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MULTIPLIERS FOR THE Lp-SPACES
OF A HYPERGROUP

LILIANA PAVEL

ABSTRACT. Let K be a hypergroup with Haar measure.
We investigate the properties of the closed convex invariant
subsets of Lp(K), 1 ≤ p ≤ ∞, and apply the results to the
study of the multipliers for Lp(K).

1. Introduction. There are a lot of results in abstract harmonic
analysis on locally compact groups regarding multipliers for various
spaces of functions. A good deal of attention was paid to the study
of multipliers for L1(G), the classical characterization of Wendel [20]
describing their structure. The compact multipliers for L1(G) were first
studied by Sakai [17] who proved that if G is not compact, then zero is
the only weakly compact multiplier of L1(G). Conversely, Akemann [1]
showed that if G is compact then every multiplier for L1(G) is compact.
All these results were extended to the hypergroups case by Ghahramani
and Medgalchi [6, 7]. Multipliers from L1(G) to Lp(G), 1 ≤ p ≤ ∞,
were investigated by Brainerd and Edwards [2]. In [13] Lau studied
closed convex sets of Lp(G), 1 ≤ p ≤ ∞, applying his approach in order
to rediscover the classical above-mentioned results and also to extend
them to affine multipliers. Bearing in mind the Lau idea, the purpose
of this paper is to obtain some insight into the multipliers problem for
the Lp-spaces, 1 ≤ p ≤ ∞, of a hypergroup, starting from the study of
the invariant subsets of the Lp-spaces of the hypergroup.

Hypergroups generalize locally compact groups. Roughly speaking,
they are locally compact spaces, whose regular, complex-valued Borel
measures form an algebra, which has properties similar to the convo-
lution algebra (M(G), ∗) of a locally compact group G. The theory of
hypergroups was initiated by Dunkl [3], Jewett [9] and Spector [19].
Throughout our paper, we will consider hypergroups in the sense of
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Jewett [9]. In our approach the hypergroup possesses a Haar measure.
We notice that it is still unknown if an arbitrary hypergroup admits a
Haar measure, but all the known examples, such as commutative hy-
pergroups, compact hypergroups and central hypergroups, do. After
the preliminaries, containing notations and some technical lemmas, in
the second section we study the convex invariant subsets, in particular
the invariant subspaces of the Lp-spaces, 1 ≤ p ≤ ∞, of a hypergroup
K, the results obtained generalizing the ones from the locally compact
group case of Lau [13]. We apply these results to extend some clas-
sical theorems concerning multipliers for the Lp-spaces, 1 ≤ p ≤ ∞,
of a locally compact group to multipliers for the Lp-spaces of a hyper-
group. We obtain among other things an extension of the multipliers
characterization of Brainerd and Edwards for multipliers from L1(K)
to Lp(K).

2. Preliminaries and technical lemmas. For basic definitions
and results on hypergroups we shall follow [9]. K always stands for
a hypergroup with a fixed Haar measure m, symbols like

∫ · · · dx will
always denote integration with respect to m. The notation generally
agrees with [9]. However, the following notations are different from
[9]: x �→ x∨ denotes the involution on K, δx the Dirac measure
concentrated at x and C(K) the space of bounded continuous complex-
valued functions on K. As usual Co(K) is the subspace of C(K)
consisting of all those functions vanishing at infinity. In addition, we
use the notation MP (K) for the probability measures on K.

We recall that the cone topology, τc, on M+(K) is the weakest
topology such that, for each f ∈ C+

c (K), the mapping μ �→ ∫
f dμ

is continuous and such that the mapping μ �→ μ(K) is continuous,
so it is the trace on M+(K) of the locally convex topology on M(K)
generated by the family of semi-norms {pf |f ∈ C(K)}. It follows that
τc is stronger than the ω∗-topology, and that they agree on MP (K).
The cone topology and the ω∗-topology are equal if and only if K is
compact.

If f is a Borel function on K and x, y ∈ K, the left translate fx or
Lx(f) and the right translate fy or Ry(f) are defined by

Lx(f)(y) = fx(y) = fy(x) = Ry(f)(x) =
∫

fdδx ∗ δy = f(x ∗ y)
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if the integral exists. The function f∨ is given by f∨(x) = f(x∨).
Convolution of two functions f and g on K is defined by

(f ∗ g)(x) =
∫

f(x ∗ y)g(y∨) dy

whenever it makes sense. If μ ∈ M(K), and f is a Borel function, then
the convolutions μ ∗ f and f ∗ μ are defined on K by

(μ ∗ f)(x) =
∫

f(y∨ ∗ x) dμ(y) and (f ∗ μ)(x) =
∫

f(x ∗ y∨) dμ(y).

It is immediate that δx∨ ∗ f = fx, for each x in K and f a Borel
function.

The spaces (Lp(K), ‖ · ‖p), 1 ≤ p ≤ ∞, are defined in the usual way
with respect to the Haar measure of K, see for example, [5, Chapter
6]. If A is a subset of Lp(K), 1 ≤ p ≤ ∞, then co A will denote the
convex hull of A, and A will denote the closure of A in the norm
topology. Besides the norm topology on Lp(K), 1 ≤ p < ∞, we
will consider the weak-topology, ω (ω = σ(Lp(K), L∗

p(K)), L∗
p(K) =

Lq(K), 1/p + 1/q = 1). The topology ω on Lp(K), 1 ≤ p < ∞,
will be considered only occasionally, so unless otherwise specified, we
will refer to the topological properties of sets and functions on Lp(K),
1 ≤ p < ∞, with respect to the norm topology. Identifying L∞(K)
to L∗

1(K) (whenever this is possible, for example, requiring m to be
σ-finite [5, Theorem 6.15]) we will often consider the weak∗-topology,
ω∗ (ω∗ = σ(L∞(K), L1(K))) on L∞(K) = L∗

1(K). If f ∈ Lp(K),
1 ≤ p ≤ ∞, x ∈ K, then fx ∈ Lp(K), ‖fx‖p ≤ ‖f‖p, and this is in
general not an isometry [9]. The mapping x �→ fx is continuous from
K to (Lp(K), ‖ · ‖p), 1 ≤ p < ∞ [9, Lemma 2.2B, Lemma 5.4H]. If
f ∈ L1(K), g ∈ Lp(K), then f ∗ g ∈ Lp(K) and ‖f ∗ g‖p ≤ ‖f‖1‖g‖p,
[9, Theorem 6.2C].

Lemma 1. Let V be the family of all neighborhoods of e, regarded
as a directed set in the usual way: U � V if U ⊆ V . For each V ∈ V
choose a function ϕV ∈ C+

c (K) such that ϕV vanishes outside of V and∫
ϕV (x) dx = 1. Then,

(i) The net (ϕV )V ∈V is a bounded approximate identity for L1(K).
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(ii) For each f ∈ Lp(K), 1 ≤ p < ∞, the nets (ϕV ∗ f)V ∈V and
(f ∗ ϕ∨

V )V ∈V are in Lp(K) and they converge (in norm) to f .

(iii) For each f ∈ L∞(K) the nets (ϕV ∗ f)V ∈V and (f ∗ϕ∨
V )V ∈V are

in L∞(K) and they ω∗-converge to f .

Proof. (i) and (ii) result immediately using the density of Cc(K) in
Lp(K).

(iii) follows as in the locally compact group case [22, Lemma 3.3], tak-
ing into account that the ω∗-topology on L∞(K) = L∗

1(K) is described

in terms of convergence by: fα
ω∗→ f if and only if

∫
fα(x)h(x) dx →∫

fα(x)h(x) dx, for all h ∈ L1(K), (when (fα)α, f are in L∞(K)).

Lemma 2. Let K be a hypergroup. Then,

(i) For each f ∈ Lp(K), 1 ≤ p < ∞, the mapping μ �→ μ ∗ f from
(M+(K), τc) to (Lp(K), ‖ · ‖p) is continuous.

(ii) For each f ∈ Lp(K), 1 < p < ∞, the mapping μ �→ μ ∗ f from
(M(K), ω∗) to (Lp(K), ω), is continuous.

(iii) For each f ∈ L∞(K), the mapping μ �→ μ ∗ f from (M+(K), τc)
to (L∞(K), ω∗), is continuous.

Proof. (i) is proved in [9, Lemma 5.4H].

(ii) Let (μα)α be a net in M(K) ω∗-converging to μ and f ∈ Lp(K).
Consider an arbitrary functional Φ in L∗

p(K), so there exists h ∈ Lq(K),
1/p + 1/q = 1, such that Φ(f) =

∫
f(x)h(x) dx. Then,

Φ(μα ∗ f) =
∫

(μα ∗ f)(x)h(x) dx = μα(h ∗ f∨).

As h ∗ f∨ ∈ Co(K), [9, Theorem 6.2F], it follows that (μα(h ∗ f∨))α

converges to μ(h ∗ f∨) = Φ(μ ∗ f).

(iii) Let (μα)α be a net in M+(K) that converges in the cone topology
to μ and f ∈ L∞(K). As for each h ∈ L1(K), h ∗ f∨ ∈ C(K), [9,
Theorem 6.2E], it follows that (μα(h∗f∨))α → μ(h∗f∨) or equivalently

∫
(μα ∗ f)(x)h(x) dx −→

∫
(μ ∗ f)(x)h(x) dx.
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This shows that (μα ∗ f)α converges in the weak∗-topology to μ ∗ f .

The next lemma follows immediately, with a proof similar to Lemma
2(ii).

Lemma 3. Let K be a hypergroup. Then,

i) For each f ∈ L1(K), the mapping h �→ f ∗h from (Lp(K), ω) into
(Lp(K), ω), 1 < p < ∞, is continuous.

(ii) For each f ∈ L1(K), the mapping h �→ f ∗ h from (L∞(K), ω∗)
into (L∞(K), ω∗) is continuous.

Notations. Further, we denote by P (K) = {ϕ ∈ L1(K) | ϕ � 0,
‖ϕ‖1 = 1} and by E(K) = {δx | x ∈ K}.

Lemma 4. Let K be a hypergroup. Then,

MP (K) = co E(K)
τc = P (K)

τc

Proof. Clearly, P (K) ⊆ MP (K) and coE(K) ⊆ P (K). As

MP (K) = co E(K)
ω∗

, for each μ ∈ MP (K), there exists a net (μα)α

in coE(K) such that (μα)α ω∗-converges to μ. As on MP (K), the
weak∗-topology and the cone topology agree, it follows that the net
(μα)α τc-converges to μ.

Finally, we mention that the set of almost periodic functions on
K will be denoted by AP (K). Following [11], we remind that a
bounded continuous complex-valued function f on K is said to be
almost periodic, if O(f) = {fx | x ∈ K} is relatively compact in
(C(K), ‖ · ‖∞).

3. Invariant subsets of Lp(K). In this section we transfer the
results of [13] concerning the characterization of closed convex invariant
subsets of the Lp-spaces of a locally compact group to the hypergroups
case. The corresponding proofs of [13] apply with the appropriate
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modifications required by the new context. For the sake of completeness
we include them here entirely.

Let K be a hypergroup and 1 ≤ p ≤ ∞. We begin with the definition
of the left invariant subsets of Lp(K).

Definition 1. A subset C of the space Lp(K) is called left invariant
if fx ∈ C, for each f ∈ C and x ∈ K.

Theorem 1. Let K be a hypergroup and C a closed convex subset of
Lp(K), 1 ≤ p < ∞. Then C is left invariant if and only if ϕ ∗ C ⊆ C
for all ϕ ∈ P (K).

Proof. Suppose that C is a closed convex left-invariant subset of
(Lp(K), ‖ · ‖p) and ϕ ∈ P (K). From Lemma 4 it follows that there
exists a net (θα)α ⊆ co E(K), θα =

∑nα

k=1 λ
(α)
k δ

x
(α)
k

, such that (θα)α

τc-converges to ϕ. Let f be arbitrary in C. Then, using Lemma 2 (i),
it results that (θα ∗ f)α converges to ϕ ∗ f in Lp(K). As

θα ∗ f =
( nα∑

k=1

λ
(α)
k δ

x
(α)
k

)
∗ f =

nα∑
k=1

λ
(α)
k f

x
(α)∨
k

and C is convex and left invariant, the net (θα ∗ f)α is contained in C.
The set C being closed it follows that ϕ ∗ f ∈ C.

Conversely, consider x ∈ K and f ∈ C. As δx∨ ∈ MP (K), there
exists a net (ϕα)α ⊆ P (K) such that (ϕα)α τc-converges to δx∨ (see
Lemma 4). Then, as (ϕα ∗ f)α ⊆ C and C is closed, it follows that its
limit, δx∨ ∗ f = fx belongs to C.

The following consequence is apparent.

Corollary 1. Let K be a hypergroup and I a closed linear subspace
of Lp(K), 1 ≤ p < ∞. Then L1(K) ∗ I ⊆ I if and only if I is a left
invariant subspace of Lp(K).

Remark. This result generalizes the classical result from the locally
compact group case, namely that a closed linear subspace of L1(K) is
a left ideal if and only if it is left invariant.



MULTIPLIERS FOR THE Lp-SPACES 993

Basically with the same arguments, using Lemma 2 (iii) and Lemma 4,
we can prove a variant of Theorem 1 and of its corollary for p = ∞.
More precisely, we have:

Theorem 2. Let K be a hypergroup and C a ω∗-closed convex subset
of L∞(K). Then C is left invariant if and only if ϕ ∗ C ⊆ C for all
ϕ ∈ P (K).

Corollary 2. Let K be a hypergroup and I a ω∗-closed linear
subspace of L∞(K). Then L1(K) ∗ I ⊆ I if and only if I is a left-
invariant subspace of L∞(K).

Applying the previous theorems to the set co {fx | x ∈ K}, which is
a closed, convex and, with Lemma 4, left-invariant subset of Lp(K) for
all f ∈ Lp(K), we derive the next consequence:

Corollary 3. a) Let f ∈ Lp(K), 1 ≤ p < ∞. Then

co {fx | x ∈ K} = {ϕ ∗ f | ϕ ∈ P (K)}.

b) Let f ∈ L∞(K). Then

co {fx | x ∈ K}ω∗
= {ϕ ∗ f | ϕ ∈ P (K)}ω∗

.

Theorem 3. Let K be a hypergroup, 1 < p < ∞. Then K is
noncompact if and only if each closed convex left-invariant nonempty
subset of Lp(K) contains the origin.

Proof. Assume that K is noncompact, and take C a closed convex
left-invariant nonempty subset of Lp(K). As K is noncompact for each
compact subset L of K, there exists an element xL ∈ K\L. It follows
that the net (δxL

)L ω∗-converges to zero in M(K). Using Lemma 2 (ii)
we conclude that the net (δxL

∗ f)L converges to zero in (Lp(K), ω).
The set C is closed and convex, so ω-closed. As (δxL

∗ f)L ⊆ C, it
follows that its ω-limit is still in C, that is, C contains the origin. The
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converse is clear because, if K is compact, the set C = {1K} is a closed,
convex left-invariant subset of Lp(K).

Proposition 1. Let K be a hypergroup, 1 < p, q < ∞ such that
1/p+1/q = 1 and C a compact, convex, left-invariant nonempty subset
of Lp(K). Then,

{f ∗ g∨ | f ∈ C, g ∈ Lq(K)} ⊆ AP (K) ∩ Co(K).

Proof. Let f be arbitrary in C and g ∈ Lq(K). By [9, Theorem 6.2F],
f ∗ g∨ ∈ Co(K). In order to justify that f ∗ g∨ ∈ AP (K), we notice
that, for each x ∈ K, we have:

(f ∗ g∨)x(y) =
∫

fx∗y(z)g(z) dz =
∫

fx(y ∗ z)g(z) dz

= (fx ∗ g∨)(y), ∀ y ∈ K.

As {fx | x ∈ K} is contained in the compact set C, there is a net
(xα)α ⊆ K such that (fxα

)α converges in the normed space Lp(K).
Since g ∈ Lq(K), using [9, Theorem 6.2E], we have

‖fxα
∗ g∨ − fxβ

∗ g∨‖∞ ≤ ‖fxα
− fxβ

‖p‖g‖q −→ 0,

so (fxα
∗ g∨)α converges in (C(K), ‖ · ‖∞).

Remark. As far as we know, almost periodic functions on hyper-
groups have been investigated by Lasser [11, 12] and, in connection
with weakly almost periodic functions, by Wolfenstetter [21]. It has
been already established that, in a general setting, without imposing
supplementary conditions on the hypergroup, many of the classical re-
sults about almost periodic functions on locally compact groups do not
hold in the hypergroups (even abelian) context. For example, different
from the locally compact noncompact groups case, for certain hyper-
groups, the set AP (K)∩Co(K) does not reduce to zero. Almost periodic
nonzero functions vanishing at infinity can be found for example on the
polynomial hypergroups from Jacobi family. On the other hand there
are certain important classes of hypergroups, such as [FD]−B ∩ [SIN ]B
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groups and Chebyshev polynomials [12], for which any almost peri-
odic function vanishing at infinity is zero. This fact justifies the next
theorem that generalizes [13, Theorem 4.6].

Theorem 4. Let K be a hypergroup such that AP (K)∩Co(K) = {0},
1 < p < ∞. Then K is noncompact if and only if each compact, convex,
left-invariant nonempty subset of Lp(K) consists only of the origin.

Proof. Let K be noncompact, C a compact, convex, left-invariant
nonempty subset of Lp(K) and f arbitrary in C. Then, taking (ϕV )V ⊆
Lq(K) as in Lemma 1, by Proposition 1, f∗ϕ∨

V ∈ AP (K)∩Co(K) = {0},
so f ∗ ϕ∨

V = 0, for all V ∈ V . As ‖f ∗ ϕ∨
V − f‖p → 0, it follows that

f = 0. Hence the set C consists only of zero.

Conversely, if K is compact, the set C = {1K} is a compact, convex
and left-invariant subset of Lp(K).

Remark. Obviously, the “if ” part is valid without any restriction
on K.

4. Multipliers for the spaces Lp(K). According to the definition
of multipliers for topological linear spaces of functions [10, Chapter 3,
p. 66], we give the following definition of the left multipliers for Lp(K),
1 ≤ p ≤ ∞.

Definition 2. Let p, q ∈ [1,∞]. A bounded linear operator T
from the normed space Lq(K) to the normed space Lp(K) is called
a left multiplier for the pair (Lq(K), Lp(K)) if T (fx) = (Tf)x, for all
f ∈ Lq(K), x ∈ K.

Notation. The set of the left multipliers for the pair (Lq(K), Lp(K))
will be denoted by M(Lq(K), Lp(K)).

Theorem 5. Let q ∈ [1,∞), p ∈ [1,∞], T a bounded linear operator
applying Lq(K) into Lp(K). Then T is in M(Lq(K), Lp(K)) if and
only if T (ϕ ∗ f) = ϕ ∗ T (f) for all f ∈ Lq(K), ϕ ∈ L1(K).
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Proof. Assume first that T is a left multiplier for the pair (Lq(K),
Lp(K)). It is enough to prove that T (ϕ ∗ f) = ϕ ∗ T (f) for all
f ∈ Lq(K), for all ϕ ∈ P (K). Let ϕ ∈ P (K). By Lemma 4, there exists
(θα)α ⊆ co E(K), θα =

∑nα

k=1 λ
(α)
k δ

x
(α)
k

, such that (θα)α τc-converges
to ϕ. Using Lemma 2 (i), it results that (θα ∗ f)α converges to ϕ ∗ f in
Lq(K). Then,

T (ϕ ∗ f) = lim
α

T (θα ∗ f) = lim
α

T

( nα∑
k=1

λ
(α)
k δ

x
(α)
k

∗ f

)

= lim
α

T

( nα∑
k=1

λ
(α)
k f

x
(α)∨
k

)
= lim

α

nα∑
k=1

λ
(α)
k T (f

x
(α)∨
k

)

= lim
α

nα∑
k=1

λ
(α)
k T (f)

x
(α)∨
k

= lim
α

nα∑
k=1

λ
(α)
k δ

x
(α)
k

∗ T (f)

= ϕ ∗ T (f), ∀ f ∈ Lq(K).

Conversely, let (ϕV )V ∈V be a net of functions chosen as in Lemma 1.
As (ϕV )x ∗ f = (ϕV ∗ f)x for all x ∈ K, V ∈ V and as T ((ϕV )x ∗ f) =
T (ϕV ∗ f)x for all f ∈ Lq(K), everything follows from the continuity
of T .

Remarks 1. When q = p = 1, Theorem 5 translates to the case of hy-
pergroups the classical result of Wendel [20] concerning (L1(G), L1(G))
multipliers.

2. Extending the concept of convolutor of the Lp-spaces from the
locally compact group context, see for example, [16, Definition 9.1],
we may define a convolutor of Lp(K), 1 ≤ p < ∞, as a bounded
linear operator T : Lp(K) → Lp(K), enjoying the property that
T (f ∗g) = f ∗T (g) for all f, g ∈ Cc(K). Using Theorem 5, we infer that,
just as for the locally compact groups, M(Lp(K), Lp(K)), 1 ≤ p < ∞,
coincides with the space of convolutors of (Lp(K)), 1 ≤ p < ∞.

The complete characterization of the elements of M(L1(G), Lp(G)),
1 ≤ p ≤ ∞, when G is a locally compact group, was obtained by Brain-
erd and Edwards [2, Theorem 2.5]. For hypergroups in our approach
(with Haar measure) the structure of elements of M(L1(K), L1(K))
can be obtained as a particular case of a result of Ghahramani and
Medgalchi concerning multipliers on weighted hypergroup algebras [6]
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and extends the Brainerd and Edwards characterization. The next the-
orem generalizes it to M(L1(K), Lp(K)), 1 < p ≤ ∞, K a hypergroup
with Haar measure.

Theorem 6. Let 1 < p < ∞ or p = ∞ and L∞(K) = L∗
1(K). For

T a bounded linear operator from L1(K) to Lp(K), the following are
equivalent :

(i) T ∈ M(L1(K), Lp(K)).

(ii) There exists f ∈ Lp(K) such that T (h) = h ∗ f , h ∈ L1(K).

Proof. Consider first T ∈ M(L1(K), Lp(K)), 1 < p < ∞. Let
(ϕV )V ∈V a net of functions chosen as in Lemma 1. As ‖h∗ϕV −h‖1 → 0
it follows that (T (h ∗ ϕV ))V ∈V converges (in norm) to T (h) for all
h ∈ L1(K). On the other hand, the net (T (ϕV ))V ∈V is bounded in
the reflexive space Lp(K), so passing to a subnet, if necessary, we
may assume that (T (ϕV ))V ∈V converges in the weak-topology to some
f ∈ Lp(K). Then, using Theorem 5 and Lemma 3, we have

T (h) = lim
V

T (h ∗ ϕV ) = lim
V

h ∗ T (ϕV ) = h ∗ f.

When p = ∞ and L∞(K) = L∗
1(K), the arguments are similar since,

in L∞(K) = L∗
1(K), the bounded net (T (ϕV ))V ∈V has a weak∗-cluster

point.

Conversely, the next equalities

(T (h))x = δx∨ ∗ (h ∗ f) = (δx∨ ∗ h) ∗ f = hx ∗ f = T (hx),
∀x ∈ K, ∀h ∈ L1(K),

show that T ∈ M(L1(K), Lp(K)).

Next we give generalizations of some of the classical results on
compact multipliers for groupal algebras of locally compact groups.
More specifically, Akemann [1] proved that, if G is a compact group,
then M(L1(G), L1(G)) consists only in compact operators, a result
that was extended to the (weighted) compact hypergroups case in [6].
The next theorem generalizes this statement to M(L1(K), Lp(K)),
1 < p < ∞, K a compact hypergroup.
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Theorem 7. Let K be a compact hypergroup. Then, each T ∈
M(L1(K), Lp(K)), 1 < p < ∞ is a compact operator.

Proof. We consider 1 < p < ∞. Let T ∈ M(L1(K), Lp(K)), so,
using Theorem 6, there exists f ∈ Lp(K) such that T (h) = h ∗ f , for
all h ∈ L1(K). We will prove that T takes the unit ball of L1(K)
into a relative compact set of Lp(K). Since K is compact and the
mapping x �→ fx is continuous, the set co {fx | x ∈ K} ⊆ Lp(K) is
compact, so using Corollary 2 it follows that {ϕ ∗ f | ϕ ∈ P (K)}
is relatively compact in Lp(K). Let h be in the unit ball of L1(K).
Then h = (h1 − h2) + i(h3 − h4), where hj > 0 and ‖hj‖1 < 1,
j = 1, 2, 3, 4. It follows that T (hj) is in C = {λϕ ∗ f | λ ∈ [0, 1]}.
As C is relatively compact, it results that T (h) lies into the relative
compact set (C − C) + i(C − C).

In [17], Sakai proved that the only compact multiplier for the pair
(L1(G), L1(G)) when G is a locally compact noncompact group is
zero. The extension of this result to compact multipliers when K is
a noncompact (weighted) hypergroup is discussed in [6]. Following
our approach we show that if 1 ≤ q ≤ ∞, 1 < p < ∞, and if the
hypergroup K has the property that AP (K) ∩ Co(K) = {0}, then
M(Lq(K), Lp(K)) = {0}.

Theorem 8. Let K be a noncompact hypergroup such that AP (K)∩
Co(K) = {0}. Then the only compact element T in M(Lq(K), Lp(K)),
1 ≤ q ≤ ∞, 1 < p < ∞, is T = 0.

Proof. Let T be a compact left multiplier for the pair (Lq(K), Lp(K)).
Then, the closure of the set {T (f) | ‖f‖q ≤ 1} is a compact convex left-
invariant nonempty set of Lp(K), so by Theorem 4, it reduces to zero.
Hence T = 0.

Remark. Right multipliers for the Lp-spaces of K and right invariant
subsets can be defined in a similar way. More precisely, for p, q ∈
[1,∞], a bounded linear operator T from the normed space Lq(K)
to the normed space Lp(K) is called a right multiplier for the pair
(Lq(K), Lp(K)) if T (fx) = (Tf)x for all f ∈ Lq(K), x ∈ K, and,
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respectively, a set C of the space Lp(K) is called right invariant if
fx ∈ C, for each f ∈ C and x ∈ K. Following the locally compact
group approach of [13], we notice that the above results regarding left-
invariant subsets and left multipliers can be transferred to the ones
that are right invariant, with the natural modifications of the technical
details involving the modular function of K.
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