \cdots x_{m}^{i_{m}} \partial_{v}\right] \mid\right. \tag{4}\\
\left.i_{1}, \ldots, j_{m} \in \mathbf{N}, 1 \leq t, v \leq m\right\} .
\end{array}
$$

We may find a basis $B_{\overline{S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}}$ of $\overline{S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}$ as $B_{\overline{S^{+}(m)}}$ in (4). Since the Lie algebra $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ is $\mathbf{Z}^{m_{-}}$ graded, $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ is \mathbf{Z}^{m}-graded naturally as follows:

$$
\begin{equation*}
S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)=\bigoplus_{\left(a_{1}, \ldots, a_{m}\right) \in \mathbf{Z}^{m}} S_{\left(a_{1}, \ldots, a_{m}\right)} \tag{5}
\end{equation*}
$$

The $(0, \ldots, 0)$-homogeneous component $S_{(0, \ldots, 0)}$ is the well-known special type Lie algebra $S^{+}(m)$ in the paper $[\mathbf{6}]$ and $S_{\left(a_{1}, \ldots, a_{m}\right)}$ is a vector subspace of $W_{\left(a_{1}, \ldots, a_{m}\right)}$.

For any basis elements $e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \partial_{t}$ and $e^{b_{1} x_{1}} \cdots e^{b_{m} x_{m}} \times$ $x_{1}^{j_{1}} \cdots x_{m}^{j_{m}} \partial_{v}$ in $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, we may define the order $>_{L}$ as follows:

$$
c_{1} e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \partial_{t}>_{L} c_{2} e^{b_{1} x_{1}} \cdots e^{b_{m} x_{m}} x_{1}^{j_{1}} \cdots x_{m}^{j_{m}} \partial_{v}
$$

if and only if $a_{1}>b_{1}$, or $a_{1}=b_{1}$ and $i_{1}>i_{2}$, or \ldots, or $a_{1}=b_{1}, \ldots$, $i_{m}=j_{m}$, and $v<t$ for any $c_{1}, c_{2} \in \mathbf{F}^{\bullet}$. Thus we may consider that a Lie subalgebra of $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ has the order $>_{L}$. Naturally, the Lie algebra $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ has the order $>_{L}$. Let S be a subset of a Lie algebra L. An element $l \in L$ is ad-diagonal with respect to S, if $[l, s]=c s$ holds for any $s \in S$ where c is a fixed scalar which depends on l and s. The Lie algebra $\overline{S^{+}(m)}$ has the addiagonals $\left\{\sum_{u, v \in K} c_{u, v}\left(x_{u} \partial_{u}-x_{v} \partial_{v}\right) \mid 1 \leq u, v \leq m, c_{u, v} \in \mathbf{F}, K \subset\right.$ $\{1, \ldots, m\}\}$ with respect to $B_{\overline{S^{+}(m)}}$ in $\overline{S^{+}(m)}$. Let $\mathbf{F}_{\mathbf{p}}$ be a field of characteristic p (not necessarily algebraically closed) and $\mathbf{Z}_{\mathbf{p}}$ denote the prime field where p is a prime number. Let us assume that m is a fixed positive integer such that $m \geq 1$. Let us define the $\mathbf{F}_{\mathbf{p}}$-algebra $V_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ spanned by
$\left\{e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \partial_{u} \mid a_{1}, \ldots, a_{m}, i_{1}, \ldots, i_{m} \in \mathbf{Z}_{\mathbf{p}}, 1 \leq u \leq m\right\}$
where m is a fixed nonnegative integer, $e^{a_{w} x_{w}}, 1 \leq w \leq m$, denotes the exponential function (formally), and $\partial_{u}, 1 \leq u \leq m$, denotes the partial derivative with respect to x_{u}. We may define the W-type Lie algebra $W_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ over $\mathbf{F}_{\mathbf{p}}$ as $W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ and S-type Lie algebra $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ over $\mathbf{F}_{\mathbf{p}}$ as $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$. The Lie algebra $W_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ is simple [5]. The Lie algebra $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ has a similar $\mathbf{Z}_{\mathbf{p}}{ }^{m}$-gradation in (5).

2. Generalized S-type Lie algebra over \mathbf{F} or $\mathbf{F}_{\mathbf{p}}$.

Proposition 1. The Lie algebra $S^{+}(m)$ and the Lie algebra $\overline{S^{+}(m)}$ are the same.

Proof. Since the Lie algebra $\overline{S^{+}(m)}$ is a subalgebra of $S^{+}(m)$, it is enough to show that $S^{+}(m) \subset \overline{S^{+}(m)}$. Let l be any element of $S^{+}(m)$.

It is enough to show that the element l is the sum of basis elements in $B \overline{S^{+}(m)}$ of $\overline{S^{+}(m)}$. Let us prove this proposition by induction on the number of basis terms of l which are in $B_{W^{+}(m)} \cap S^{+}(m)$. If l has only one basis term in $B_{W^{+}(m)} \cap S^{+}(m)$, then l is a generator of $G_{\overline{S^{+}(m)}}$ in (1). Thus there is nothing to prove. Let us assume that we have proven the proposition when l has k basis terms in $B_{W^{+}(m)} \cap S^{+}(m)$. Let us assume that l has $k+1$ basis terms in $B_{W^{+}(m)} \cap S^{+}(m)$. If l has a basis term l_{1} in $G_{\overline{S^{+}(m)}}$, then $l-c l_{1}$ has at most k basis terms in $B_{W^{+}(m)} \cap S^{+}(m)$ by taking an appropriate scalar c. By induction, $l-c l_{1} \in \overline{S^{+}(m)}$, i.e., $l \in \overline{S^{+}(m)}$. Without loss of generality, we may assume that l has the following form $c_{1} x_{1}^{i_{1}+1} x_{2}^{i_{2}} \cdots x_{m}^{i_{m}} \partial_{1}+$ $c_{2} x_{1}^{i_{1}} \cdots x_{t}^{i_{t}+1} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t}+*$ where $i_{1} \neq 0, *$ is the sum of remaining terms of l and $c_{1} \in \mathbf{F}^{\bullet}$. We have that

$$
l+\frac{c_{1}}{i_{1}+1}\left[x_{1}^{i_{1}+1} \partial_{t}, \quad x_{2}^{i_{2}} \cdots x_{t}^{i_{t}+1} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{1}\right] \in \overline{S^{+}(m)}
$$

by induction. Since

$$
\frac{c_{1}}{i_{1}+1}\left[x_{1}^{i_{1}+1} \partial_{t}, \quad x_{2}^{i_{2}} \cdots x_{t}^{i_{t}+1} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{1}\right] \in \overline{S^{+}(m)}
$$

we have that $l \in \overline{S^{+}(m)}$ by induction. Therefore, we have proven the proposition.

Proposition 2. The Lie algebra $\overline{S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}$ and the Lie algebra $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ are the same.

Proof. Since the Lie algebra $\overline{S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}$ is a subalgebra of $\frac{S\left(e^{ \pm x_{1}}\right.}{S\left(e^{x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}$, it is enough to show that $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right) \subset$ $\overline{S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}$. Let l be any element of $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$. It is enough to show that the element l is the sum of basis elements in $B_{\overline{S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}}$. If l is in the $(0, \ldots, 0)$-homogeneous component $S_{(0, \ldots, 0)}$ of $\overline{S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}$, then there is nothing to prove by Proposition 1. Let us prove this proposition by induction on the number of terms of l in $B_{W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)} \cap S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ and the number of exponents of basis terms of l in $B_{W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}$. If l has only one basis term, then l is a generator in $G_{\overline{S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}}$
in (1). Thus there is nothing to prove. Let us assume that we have proven the proposition when l has k terms in $B_{W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)} \cap$ $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$. Let us assume that l has $k+1$ basis terms in $B_{W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)} \cap S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$. By Proposition 1, without loss of generality, we may assume that l has the form as follows:

$$
\begin{aligned}
l= & c_{1} e^{a_{1} x_{1}} \cdots e^{a_{u} x_{u}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \partial_{1} \\
& +c_{2} e^{a_{1} x_{1}} \cdots e^{a_{u} x_{u}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \partial_{u}+*
\end{aligned}
$$

where $c_{1}, c_{2} \in \mathbf{F}, *$ is the sum of the remaining terms of l, and $a_{1}, a_{u} \neq 0$. Let us prove the proposition by the degree i_{1} of x_{1}. Since $a_{u} \neq 0$, we have that

$$
\begin{equation*}
l_{1}=l-\frac{c_{1}}{a_{u}}\left[e^{a_{1} x_{1}} x_{1}^{i_{1}} \partial_{u}, e^{a_{2} x_{2}} \cdots e^{a_{m} x_{m}} x_{2}^{i_{2}} \cdots x_{m}^{i_{m}} \partial_{1}\right] \tag{7}
\end{equation*}
$$

If $i_{1}=0$, then l_{1} has $k+1$ terms or k terms in $B_{W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)} \cap$ $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$. If l_{1} has k terms, then there is nothing to prove by induction. Let us assume that l_{1} has $k+1$ terms. Without loss of generality, we may assume that $u=m$ by (7), i.e.,

$$
l_{1}=c_{3} e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}} \partial_{m}+* *
$$

where $c_{3} \in \mathbf{F},{ }^{* *}$ is the sum of the remaining terms of l_{1}. Since $e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \partial_{n}$ is the maximal term of l_{1}, if $c_{3} \neq 0$, then $l_{1} \notin S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, i.e., $l \notin S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ by (7). This contradiction shows that l_{1} has at most k terms. This implies that $l_{1} \in S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ by induction. Thus we may assume that

$$
\begin{equation*}
l=l_{1}+\frac{c_{1}}{a_{u}}\left[e^{a_{1} x_{1}} x_{1}^{i_{1}} \partial_{u}, e^{a_{2} x_{2}} \cdots e^{a_{m} x_{m}} x_{2}^{i_{2}} \cdots x_{m}^{i_{m}} \partial_{1}\right] \tag{8}
\end{equation*}
$$

This implies that l is the sum of elements in $B_{W\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)} \cap$ $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$. Therefore we have proved the proposition. -

By Proposition 1 and Proposition 2, the basis $B_{\overline{S^{+}(m)}}$ is the standard basis of $S^{+}(m)$ and $B \overline{S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}$ is the standard basis of $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$. A similar result of Proposition 2 for the Lie algebra $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ holds.

Note 1. The $(0, \ldots, 0)$-homogeneous component $S_{(0, \ldots, 0)}$ of

$$
\overline{S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}
$$

respectively

$$
\overline{S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)}
$$

in (5) is the simple Lie algebra $S^{+}(m)$ in the paper [6], respectively [5]. \square

Lemma 1. The only Lie ideal of $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, respectively $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, which contains a nonzero element in $S_{(0, \ldots, 0)}$ is $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, respectively $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, where $S_{(0, \ldots, 0)}$ is the $(0, \ldots, 0)$-homogeneous component of $S\left(e^{ \pm x_{1}}, \ldots\right.$, $\left.e^{ \pm x_{m}}, m\right)$, respectively $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, in (5).

Proof. Let I be a nonzero ideal of $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, respectively $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, which contains an element in $S_{(0, \ldots, 0)}$. Since $S_{(0, \ldots, 0)}$ is simple $[\mathbf{6}], S_{(0, \ldots, 0)} \subset I$. For any element $e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}}$ $\cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t} \in S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right), 1 \leq t \leq m$, we have that

$$
\begin{aligned}
& {\left[\partial_{1}, e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t}\right] } \\
&= a_{1} e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t} \\
&+i_{1} e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}-1} x_{2}^{i_{2}} \cdots x_{t}^{\hat{i}_{t}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t} \in I
\end{aligned}
$$

where $a_{1} \neq 0$. By induction on i_{1} in (9), we know that $e^{a_{1} x_{1}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}}$ $\cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t} \in I$. For any element $e^{a_{1} x_{1}} \cdots \widehat{e^{a_{t} x_{t}}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}}$ $\cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t} \in S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right), 1 \leq t \leq m$, without loss of generality, we may assume that $i_{k} \neq 0, n \leq k \leq m$. By

$$
\begin{aligned}
& {\left[\partial_{k}, e^{a_{1} x_{1}} \cdots \widehat{e^{a_{t} x_{t}}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t}\right]} \\
& \quad=i_{k} e^{a_{1} x_{1}} \cdots \widehat{e^{a_{t} x_{t}}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}-1}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t} \in I
\end{aligned}
$$

By induction on i_{k} of $e^{a_{1} x_{1}} \cdots \widehat{e^{a_{t} x_{t}}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t}$, we have that $e^{a_{1} x_{1}} \cdots \widehat{e^{a_{t} x_{t}}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t} \in I$. This
implies that $I=S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, respectively $I=S_{p}\left(e^{ \pm x_{1}}, \ldots\right.$, $\left.e^{ \pm x_{m}}, m\right)$. Therefore we have proven the lemma.

Theorem 1. The Lie algebra $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, respectively $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{n}}, m\right)$, is simple.

Proof. Let I be a nonzero ideal of $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, respectively $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{n}}, m\right)$, and l a nonzero element in I. Let us prove the theorem by induction on the number of different homogeneous components of l which contains a basis term of l. If l has one homogeneous component and $l \in S_{(0, \ldots, 0)}$, then there is nothing to prove by Lemma 1 . Let us assume that l has one homogeneous component which is not in $S_{(0, \ldots, 0)}$. Let us prove that l is in $S_{(0, \ldots, 0)}$ by induction on the number of basis terms of l in $B \frac{S_{\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)} \text {. If } l \text { has one basis term, then }}{}$ l has the form $e^{a_{1} x_{1}} \cdots \widehat{e^{a_{t} x_{t}}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t}, c \in \mathbf{F}$, such that at least one of $a_{1}, \ldots, a_{k-1}, a_{k}, \ldots$ and a_{m} is not zero. Otherwise, there is nothing to prove by Lemma 1. Let us assume that $k<m$; by taking $e^{-a_{1} x_{1}} \cdots e^{-a_{m} x_{m}} \partial_{t}$, we have that

$$
\begin{aligned}
{\left[e^{-a_{1} x_{1}} \cdots e^{-a_{m} x_{m}} \partial_{t}, e^{a_{1} x_{1}} \cdots \widehat{e^{a_{t} x_{t}}} \cdots e^{a_{m} x_{m}}\right.} & x_{1}^{i_{1}} \\
& \left.\cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t}\right] \in I .
\end{aligned}
$$

Let us assume that $k \leq n, l=e^{a_{1} x_{1}} \cdots \widehat{e^{a_{t} x_{t}}} \cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots$ $x_{m}^{i_{m}} \partial_{t}, a_{1}$. Then we have that $0 \neq\left[e^{-a_{1} x_{1}} \cdots e^{-a_{m} x_{m}} \partial_{t}, e^{a_{1} x_{1}} \cdots \widehat{e^{a_{t} x_{t}}}\right.$ $\left.\cdots e^{a_{m} x_{m}} x_{1}^{i_{1}} \cdots \widehat{x_{t}^{i_{t}}} x_{t+1}^{i_{t+1}} \cdots x_{m}^{i_{m}} \partial_{t}\right] \in S_{0}$. This implies that the ideal $S_{(0, \ldots, 0)} \subset I=S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, respectively $I=S_{p}\left(e^{ \pm x_{1}}, \ldots\right.$, $\left.e^{ \pm x_{m}}, m\right)$, by Lemma 1 . By induction, we may assume that if l has k homogeneous components, then the ideal $I=S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, respectively $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$. Let us assume that l has $k+1$ homogeneous components which contains a basis term of l. If l has a term in $S_{(0, \ldots, 0)}$, then there is nothing to prove by taking an appropriate $\partial_{v}, v \in I$, since

$$
\begin{equation*}
0 \neq\left[\partial_{v},\left[\partial_{v},\left[\ldots,\left[\partial_{v}, l\right] \ldots\right] \in I\right.\right. \tag{10}
\end{equation*}
$$

where we have applied the Lie bracket appropriate times in (10) so that $\left[\partial_{v},\left[\partial_{v},\left[\ldots,\left[\partial_{v}, l\right] \ldots\right]\right.\right.$ has at most k homogeneous components.

This implies that $\left[e^{-a_{1} x_{1}} \cdots e^{-a_{m} x_{m}} \partial_{v}, l\right]$ has a nonzero basis term in $S_{(0, \ldots, 0)}$. Thus we have proven the theorem by Lemma 1. Similarly to (10), we can find an element in I such that it is the sum of terms in at most k different homogeneous components of $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, respectively $S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$. By induction, we can prove that $I=S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$, respectively $I=S_{p}\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$. Therefore we have proven the theorem.
3. Conjectures and questions. This is a good place to pose the following questions. The Lie algebra $S\left(e^{ \pm x_{1}}, \ldots, e^{ \pm x_{m}}, m\right)$ has the Lie subalgebra S_{m} spanned by $\left\{\left(x_{u} \partial_{u}-x_{v} \partial_{v}\right), x_{u} \partial_{v} \mid 1 \leq u, v \leq m\right\}$ which is isomorphic to $s l_{m}(\mathbf{F})$ as Lie algebras [1].

Question 1. Is there a Lie subalgebra A of $S^{+}(m)$ which is isomorphic to the Lie algebra $s l_{m}(\mathbf{F})$ such that $A \neq S_{m}$?

Question 2. For any Lie algebra automorphism θ of $S^{+}(m)$, does the equality $\theta\left(\left(x_{u} \partial_{u}-x_{v} \partial_{v}\right)\right)=c\left(x_{w} \partial_{w}-x_{p} \partial_{p}\right)$ hold for $c \in \mathbf{F}^{\bullet}$ where $1 \leq u, v, w, p \leq m$?

Question 3. For any Lie algebra automorphism θ of $S^{+}(2)$, does the equality $\theta\left(S_{m}\right)=S_{m}$ hold?

Thus we have the following interesting conjecture.

Conjecture. For any Lie algebra automorphism θ of $S\left(e^{ \pm x_{1}}, \ldots\right.$, $\left.e^{ \pm x_{m}}, m\right), \theta\left(\left(x_{u} \partial_{u}-x_{v} \partial_{v}\right)\right)=c\left(x_{w} \partial_{w}-x_{p} \partial_{p}\right)$ and $\theta\left(S_{m}\right)=S_{m}$ hold where $1 \leq u, v, w, p \leq m$ and $c \in \mathbf{F}$.

REFERENCES

1. J.E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1987, pp. 7-21.
2. V.G. Kac, Description of filtered Lie algebra with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 832-834.
3. N. Kawamoto, Generalizations of Witt algebras over a field of characteristic zero, Hiroshima Math. J. 16 (1986), 417-426.
4. Ki-Bong Nam, Generalized W and H type Lie algebras, Algebra Colloq. 6 (1999), 329-340.
5. ——, Modular W and H type Lie algebras, Bull. of South Eastern Asian Math., vol. 26, Springer Verlag, New York, 2002, pp. 249-259.
6. A.N. Rudakov, Groups of automorphisms of infinite-dimensional simple Lie algebras, Math. USSR-Izv. 3 (1969), 707-722.

Department of Mathematics, 800 West Main Street, University of Wisconsin-Whitewater, Whitewater, WI 53190
E-mail address: namk@uww.edu

[^0]: 2000 AMS Mathematics Subject Classification. Primary 17B40, 17B56.
 Key words and phrases. Simple, Witt algebra, special Lie algebra, generators, graded, ad-diagonal.

 Received by the editors on March 18, 2004, and in revised form on Feb. 17, 2005.

