OPERATOR ALGEBRAS AND MAULDIN-WILLIAMS GRAPHS

MARIUS IONESCU

Abstract

We describe a method for associating a C^{*} correspondence to a Mauldin-Williams graph and show that the Cuntz-Pimsner algebra of this C^{*}-correspondence is isomorphic to the C^{*}-algebra of the underlying graph. In addition, we analyze certain ideals of these C^{*}-algebras. We also investigate Mauldin-Williams graphs and fractal C^{*}-algebras in the context of the Rieffel metric. This generalizes the work of Pinzari, Watatani and Yonetani. Our main result here is a "no go" theorem showing that such algebras must come from the commutative setting.

1. Introduction. In recent years many classes of C^{*}-algebras have been shown to fit into the Pimsner construction of what are known now as Cuntz-Pimsner algebras, see [20, 22]. This construction is based on a so-called C^{*}-correspondence over a C^{*}-algebra. For example, a natural C^{*}-correspondence can be associated with a graph G, see $[\mathbf{1 0}],\left[\mathbf{1 1}\right.$, Example 1.5]. The Cuntz-Pimsner algebra of this $C^{*}-$ correspondence is isomorphic to the graph C^{*}-algebra $C^{*}(G)$ as defined in [16]. Another example is the C^{*}-correspondence associated with a local homeomorphism on a compact metric space studied by Deaconu in [6], and the C^{*}-correspondence associated with a local homeomorphism on a locally compact space studied by Deaconu, Kumjian, and Muhly in $[\mathbf{7}]$. They showed that the Cuntz-Pimsner algebra is isomorphic to the groupoid C^{*}-algebra associated with a local homeomorphism in [5, 7, 26].

By a (directed) graph we mean a system $G=(V, E, r, s)$ where V and E are finite sets, called the sets of vertices and edges, respectively, of the graph, and where r and s are maps from E to V, called the range and source maps, respectively. Thus, $s(e)$ is the source of an edge e and $r(e)$ is its range. A Mauldin-Williams graph is a graph G together with a collection of compact metric spaces, one for each

[^0]vertex of the graph, and a collection of contraction maps, one for each edge of the graph which satisfy certain properties, see Definition 2.1 below. In this note we follow the notations from [8]. We associate with such a system a C^{*}-correspondence which reflects the dynamics of the Mauldin-Williams graph, and we analyze the Cuntz-Pimsner algebra of this C^{*}-correspondence. Our construction is related with topological generalizations of graph C^{*}-algebras of Katsura [14] and Muhly and Tomforde [21]. The study of the Cuntz-Pimsner algebra associated with graph dynamical systems was initiated in [23], where the authors consider the case when the graph G consists of a single vertex v and edges $e_{1}, e_{2}, \ldots, e_{n}$. In this case, the ϕ_{e} s constitute what is known as an iterated function system acting on the space $\left(T_{v}, \rho_{v}\right)$. They conclude that $\mathcal{O}(\mathcal{X})$ is isomorphic to the Cuntz algebra \mathcal{O}_{n}. The first of our two principal theorems in this note generalizes this result. Our proof is different from the proof in $[\mathbf{2 3}]$ and reveals extra structure.

Theorem. Let $\left(G,\left\{T_{v}, \rho_{v}\right\}_{v \in V},\left\{\phi_{e}\right\}_{e \in E}\right)$ be a Mauldin-Williams graph such that the graph G has no sinks and no sources. Let A and \mathcal{X} be the associated C^{*}-algebra and C^{*}-correspondence. Then the CuntzPimsner algebra $\mathcal{O}(\mathcal{X})$ is isomorphic to $C^{*}(G)$ of [4].

Thus the structure of $\mathcal{O}(\mathcal{X})$ is completely determined by the graph G. From one perspective, this result is somewhat disappointing. Given the richness of dynamical systems expressed as Mauldin-Williams graphs and given the fact that Cuntz-Pimsner algebras generalize crossed products, one might expect a lively interplay between the dynamics and the structure of $\mathcal{O}(\mathcal{X})$. However, the "rigidity" that this theorem expresses is quite remarkable, and it may inspire one to wonder about the natural limits of the result.

In particular, one might wonder if there are noncommutative versions of Mauldin-Williams graphs and whether these might prove to have a richer theory. This thought was taken up in [23, Section 4.3] where Pinzari, Watatani and Yonetani considered noncommutative iterated function systems based on Rieffel's notion of "noncommutative metric spaces" $[\mathbf{2 7}, \mathbf{2 8}]$. The second objective of this note is to show that noncommutative iterated function systems of Pinzari, Watatani and Yonetani can be formulated in the setting of Mauldin-Williams-type graphs, but that the generality gained is illusory. Roughly, the Rieffel
metric is a metric on the state space of a (not necessarily commutative) C^{*}-algebra A defined by a certain subset of "Lipschitz elements" in A (see Definition 3.1 below). When we associate a C^{*}-algebra A_{v} to each vertex $v \in V$, for a prescribed graph $G=(V, E, r, s)$, and when we associate a $*$-homomorphism $\phi_{e}: A_{s(e)} \rightarrow A_{r(e)}$ to each edge $e \in E$ that is strictly contractive with respect to the Rieffel metrics on $A_{s(e)}$ and $A_{r(e)}$, we call the resulting system a noncommutative Mauldin-Williams graph. It also gives rise to a Cuntz-Pimsner algebra $\mathcal{O}(\mathcal{X})$. Our second objective in this note is to show that once more $\mathcal{O}(\mathcal{X})$ is isomorphic to the Cuntz-Krieger algebra associated to G. In fact, we shall show in Theorem 3.4 that, in such situations, the C^{*} algebras A_{v} are necessarily commutative. This implies, in particular, that the structures considered by Pinzari, Watatani and Yonetani are necessarily no more general than those arising from ordinary iterated function systems.

2. The Cuntz-Pimsner algebra associated to a MauldinWilliams graph.

Definition 2.1. By a Mauldin-Williams graph, see [8, 18], we mean a system $\left(G,\left\{T_{v}, \rho_{v}\right\}_{v \in V},\left\{\phi_{e}\right\}_{e \in E}\right)$ where $G=(V, E, r, s)$ is a graph and where $\left\{T_{v}, \rho_{v}\right\}_{v \in V}$ and $\left\{\phi_{e}\right\}_{e \in E}$ are families such that:
(1) For each $v \in V, T_{v}$ is a compact metric space with a prescribed metric ρ_{v}.
(2) For $e \in E, \phi_{e}$ is a continuous map from $T_{r(e)}$ to $T_{s(e)}$ such that

$$
\rho_{s(e)}\left(\phi_{e}(x), \phi_{e}(y)\right) \leq c \rho_{r(e)}(x, y)
$$

for some constant c satisfying $0<c<1$, independent of e, and all $x, y \in T_{r(e)}$.
We shall assume, too, that the functions s and r are surjective. Thus, we assume that there are no sinks and no sources in the graph G. An invariant list associated with a Mauldin-Williams graph is a family $\left(K_{v}\right)_{v \in V}$ of compact sets, such that $K_{v} \subset T_{v}$ for all $v \in V$ and

$$
K_{v}=\bigcup_{\substack{e \in E \\ s(e)=v}} \phi_{e}\left(K_{r(e)}\right)
$$

Since each ϕ_{e} is a contraction, a Mauldin-Williams graph

$$
\left(G,\left\{T_{v}, \rho_{v}\right\}_{v \in V},\left\{\phi_{e}\right\}_{e \in E}\right)
$$

has a unique invariant list, see $\left[\mathbf{1 8}\right.$, Theorem 1]. We set $T:=\cup_{v \in V} T_{v}$ and $K:=\cup_{v \in V} K_{v}$, and we call K the invariant set of the MauldinWilliams graph.

In the particular case when we have one vertex v and n edges, i.e., in the setting of an iterated function system, the invariant set is the unique compact subset $K:=K_{v}$ of $T=T_{v}$ such that

$$
K=\phi_{1}(K) \cup \cdots \cup \phi_{n}(K)
$$

Definition 2.2. Given a Mauldin-Williams graph

$$
\left(G,\left\{T_{v}, \rho_{v}\right\}_{v \in V},\left\{\phi_{e}\right\}_{e \in E}\right)
$$

we construct a so called C^{*}-correspondence \mathcal{X} over the C^{*}-algebra $A=C(T)$, where $T=\coprod_{v \in V} T_{v}$ is the disjoint union of the spaces T_{v}, as follows. Let $E \times{ }_{G} T=\left\{(e, x): \mid: x \in T_{r(e)}\right\}$. Then, by our finiteness assumptions, $E \times{ }_{G} T$ is a compact space. We set $\mathcal{X}=C\left(E \times{ }_{G} T\right)$ and view \mathcal{X} as a bimodule over $C(T)$ via the formulae:

$$
\xi \cdot a(e, x):=\xi(e, x) a(x)
$$

and

$$
a \cdot \xi(e, x):=a \circ \phi_{e}(x) \xi(e, x),
$$

where $a \in C(T)$ and $\xi \in C\left(E \times{ }_{G} T\right)$. Further, \mathcal{X} comes equipped with the structure of a Hilbert C^{*}-module over $C(T)$ via the formula

$$
\langle\xi, \eta\rangle_{A}(x):=\sum_{\substack{e \in E \\ x \in T_{r(e)}}} \overline{\xi(e, x)} \eta(e, x)
$$

for all $\xi, \eta \in \mathcal{X}$ so that, in the language of $[\mathbf{2 0}], \mathcal{X}$ may be viewed as a C^{*}-correspondence over $C(T)$. Since there are no sources in the graph
G, the A-valued inner product is well defined. Let $n=|E|$, and let $C^{n}(A)$ be the column space over A, i.e., $C^{n}(A)=\left\{\left(\xi_{e}\right)_{e \in E}: \xi_{e} \in\right.$ A, for all $e \in E\}$. Then we view \mathcal{X} as a subset of $C^{n}(A)$.
We note that the left action is given by the $*$-homomorphism Φ : $A \rightarrow \mathcal{L}(\mathcal{X}),(\Phi(a) \xi)(e, x)=a \circ \phi_{e}(x) \xi(e, x)$. Then Φ is faithful if and only if $K=T$.

In the case of an iterated function system the C^{*}-correspondence will be the full column space over the C^{*}-algebra $A=C(T)$, that is $\mathcal{X}=C^{n}(A)$, with the structure:

- The right action is the untwisted right multiplication, i.e., ξ $a(i, x)=\xi(i, x) a(x)$ for all $i \in\{1, \ldots, n\}$ and $x \in T$.
- The left action is given by the $*$-homomorphism $\Phi: A \rightarrow \mathcal{L}(\mathcal{X})$ defined by the formula $\Phi(a)(\xi)(i, x)=a \circ \varphi_{i}(x) \xi_{i}(x)$.
- The A-valued inner product given by the formula:

$$
\langle\xi, \eta\rangle_{A}(x)=\sum_{i=1}^{n} \xi^{*}(i, x) \eta(i, x)
$$

Given a C^{*}-correspondence \mathcal{X} over a C^{*}-algebra A a Toeplitz representation of \mathcal{X} in a C^{*}-algebra B consists of a pair (ψ, π), where $\psi: \mathcal{X} \rightarrow B$ is a linear map and $\pi: A \rightarrow B$ is a $*$-homomorphism such that

$$
\psi(x \cdot a)=\psi(x) \pi(a), \psi(a \cdot x)=\pi(a) \psi(x)
$$

i.e., the pair (ψ, π) is a bimodule map and

$$
\psi(x)^{*} \psi(y)=\pi\left(\langle x, y\rangle_{A}\right)
$$

That is, the map ψ preserves inner product, see [11, Section 1]. Given such a Toeplitz representation, there is an $*$-homomorphism $\pi^{(1)}$ from $\mathcal{K}(\mathcal{X})$ into B which satisfies

$$
\pi^{(1)}\left(\Theta_{x, y}\right)=\psi(x) \psi(y)^{*} \quad \text { for all } \quad x, y \in \mathcal{X}
$$

where $\Theta_{x, y}=x \otimes \tilde{y}$ is the rank one operator defined by $\Theta_{x, y}(z)=$ $x \cdot\langle y, z\rangle_{A}$.

We define then

$$
J(\mathcal{X}):=\Phi^{-1}(\mathcal{K}(\mathcal{X}))
$$

which is a closed two sided-ideal in A, see [11, Definition 1.1]. Let K be an ideal in $J(\mathcal{X})$. We say that a Toeplitz representation (ψ, π) of \mathcal{X} is coisometric on K if

$$
\pi^{(1)}(\Phi(a))=\pi(a) \quad \text { for all } \quad a \in K
$$

When (ψ, π) is coisometric on all of $J(\mathcal{X})$, we say that it is CuntzPimsner covariant.
It is shown in [11, Proposition 1.3] that, for an ideal K in $J(\mathcal{X})$, there is a C^{*}-algebra $\mathcal{O}(K, \mathcal{X})$ and a Toeplitz representation $\left(k_{\mathcal{X}}, k_{A}\right)$ of \mathcal{X} into $\mathcal{O}(K, \mathcal{X})$ which is coisometric on K and satisfies:
(1) for every Toeplitz representation (ψ, π) of \mathcal{X} which is coisometric on K, there is an $*$-homomorphism $\psi \times_{K} \pi$ of $\mathcal{O}(K, \mathcal{X})$ such that $\left(\psi \times_{K} \pi\right) \circ k_{\mathcal{X}}=\psi$ and $\left(\psi \times_{K} \pi\right) \circ k_{A}=\pi$; and
(2) $\mathcal{O}(K, \mathcal{X})$ is generated as a C^{*}-algebra by $k_{\mathcal{X}}(\mathcal{X}) \cup k_{A}(A)$.

The algebra $\mathcal{O}(\{0\}, \mathcal{X})$ is the Toeplitz algebra $\mathcal{T}_{\mathcal{X}}$, and $\mathcal{O}(J(\mathcal{X}), \mathcal{X})$ is the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{X}}$.

For a finite graph $G=(E, V, r, s)$, a Cuntz-Krieger G-family consists of a family $\left\{P_{v}: v \in V\right\}$ of mutually orthogonal projections and a family of partial isometries $\left\{S_{e}\right\}_{e \in E}$ such that

$$
S_{e}^{*} S_{e}=P_{r(e)} \quad \text { for } \quad e \in E, \quad \text { and } \quad P_{v}=\sum_{s(f)=v} S_{f} S_{f}^{*} \quad \text { for } \quad v \in s(E)
$$

The edge matrix of G is the $E \times E$ matrix defined by

$$
A_{G}(e, f)= \begin{cases}1 & \text { if } r(e)=s(f) \\ 0 & \text { otherwise }\end{cases}
$$

Then, a Cuntz-Krieger G-family satisfies:

$$
S_{e}^{*} S_{e}=\sum_{f \in E} A_{G}(e, f) S_{f} S_{f}^{*}
$$

for every $e \in E$ such that $A_{G}(e, \cdot)$ has nonzero entries. It is shown in [16, Theorem 1.2] that there exists a C^{*}-algebra $C^{*}(G)$ generated
by a Cuntz-Krieger G-family $\left\{S_{e}, P_{v}\right\}$ of nonzero elements such that, for every Cuntz-Krieger G-family $\left\{W_{e}, T_{v}\right\}$ of partial isometries on H, there is a representation π of $C^{*}(G)$ on H such that $\pi\left(S_{e}\right)=W_{e}$ and $\pi\left(P_{v}\right)=T_{v}$ for all $e \in E$ and $v \in V$. The triple $\left(C^{*}(G), S_{e}, P_{v}\right)$ is unique up to isomorphism. Since we are assuming that G has no sinks, $\left\{S_{e}\right\}_{e \in E}$ is a Cuntz-Krieger family for the edge matrix A_{G} in the sense of [4], see [16, Section 1], and the projections P_{v} are redundant. If the matrix A_{G} satisfies Condition (I) from [4] (or, equivalently, since G is finite, if G satisfies Condition (L) from [16], which asserts that every loop has an exit), then $C^{*}(G)$ is unique and is isomorphic to the Cuntz-Krieger algebra from [4], see [16, Theorem 3.7].

Theorem 2.3. Let $\left(G,\left\{T_{v}, \rho_{v}\right\}_{v \in V},\left\{\phi_{e}\right\}_{e \in E}\right)$ be a Mauldin-Williams graph such that the graph G has no sinks and no sources. Let A and \mathcal{X} be defined as above. Then the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{X}}$ is isomorphic to $C^{*}(G)$.

Before proving the theorem, we introduce some notation. For $k \geq 2$, set

$$
\begin{aligned}
E^{k}:= & \left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right): \alpha_{i} \in E\right. \text { and } \\
& \left.r\left(\alpha_{i}\right)=s\left(\alpha_{i+1}\right), i=1, \ldots, k-1\right\},
\end{aligned}
$$

the set of paths of length k in the graph G. Let $E^{*}=\cup_{k \in N} E^{k}$ be the space of finite paths in the graph G. Also the infinite path space E^{∞} is defined to be

$$
E^{\infty}:=\left\{\left(\alpha_{i}\right)_{i \in \mathbf{N}}: \alpha_{i} \in E \text { and } r\left(\alpha_{i}\right)=s\left(\alpha_{i+1}\right) \forall i \in \mathbf{N}\right\} .
$$

For $v \in V$, we also define $E^{k}(v):=\left\{\alpha \in E^{k}: s(\alpha)=v\right\}$, and we define $E^{*}(v)$ and $E^{\infty}(v)$ in a similar way. We consider $E^{\infty}(v)$ endowed with the metric $\delta_{v}(\alpha, \beta)=c^{|\alpha \wedge \beta|}$ if $\alpha \neq \beta$ and 0 otherwise, where $\alpha \wedge \beta$ is the longest common prefix of α and β, and $|w|$ is the length of the word $w \in E^{*}$, see [8, p. 116]. Then $E^{\infty}(v)$ is a compact metric space and, since E^{∞} equals the disjoint union of the spaces $E^{\infty}(v), E^{\infty}$ becomes a compact metric space in a natural way.
For $\alpha \in E^{k}$, we write $\phi_{\alpha}=\phi_{\alpha_{1}} \circ \cdots \circ \phi_{\alpha_{k}}$ and $S_{\alpha}=S_{\alpha_{1}} \cdots S_{\alpha_{k}}$. Let \mathcal{S}_{v} be the state space of $A_{v}=C\left(T_{v}\right)$ and $\mathcal{S}=\prod_{v \in V} \mathcal{S}_{v}$. We consider
the metrics L_{v} defined on \mathcal{S}_{v} by the formula

$$
\begin{equation*}
L_{v}(\mu, \nu)=\sup \left\{|\mu(f)-\nu(f)|: f \in \operatorname{Lip}\left(T_{v}\right), c_{f} \leq 1\right\} \tag{2.1}
\end{equation*}
$$

where $\operatorname{Lip}\left(T_{v}\right)$ is the space of Lipschitz functions on T_{v} and c_{f} is the Lipschitz constant of the Lipschitz function f. For $f \in \operatorname{Lip}\left(T_{v}\right), v \in V$ and $\mu, \nu \in \mathcal{S}_{v}$,

$$
\begin{equation*}
|\mu(f)-\nu(f)| \leq c_{f} L_{v}(\mu, \nu) \tag{2.2}
\end{equation*}
$$

Further, if $\alpha \in E^{k}, k \geq 1$, and $\mu, \nu \in \mathcal{S}_{r(\alpha)}$, then $\mu \circ \phi_{\alpha_{k}}^{-1} \circ \cdots \circ \phi_{\alpha_{1}}^{-1}, \nu \circ$ $\phi_{\alpha_{k}}^{-1} \circ \cdots \circ \phi_{\alpha_{1}}^{-1} \in \mathcal{S}_{s(\alpha)}$ and

$$
\begin{equation*}
L_{s\left(\alpha_{1}\right)}\left(\mu \circ \phi_{\alpha_{k}}^{-1} \circ \cdots \circ \phi_{\alpha_{1}}^{-1}, \nu \circ \phi_{\alpha_{k}}^{-1} \circ \cdots \circ \phi_{\alpha_{1}}^{-1}\right) \leq c^{k} \operatorname{diam}_{L}(\mathcal{S}) \tag{2.3}
\end{equation*}
$$

where $\operatorname{diam}_{L}(\mathcal{S})=\max _{v \in V} \operatorname{diam}_{L_{v}}\left(\mathcal{S}_{v}\right)$.
For $\alpha \in E^{\infty}$, the sequence $\left(\phi_{\alpha_{1} \cdots \alpha_{k}}\left(T_{r\left(\alpha_{k}\right)}\right)\right)_{k \in \mathbf{N}} \subset T_{s(\alpha)}$ is a decreasing sequence of compact sets. Moreover, $\operatorname{diam}\left(\phi_{\alpha_{1} \cdots \alpha_{k}}\left(T_{r\left(\alpha_{k}\right)}\right)\right) \leq$ $c^{k} D$, where $D:=\max _{v \in V} \operatorname{diam}\left(T_{v}\right)$. Therefore

$$
\lim _{k \rightarrow \infty} \operatorname{diam}\left(\phi_{\alpha_{1} \cdots \alpha_{k}}\left(T_{r\left(\alpha_{k}\right)}\right)\right)=0
$$

so the intersection $\cap_{k \in \mathbf{N}} \phi_{\alpha_{1} \cdots \alpha_{k}}\left(T_{r\left(\alpha_{k}\right)}\right)$ consists of a single point, $x_{\alpha} \in T_{s(\alpha)}$. Hence, we can define a map $\Pi: E^{\infty} \rightarrow T$ by the formula

$$
\Pi(\alpha)=x_{\alpha}
$$

Then Π is a continuous map and its image is the invariant set K of the Mauldin-Williams graph.

Proof of Theorem 2.3. Let $\mu_{0}=\left(\mu_{v}^{0}\right)_{v \in V} \in \mathcal{S}$ be fixed and $a=$ $\sum_{v \in V}^{\oplus} a_{v} \in \operatorname{Lip}(T)$. We define

$$
i_{A}(a)=\lim _{k \rightarrow \infty} \sum_{\alpha \in E^{k}} \mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right) S_{\alpha} S_{\alpha}^{*}
$$

We prove that i_{A} is a norm decreasing $*$-homomorphism from the $*-$ algebra $\operatorname{Lip}(T)$ into $C^{*}(G)$. Then, $\operatorname{since} \operatorname{Lip}(T)$ is a dense $*$-subalgebra of $A=C(T)$, we can extend i_{A} to A.

We show first that the limit from the definition of $i_{A}(a)$ exists. Let $a \in \operatorname{Lip}(T)$, and let $\varepsilon>0$. Choose $k_{0} \in \mathbf{N}$ such that $c^{k} \operatorname{diam}_{L}(\mathcal{S}) c_{a}<\varepsilon$ for all $k \geq k_{0}$. Set $a_{k}:=\sum_{\alpha \in E^{k}} \mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right) S_{\alpha} S_{\alpha}^{*}$. Let $k, m \geq k_{0}$, and suppose that $k>m$. Then

$$
\begin{aligned}
a_{m}-a_{k}= & \sum_{\alpha \in E^{m}} \sum_{\substack{\beta \in E^{k-m} \\
s(\beta)=r(\alpha)}} \mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right) S_{\alpha} S_{\beta} S_{\beta}^{*} S_{\alpha}^{*} \\
& -\sum_{\alpha \in E^{m}} \sum_{\substack{\beta \in E^{k-m} \\
s(\beta)=r(\alpha)}} \mu_{r(\beta)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha \beta}\right) S_{\alpha} S_{\beta} S_{\beta}^{*} S_{\alpha}^{*} \\
= & \sum_{\alpha \in E^{m}} \sum_{\substack{\beta \in E^{k-m} \\
s(\beta)=r(\alpha)}}\left(\mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right)\right. \\
= & \sum_{\alpha \in E^{m}} \sum_{\substack{\beta \in E^{k-m} \\
s(\beta)=r(\alpha)}}\left(\mu_{r(\alpha)}^{0}\left(a_{s(\alpha)}^{0} \circ \phi_{\alpha}\right)\right. \\
& \left.-\mu_{r(\beta)}^{0} \circ \phi_{\beta}^{-1}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right)\right) S_{\alpha} S_{\beta} S_{\beta}^{*} S_{\alpha}^{*}
\end{aligned}
$$

Since $\left|\mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right)-\mu_{r(\beta)}^{0} \circ \phi_{\beta}^{-1}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right)\right|<\varepsilon$, by equations (2.2) and (2.3), for all $\alpha \in E^{m}, \beta \in E^{k-m}$ such that $s(\beta)=r(\alpha)$, and since $S_{\alpha} S_{\beta} S_{\beta}^{*} S_{\alpha}^{*}$ are orthogonal projections, $\left\|a_{m}-a_{k}\right\|<\varepsilon$, for all $m, k \geq k_{0}$. So $\left(a_{k}\right)_{k \in \mathbf{N}}$ is a Cauchy sequence, hence convergent. Since $\left\|a_{m}\right\|=\max _{\alpha \in E^{m}}\left|\mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right)\right| \leq\|a\|$ for all $m \in \mathbf{N}$, $\left\|i_{A}(a)\right\| \leq\|a\|$ for all $a \in A$.
Next we prove that i_{A} is a homomorphism. Let $a, b \in \operatorname{Lip}(T)$. Then for each $\alpha \in E^{\infty}$ there is a point $x_{\alpha} \in K$ such that $\cap_{k \in \mathbf{N}} \phi_{\alpha_{1} \cdots \alpha_{k}}\left(T_{r\left(\alpha_{k}\right)}\right)$ $=\left\{x_{\alpha}\right\}$. Then $\lim _{k \rightarrow \infty} \mu_{r\left(\alpha_{k}\right)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha_{1} \cdots \alpha_{k}}\right)=a\left(x_{\alpha}\right), \lim _{k \rightarrow \infty} \mu_{r\left(\alpha_{k}\right)}^{0}$ $\left(b_{s(\alpha)} \circ \phi_{\alpha_{1} \cdots \alpha_{k}}\right)=b\left(x_{\alpha}\right)$ and $\lim _{k \rightarrow \infty} \mu_{r\left(\alpha_{k}\right)}^{0}\left((a b)_{s(\alpha)} \circ \phi_{\alpha_{1} \cdots \alpha_{k}}\right)=$ $a\left(x_{\alpha}\right) b\left(x_{\alpha}\right)$. Let $\varepsilon>0$. Since $\operatorname{diam}\left(\phi_{\alpha_{1} \cdots \alpha_{k}}\left(T_{r\left(\alpha_{k}\right)}\right)\right) \leq c^{k} D$ for all $\alpha \in E^{\infty}$ and $k \in \mathbf{N}$, there exists some $N \in \mathbf{N}$ such that $\left|\mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha_{1} \cdots \alpha_{k}}\right)-a\left(x_{\alpha}\right)\right|<\varepsilon,\left|\mu_{r(\alpha)}^{0}\left(b_{s(\alpha)} \circ \phi_{\alpha_{1} \cdots \alpha_{k}}\right)-b\left(x_{\alpha}\right)\right|<\varepsilon$ and $\left|\mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha_{1} \cdots \alpha_{k}} b_{s(\alpha)} \circ \phi_{\alpha_{1} \cdots \alpha_{k}}\right)-a\left(x_{\alpha}\right) b\left(x_{\alpha}\right)\right|<\varepsilon$ for all $k \geq N$
and for all $\alpha \in E^{\infty}$. Then

$$
\begin{aligned}
& \| \sum_{\alpha \in E^{k}} \mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha} b_{s(\alpha)} \circ \phi_{\alpha}\right) S_{\alpha} S_{\alpha}^{*} \\
& \quad-\sum_{\alpha \in E^{k}} \mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right) \mu_{r(\alpha)}^{0}\left(b_{s(\alpha)} \circ \phi_{\alpha}\right) S_{\alpha} S_{\alpha}^{*} \| \\
& \leq \max _{\alpha \in E^{k}}\left|\mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha} b_{s(\alpha)} \circ \phi_{\alpha}\right)-\mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right) \mu_{r(\alpha)}^{0}\left(b_{s(\alpha)} \circ \phi_{\alpha}\right)\right| \\
& <\varepsilon(1+\|a\|+\|b\|)
\end{aligned}
$$

for all $k \geq N$. Thus, $i_{A}(a b)=i_{A}(a) i_{A}(b)$. Hence, i_{A} is a homomorphism and one can easily see that it is an $*$-homomorphism.

Further, i_{A} satisfies the equation

$$
\begin{equation*}
i_{A}(a) S_{e}=S_{e} i_{A}\left(a_{s(e)} \circ \phi_{e}\right) \quad \text { for all } \quad a \in A, \quad \text { and } \quad e \in E \tag{2.4}
\end{equation*}
$$

where we extend the map $a_{s(e)} \circ \phi_{e}$ to all T by setting it to be 0 when $x \notin T_{r(e)}$, since, for $a \in \operatorname{Lip}(T)$, we have:

$$
\begin{aligned}
i_{A}(a) S_{e} & =\left(\lim _{k \rightarrow \infty} \sum_{\alpha \in E^{k}} \mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right) S_{\alpha} S_{\alpha}^{*}\right) S_{e} \\
& =\lim _{k \rightarrow \infty} \sum_{\alpha \in E^{k}, \alpha_{1}=e} \mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right) S_{e} S_{\alpha_{2}} \cdots S_{\alpha_{k}} S_{\alpha_{k}}^{*} \cdots S_{\alpha_{2}}^{*} \\
& =S_{e} \lim _{k \rightarrow \infty} \sum_{\alpha^{\prime} \in E^{k-1}(r(e))} \mu_{r\left(\alpha^{\prime}\right)}^{0}\left(a_{s(e)} \circ \phi_{e} \circ \phi_{\alpha^{\prime}}\right) S_{\alpha^{\prime}} S_{\alpha^{\prime}}^{*} \\
& =S_{e} i_{A}\left(a_{s(e)} \circ \phi_{e}\right) .
\end{aligned}
$$

We also define the linear map $i_{\mathcal{X}}: \mathcal{X} \rightarrow C^{*}(G)$ by the formula

$$
i_{\mathcal{X}}(\xi)=\sum_{e \in E} S_{e} i_{A}\left(\xi_{e}\right)
$$

where $\xi_{e} \in C(T)$ is defined by $\xi_{e}(x)=\xi(e, x)$ if $x \in T_{r(e)}$ and 0 otherwise. We have

$$
i_{\mathcal{X}}(\xi \cdot a)=\sum_{e \in E} S_{e} i_{A}\left(\xi_{e} a\right)=\sum_{e \in E} S_{e} i_{A}\left(\xi_{e}\right) i_{A}(a)=i_{\mathcal{X}}(\xi) i_{A}(a)
$$

$$
\begin{aligned}
i_{\mathcal{X}}(a \cdot \xi) & =\sum_{e \in E} S_{e} i_{A}\left(a_{s(e)} \circ \phi_{e} \xi_{e}\right)=\sum_{e \in E} S_{e} i_{A}\left(a_{s(e)} \circ \phi_{e}\right) i_{A}\left(\xi_{e}\right) \\
& =\sum_{e \in E} i_{A}(a) S_{e} i_{A}\left(\xi_{e}\right)=i_{A}(a) i_{\mathcal{X}}(\xi)
\end{aligned}
$$

and

$$
\begin{aligned}
i_{\mathcal{X}}(\xi)^{*} i_{\mathcal{X}}(\eta) & =\left(\sum_{e \in E} S_{e} i_{A}\left(\xi_{e}\right)\right)^{*}\left(\sum_{f \in E} S_{f} i_{A}\left(\eta_{f}\right)\right) \\
& =\sum_{e \in E} i_{A}\left(\xi_{e}\right)^{*} i_{A}\left(\eta_{e}\right)=i_{A}\left(\sum_{e \in E} \xi_{e}^{*} \eta_{e}\right)=i_{A}\left(\langle\xi, \eta\rangle_{A}\right)
\end{aligned}
$$

Hence $\left(i_{A}, i_{\mathcal{X}}\right)$ is a Toeplitz representation.
Let $J(\mathcal{X}):=\Phi^{-1}(\mathcal{K}(\mathcal{X}))$. Note that $J(\mathcal{X})=A$ since for $a \in A$ we have

$$
\Phi(a) \xi=\sum_{e \in E} \Theta_{x^{e}, \delta^{e}}(\xi)
$$

where $x^{e} \in \mathcal{X}$ is defined by $x_{f}^{e}=a_{s(e)} \circ \phi_{e} \delta_{f}^{e}$,

$$
\delta^{e}(f, x)= \begin{cases}1 & \text { if } f=e \text { and } x \in T_{r(e)} \\ 0 & \text { otherwise }\end{cases}
$$

Then, for $a \in A$, we have

$$
\begin{aligned}
i_{A}^{(1)}(\Phi(a)) & =i_{A}^{(1)}\left(\sum_{e \in E} \Theta_{x^{e}, \delta^{e}}\right)=\sum_{e \in E} i_{A}^{(1)}\left(\Theta_{x^{e}, \delta^{e}}\right) \\
& =\sum_{e \in E} i_{\mathcal{X}}\left(x^{e}\right) i_{\mathcal{X}}\left(\delta^{e}\right)^{*} \\
& =\sum_{e \in E}\left(\sum_{f \in E} S_{f} i_{A}\left(x_{f}^{e}\right)\right)\left(\sum_{g \in E} S_{g} i_{A}\left(\delta_{g}^{e}\right)\right)^{*} \\
& =\sum_{e \in E}\left(S_{e} i_{A}\left(a_{s(e)} \circ \phi_{e}\right)\right)\left(i_{A}\left(1_{T_{r(e)}}\right) S_{e}^{*}\right) \\
& =i_{A}(a) \sum_{e \in E} S_{e} S_{e}^{*}=i_{A}(a)
\end{aligned}
$$

Therefore, $\left(i_{A}, i_{\mathcal{X}}\right)$ is a Cuntz-Pimsner covariant representation.

For δ^{e} defined as above, we notice that

$$
i_{\mathcal{X}}\left(\delta^{e}\right)=\sum_{f \in E} S_{f} i_{A}\left(\delta_{f}^{e}\right)=S_{e} i_{A}\left(1_{T_{r(e)}}\right)=S_{e}
$$

Then $i_{\mathcal{X}}(\mathcal{X}) \cup i_{A}(A)$ generates $C^{*}(G)$.
Since $\left(i_{A}, i_{\mathcal{X}}\right)$ is a Cuntz-Pimsner covariant representation, there exists a homomorphism $i_{\mathcal{X}} \times i_{A}$ of $\mathcal{O}_{\mathcal{X}}$ onto $C^{*}(G)$ such that $\left(i_{\mathcal{X}} \times\right.$ $\left.i_{A}\right) \circ k_{\mathcal{X}}=i_{\mathcal{X}}$ and $\left(i_{\mathcal{X}} \times i_{A}\right) \circ k_{A}=i_{A}$. We prove that $i_{\mathcal{X}} \times i_{A}$ is also injective. Let $\gamma: \mathbf{T} \rightarrow \operatorname{Aut}\left(\mathcal{O}_{\mathcal{X}}\right)$ defined by $\gamma_{z}\left(k_{\mathcal{X}}(\xi)\right)=$ $z k_{\mathcal{X}}(\xi)$, and let $\gamma_{z}\left(k_{A}(a)\right)=k_{A}(a)$ be the gauge action on $\mathcal{O}_{\mathcal{X}}$. Let $\beta: \mathbf{T} \rightarrow \operatorname{Aut}\left(C^{*}(G)\right)$ defined by $\beta_{z}\left(S_{e}\right)=z S_{e}$ for all $e \in E$ be the gauge action on $C^{*}(G)$. Therefore, by the definition of i_{A} and $i_{\mathcal{X}}$, $\beta_{z}\left(i_{\mathcal{X}}(\xi)\right)=z i_{\mathcal{X}}(\xi)$ and $\beta_{z}\left(i_{A}(a)\right)=i_{A}(a)$ for all $\xi \in \mathcal{X}$ and $a \in A$. Hence $\beta_{z} \circ\left(i_{\mathcal{X}} \times i_{A}\right)=\left(i_{\mathcal{X}} \times i_{A}\right) \circ \gamma_{z}$ for all $z \in \mathbf{T}$. Then the gaugeinvariant uniqueness theorem [11, Theorem 4.1] implies that $i_{\mathcal{X}} \times i_{A}$ is injective. Thus, $C^{*}(G)$ is isomorphic to the Cuntz-Pimsner algebra associated to the C^{*}-correspondence \mathcal{X}.

Corollary 2.4. The Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{X}}=\mathcal{O}(J(\mathcal{X}), \mathcal{X})$ of the C^{*}-correspondence associated with an iterated function system $\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)$ is isomorphic to the Cuntz algebra \mathcal{O}_{n}.

If K (the invariant set of the Mauldin-Williams graph) is a proper subset of T, then $U:=T \backslash K$ is a nonempty open set of T. Let $I_{U}:=C_{0}(U)$ be the corresponding ideal in A. Then

$$
\mathcal{X}_{I_{U}}:=\left\{\xi \in \mathcal{X}:\langle\xi, \eta\rangle_{A} \in I_{U} \text { for all } \eta \in \mathcal{X}\right\}
$$

is a right Hilbert I_{U}-module, and we know that $\mathcal{X}_{I_{U}}=\mathcal{X} I_{U}:=\{\xi \cdot i$: $\left.\xi \in \mathcal{X}, i \in I_{U}\right\}$, see [11, Section 2]. It follows that $\mathcal{X}_{I_{U}}=\left\{\xi \in \mathcal{X}: \xi_{e} \in\right.$ $\left.C_{0}(U)\right\}\left(\xi_{e} \in C_{0}(U)\right.$ means that $\xi(e, x)=0$ if $\left.x \in K\right)$. We claim that I_{U} is an \mathcal{X}-invariant ideal in A, i.e., $\Phi\left(I_{U}\right) \mathcal{X} \subset \mathcal{X} I_{U}$. For $i \in I_{U}$ and $\xi \in \mathcal{X}$, we have $(\Phi(i) \xi)_{e}=i \circ \phi_{e} \xi_{e}$, and, since $i \in I_{U}$ and $\phi_{e}\left(K_{r(e)}\right) \subset K_{s(e)}$, $i \circ \phi_{e} \in I_{U}$. Hence, $(\Phi(i) \xi)_{e} \in I_{U}$. Therefore, I_{U} is an \mathcal{X}-invariant ideal in A and $\mathcal{X} / \mathcal{X} I_{U}$ is a C^{*}-correspondence over $A / I_{U} \simeq C(K)$, see [11, Lemma 2.3]. Moreover $\mathcal{X} / \mathcal{X} I_{U} \simeq \mathcal{X}(K)$, where $\mathcal{X}(K)=C\left(E \times{ }_{G} K\right)$ is the C^{*}-correspondence defined as in Definition 2.2 for the C^{*}-algebra
$C(K)$. Then the ideal $\mathcal{I}\left(I_{U}\right)$ of $\mathcal{O}_{\mathcal{X}}$ generated by $i_{A}\left(I_{U}\right)$ is Morita equivalent to $\mathcal{O}_{\mathcal{X} I_{U}}$, and since $\Phi(A) \subset \mathcal{K}(\mathcal{X}), \mathcal{O}_{\mathcal{X}} / \mathcal{I}\left(I_{U}\right) \cong \mathcal{O}_{\mathcal{X} / \mathcal{X} I_{U}}$, see [11, Corollary 3.3].

Proposition 2.5. The ideal $\mathcal{I}\left(I_{U}\right)$ generated by $i_{A}\left(I_{U}\right)$ is equal to 0 .

Proof. Let $a \in I_{U}$ be a Lipschitz function. As in the proof of Theorem 2.3, we have that $i_{A}(a)=\lim _{k \rightarrow \infty} \sum_{\alpha \in E^{k}} \mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ\right.$ $\left.\phi_{\alpha}\right) S_{\alpha} S_{\alpha}^{*}$. Let $\varepsilon>0$. Since $\cap_{k \in \mathbf{N}} \phi_{\alpha_{1} \cdots \alpha_{k}}\left(T_{r\left(\alpha_{k}\right)}\right)=\left\{x_{\alpha}\right\}$ with $x_{\alpha} \in K_{s(\alpha)}$ and $\operatorname{diam}\left(\phi_{\alpha_{1} \cdots \alpha_{k}}\right)\left(T_{r\left(\alpha_{k}\right)}\right)<c^{k} D$ for all $\alpha \in E^{\infty}$, there exists $N \in \mathbf{N}$ such that $\left|\mu_{r\left(\alpha_{k}\right)}^{0}\left(a \circ \phi_{\alpha_{1} \cdots \alpha_{k}}\right)-a\left(x_{\alpha}\right)\right|<\varepsilon$ for all $\alpha \in E^{\infty}$ and $k \geq N$. Since $a(x)=0$ for all $x \in K$, $\left\|\sum_{\alpha \in E^{k}} \mu_{r(\alpha)}^{0}\left(a_{s(\alpha)} \circ \phi_{\alpha}\right) S_{\alpha} S_{\alpha}^{*}\right\|<\varepsilon$ for all $k \geq N$. Hence, $i_{A}(a)=0$.
\square

Corollary 2.6. The Cuntz-Pimsner algebra associated to the C^{*} correspondence $C\left(E \times_{G} K\right)$ over $C(K)$ with the actions defined as in Definition 2.2 is isomorphic to $C^{*}(G)$.

One can interpret the previous results in the particular case of the iterated function system and obtain the result from [23, Remark 4.6].
3. On noncommutative Mauldin-Williams graphs. We give a generalization of the work of Pinzari, Watatani and Yonetani from [23, Section 4.3] on noncommutative iterated function systems in the context of "noncommutative" Mauldin-Williams graphs and the Rieffel metric. We show that, in fact, these situations are no more general than those just discussed.

We begin by reviewing the Rieffel metric.

Definition 3.1. Let A be a unital C^{*}-algebra, let $\mathcal{L}(A) \subset A$ be a dense subspace of A (the Lipschitz elements), and let L be a semi-norm (the Lipschitz semi-norm) on $\mathcal{L}(A)$ such that $\mathcal{K}:=\{a \in \mathcal{L}(A): L(a)=$ $0\}$ equals the scalar multiples of the identity. The Rieffel metric ρ on
the state space \mathcal{S} of A is defined by the equation

$$
\rho(\mu, \nu)=\sup \{|\mu(a)-\nu(a)|: a \in \mathcal{L}(A), L(a) \leq 1\}
$$

for all $\mu, \nu \in \mathcal{S}$. We will suppose that the metric ρ is bounded on S and that the corresponding topology coincides with the weak-* topology on \mathcal{S}.

For a compact metric space (X, ρ), let

$$
\mathcal{C}(X):=\{E: E \text { is a non-empty compact subset of } X\}
$$

The Hausdorff metric on $\mathcal{C}(X)$ is defined by the formula

$$
\delta_{\rho}(E, F)=\inf \left\{r>0: U_{r}(E) \supseteq F \text { and } U_{r}(F) \supseteq E\right\}
$$

for all $E, F \in \mathcal{C}(X)$, where $U_{r}(E)=\{x \in X: \rho(x, y)<r$ for some $y \in$ $E\}$, see [8, Theorem 2.4.1] or [15, Proposition 1.1.5]. Then $\left(\mathcal{C}(X), \delta_{\rho}\right)$ is a compact metric space.

For a C^{*}-algebra A, Rieffel defines the quantum closed subsets of A in
[29, p. 14] to be the closed convex subsets of the state space $\mathcal{S}(A)$ of A. If L is a Lipschitz semi-norm on A and ρ_{L} is the corresponding Rieffel metric, the space $\mathcal{Q}(A)$ of quantum closed subsets of A is a compact metric space for the associated Hausdorff metric, see [29, p. 14]).

Following the definition of the classical Mauldin-Williams graphs, we define a noncommutative variant.

Definition 3.2. A noncommutative Mauldin-Williams graph is a $\operatorname{system}\left(G,\left\{A_{v}, \mathcal{L}_{v}, L_{v}, \rho_{v}\right\}_{v \in V},\left\{\phi_{e}\right\}_{e \in E}\right)$ where $G=(V, E, s, r)$ is a graph and where $\left\{A_{v}, \mathcal{L}_{v}, L_{v}\right\}_{v \in V}$ and $\left\{\phi_{e}\right\}_{e \in E}$ are families such that
(1) For each $v \in V, A_{v}$ is a unital C^{*}-algebra with a prescribed Lipschitz semi-norm L_{v} on a prescribed subspace \mathcal{L}_{v} of Lipschitz elements in A_{v} and ρ_{v} is the corresponding Rieffel metric.
(2) For $e \in E, \phi_{e}$ is a unital $*$-homomorphism from $A_{s(e)}$ to $A_{r(e)}$ such that

$$
\rho_{s(e)}\left(\phi_{e}^{*}(\mu), \phi_{e}^{*}(\nu)\right) \leq c \rho_{r(e)}(\mu, \nu)
$$

for some constant c satisfying $0<c<1$ and all $\mu, \nu \in \mathcal{S}_{r(e)}$ (where \mathcal{S}_{v} is the state space of the C^{*}-algebra A_{v}).

We shall assume, too, that there are no sinks in the graph G. We also let $\mathcal{S}:=\prod_{v \in V} \mathcal{S}_{v}$.
When we have one vertex and n edges we call the system a noncommutative iterated function system.
Let $\mathcal{C}\left(\mathcal{S}_{v}\right)$ be the space of compact subsets of \mathcal{S}_{v} endowed with the Hausdorff metric $\delta_{\rho_{L v}}$, for each $v \in V$. Let $\mathcal{C}=\prod_{v \in V} \mathcal{C}\left(\mathcal{S}_{v}\right)$. Then \mathcal{C} is a compact metric space. Moreover, the map $F: \mathcal{C} \rightarrow \mathcal{C}$ defined by the formula

$$
F\left(\left(K_{v}\right)_{v \in V}\right)=\left(\bigcup_{\substack{e \in E \\ s(e)=v}} \phi_{e}^{*}\left(K_{r(e)}\right)\right)_{v \in V}
$$

is a contraction, since each ϕ_{e}^{*} is a contraction with respect to the Rieffel metric. Thus, there exists a unique element $\left(K_{v}\right)_{v \in V} \in \mathcal{C}$ such that

$$
\begin{equation*}
K_{v}=\bigcup_{\substack{e \in E \\ s(e)=v}} \phi_{e}^{*}\left(K_{r(e)}\right) \tag{3.1}
\end{equation*}
$$

for all $v \in V$. Let T_{v} be the closed convex hull of K_{v}, for $v \in V$. That is $T_{v} \in \mathcal{Q}\left(A_{v}\right)$ for all $v \in V$. Since by [29, Proposition 3.6] there is a bijection between isomorphism classes of quotients of A_{v} and closed convex subsets of \mathcal{S}_{v}, we will assume that

$$
\begin{equation*}
\mathcal{S}_{v}=T_{v} \quad \text { for all } \quad v \in V, \tag{3.2}
\end{equation*}
$$

by taking a quotient of the original C^{*}-algebra A_{v}, if necessary. In particular, if $\left(M_{v}\right)_{v \in V} \in \mathcal{S}$ is any family which satisfies equation (3.1), then $M_{v}=K_{v}$ and the closed convex hull of M_{v} equals \mathcal{S}_{v} for all $v \in V$.

Lemma 3.3. In the above situation, if \mathcal{I} is an ideal in $\sum_{v \in V}^{\oplus} A_{v}$ of the form $\mathcal{I}=\left(\mathcal{I}_{v}\right)_{v \in V}$, with \mathcal{I}_{v} a proper ideal of A_{v}, then

$$
\begin{equation*}
\mathcal{I}_{v}=\bigcap_{\substack{e \in E \\ s(e)=v}} \phi_{e}^{-1}\left(\mathcal{I}_{r(e)}\right) \quad \text { if and only if } \quad \mathcal{I}_{v}=\left(0_{v}\right) \quad \text { for all } \quad v \in V \tag{3.3}
\end{equation*}
$$

Proof. Let $\mathcal{I}=\left(\mathcal{I}_{v}\right)_{v \in V}$ be such that $\mathcal{I}_{v}=\cap_{e \in E, s(e)=v} \phi_{e}^{-1}\left(\mathcal{I}_{r(e)}\right)$ for all $v \in V$. Let $M_{v}:=\left\{\mu \in \mathcal{S}_{v}: \mu(a)=0\right.$ for all $\left.a \in \mathcal{I}_{v}\right\}$. We show that
$\left(M_{v}\right)_{v \in V}$ is a family which satisfies equation (3.1). Let $v \in V$, and let $\mu \in \cup_{e \in E, s(e)=v} \phi_{e}^{*}\left(M_{r(e)}\right)$. Then there exists some $e \in E$ and $\nu \in M_{r(e)}$ such that $\mu=\phi_{e}^{*}(\nu)$. Let $a \in \mathcal{I}_{v}$. Then $\phi_{e}(a)$ belongs to $\mathcal{I}_{r(e)}$. Hence $\mu(a)=\nu\left(\phi_{e}(a)\right)=0$. Therefore $\mu \in M_{v}$.

Now suppose that there is some $\mu \in M_{v}$ such that

$$
\mu \notin \bigcup_{\substack{e \in E \\ s(e)=v}} \phi_{e}^{*}\left(M_{r(e)}\right) .
$$

Hence, there is some $a \in A_{v}$ such that $\mu(A) \neq 0$ and $\phi_{e}^{*}(\nu)(a)=0$ for all $\nu \in M_{r(e)}$ and for all $e \in E$ such that $s(e)=v$. Then $\phi_{e}\left(a_{v}\right) \in \mathcal{I}_{r(e)}$ for all $e \in E$, therefore $a_{v} \in \mathcal{I}_{v}$. Thus $\mu(a)=0$, which is a contradiction. Then the family $\left(M_{v}\right)_{v \in V}$ satisfies equation (3.1). Therefore $\mu(a)=0$ for all $\mu \in \mathcal{S}_{v}$ and $a \in \mathcal{I}_{v}$, hence $\mathcal{I}_{v}=0$ for all $v \in V$.
Suppose that there exists some $a \in A_{v}$ which is not zero, but $a \in \cap_{e \in E, s(e)=v} \operatorname{Ker} \phi_{e}$. Then there is some $\mu \in \mathcal{S}_{v}$ such that $\mu(a)=0$. Since $K_{v}=\cup_{e \in E, s(e)=v} \phi_{e}^{*}\left(K_{r(e)}\right)$, there is some $e \in E$ with $s(e)=v$ and some $\nu \in S_{r(e)}$ such that $\mu=\phi_{e}^{*}(\nu)$. Since $\phi_{e}(a)=0$, we obtain that $\mu(a)=\nu\left(\phi_{e}(a)\right)=0$, which is a contradiction. Hence $\left(0_{v}\right)=\cap_{e \in E, s(e)=v} \operatorname{Ker} \phi_{e}$.

Recall that E^{k} denotes the set of paths of length k, E^{∞} denotes the set of infinite paths in the graph $G, E^{k}(v)$ denotes the set of paths of length k starting at the vertex v, and $E^{\infty}(v)$ denotes the set of infinite paths starting at the vertex v. For $k \in \mathbf{N}$ and $\alpha \in E^{k}$, we write $\phi_{\alpha_{1} \cdots \alpha_{k}}^{*}$ for the map $\phi_{\alpha_{1}}^{*} \circ \cdots \circ \phi_{\alpha_{k}}^{*}: \mathcal{S}_{r\left(\alpha_{k}\right)} \rightarrow \mathcal{S}_{s\left(\alpha_{1}\right)}$ and $\phi_{\alpha_{k} \cdots \alpha_{1}}$ for the map $\phi_{\alpha_{k}} \circ \cdots \circ \phi_{\alpha_{1}}: A_{s\left(\alpha_{1}\right)} \rightarrow A_{r\left(\alpha_{k}\right)}$. We will use the following results (which are similar to the commutative case): if $v \in V, a \in \mathcal{L}_{v}\left(A_{v}\right)$ and $\mu, \nu \in \mathcal{S}_{v}$ then $|\mu(a)-\nu(a)| \leq \rho_{v}(\mu, \nu) \cdot L_{v}(a)$; if $\alpha \in E^{k}$ and $\mu, \nu \in \mathcal{S}_{r(\alpha)}$, then

$$
\begin{equation*}
\rho_{s(\alpha)}\left(\phi_{\alpha}^{*}(\mu), \phi_{\alpha}^{*}(\nu)\right) \leq c^{k} \rho_{r(\alpha)}(\mu, \nu) \leq c^{k} D \tag{3.4}
\end{equation*}
$$

where $s(\alpha)=s\left(\alpha_{1}\right), r(\alpha)=r\left(\alpha_{k}\right)$ and $D=\max _{v \in V} \operatorname{diam}_{L_{v}}\left(\mathcal{S}_{v}\right)$.
Since $\left(G,\left\{\mathcal{S}_{v}, \rho_{v}\right\}_{v \in V},\left\{\phi_{e}^{*}\right\}_{e \in E}\right)$ is a (classical) Mauldin-Williams graph, for each $\alpha \in E^{\infty}$ there is a unique state $\mu_{\alpha} \in \mathcal{S}_{s(\alpha)}$ such that $\left\{\mu_{\alpha}\right\}=\cap_{k \in \mathbf{N}} \phi_{\alpha_{1} \cdots \alpha_{k}}^{*}\left(\mathcal{S}_{r\left(\alpha_{k}\right)}\right)$. In particular $\lim _{k \rightarrow \infty} \phi_{\alpha_{1} \cdots \alpha_{k}}^{*}\left(\mu_{r\left(\alpha_{k}\right)}\right)=$ μ_{α} for all $\mu=\left(\mu_{v}\right)_{v \in V} \in \mathcal{S}$.

Theorem 3.4. Let $\left(G,\left\{A_{v}, \mathcal{L}_{v}, L_{v}, \rho_{v}\right\}_{v \in V},\left\{\phi_{e}\right\}_{e \in E}\right.$) be a (noncommutative) Mauldin-Williams graph. Suppose that the graph G has no sinks. Then there is an injective *-homomorphism from A into $C\left(E^{\infty}\right)$.

Proof. Fix $v_{0} \in V$. Define $\pi_{v_{0}}: A_{v_{0}} \rightarrow C\left(E^{\infty}\left(v_{0}\right)\right)$ by the formula

$$
\pi_{v_{0}}(a)(\alpha)=\mu_{\alpha}(a)
$$

for all $a \in A_{v_{0}}$. Thus, if $a \in \mathcal{L}_{v_{0}}$,

$$
\pi_{v_{0}}(a)(\alpha)=\lim _{k \rightarrow \infty} \mu_{r\left(\alpha_{k}\right)}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(a)\right)
$$

for all $\mu=\left(\mu_{v}\right)_{v \in V} \in \mathcal{S}$. By the comments preceding the theorem the map $\pi_{v_{0}}$ is well defined. We prove that it is a homomorphism.

Let $\mu_{0}=\left(\mu_{v}^{0}\right)_{v \in V} \in \mathcal{S}$ be fixed. Let $a \in \mathcal{L}_{v_{0}}, \alpha \in E^{\infty}\left(v_{0}\right)$ and let $\varepsilon>0$. Let $k \in \mathbf{N}$ be such that $c^{k} D L_{v_{0}}(a)<\varepsilon$. For any $\mu=\left(\mu_{v}\right)_{v \in V} \in \mathcal{S}$, we have

$$
\begin{aligned}
& \left|\mu_{r\left(\alpha_{k}\right)}\left(\mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(a)\right) 1_{A_{r\left(\alpha_{k}\right)}}-\phi_{\alpha_{k} \cdots \alpha_{1}}(a)\right)\right| \\
& \quad=\left|\mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(a)\right)-\mu_{r\left(\alpha_{k}\right)}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(a)\right)\right|<c^{k} D L_{v_{0}}(a)<\varepsilon
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left\|\mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(a)\right) 1_{A_{r\left(\alpha_{k}\right)}}-\phi_{\alpha_{k} \cdots \alpha_{1}}(a)\right\|<4 \varepsilon . \tag{3.5}
\end{equation*}
$$

Let $a, b \in A_{v_{0}}$. We have

$$
\begin{aligned}
& \left|\mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(a b)\right)-\mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(a)\right) \mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(b)\right)\right| \\
& \leq \\
& \leq\left\|\mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(a b)\right)-\phi_{\alpha_{k} \cdots \alpha_{1}}(a) \phi_{\alpha_{k} \cdots \alpha_{1}}(b)\right\| \\
& \quad+\left\|\phi_{\alpha_{k} \cdots \alpha_{1}}(a) \phi_{\alpha_{k} \cdots \alpha_{1}}(b)-\phi_{\alpha_{k} \cdots \alpha_{1}}(a) \mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(b)\right)\right\| \\
& \quad+\| \phi_{\alpha_{k} \cdots \alpha_{1}}(a) \mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(b)\right) \\
& \quad \quad-\mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(a)\right) \mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(b)\right) \| \\
& <4 \varepsilon+4\|a\| \varepsilon+4 \varepsilon=(8+4\|a\|) \varepsilon,
\end{aligned}
$$

by inequality (3.5). Since $\lim _{k \rightarrow \infty} \mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(a b)\right)=\pi_{v_{0}}(a b)(\alpha)$ and $\lim _{k \rightarrow \infty} \mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(a)\right) \mu_{r\left(\alpha_{k}\right)}^{0}\left(\phi_{\alpha_{k} \cdots \alpha_{1}}(b)\right)=\pi_{v_{0}}(a)(\alpha) \pi_{v_{0}}(b)(\alpha)$, we see that $\pi_{v_{0}}$ is a homomorphism.

Hence, for each $v \in V$, we have defined an $*$-homomorphism π_{v} : $A_{v} \rightarrow C\left(E^{\infty}(v)\right)$. We prove that π_{v} is injective for all $v \in V$. Let $v \in V$. Let $a \in A_{v}$. Then

$$
\begin{aligned}
a \in \operatorname{Ker} \pi_{v} & \Longleftrightarrow \pi_{v}(a)(\alpha)=0 \forall \alpha=\left(\alpha_{n}\right)_{n \in \mathbf{N}} \in E^{\infty}(v) \\
& \Longleftrightarrow \pi_{v}(a)(e \beta)=0 \forall \beta \in E^{\infty}(r(e)) \quad \text { and } \quad e \in E(v) \\
& \Longleftrightarrow \pi_{r(e)}\left(\phi_{e}(a)\right)(\beta)=0 \forall \beta \in E^{\infty}(r(e)) \quad \text { and } \quad e \in E(v) \\
& \Longleftrightarrow a \in \bigcap_{s(e)=v} \operatorname{Ker} \pi_{r(e)} \circ \phi_{e} .
\end{aligned}
$$

Lemma 3.3 implies that $\operatorname{Ker} \pi_{v}=0$ for all $v \in V$, hence the $*-$ homomorphism $\pi: A \rightarrow C\left(E^{\infty}\right)$ defined by the formula

$$
\pi\left(\left(a_{v}\right)_{v \in V}\right)=\sum_{v \in V}{ }^{\oplus} \pi_{v}\left(a_{v}\right)
$$

is an injective $*$-homomorphism.

Corollary 3.5. Under the hypothesis of Theorem 3.4, we conclude that A must be a commutative C^{*}-algebra.

Even in the setting of a "noncommutative" iterated function system studied in [23, Section 4.2], if we have defined a Rieffel metric such that the underlying topology and the weak-* topology coincide, and if the duals of the endomorphisms restricted to the state space of A are contractions with respect to the Rieffel metric, then (under the hypothesis that A satisfies equation (3.2)) A is forced to be commutative and the endomorphisms ϕ_{i} must come from an ordinary iterated function system, i.e., $A=C(K)$ for some compact metric space and there are contractions $\left\{\varphi_{i}\right\}_{i=1, \ldots, n}$ defined on K such that $\phi_{i}(a)=a \circ \varphi_{i}$. This seems not to have been noticed by the authors of [23].
The assumption that the graph G has no sinks is essential in the proofs of Theorems 2.3 and 3.4, since it forces the presence of infinite paths in the graph. Also, the assumption that the graph G has no
sources was needed to define the C^{*}-correspondence associated with a Mauldin-Williams graph. It is not needed, though, in the proof of Theorem 3.4.
We would like to call attention to a recent preprint of Kajiwara and Watatani $[\mathbf{1 3}]$ in which they considered a somewhat different C^{*} correspondences associated with an iterated function system and arrive at a C^{*}-algebra that is sometimes different from \mathcal{O}_{n}. It appears that their construction can be modified to cover the setting of MauldinWilliams graphs, leading to C^{*}-algebras different from the CuntzKrieger algebras of the underlying graphs. We intend to pursue the ramifications of this in a future note.

Acknowledgments. The author would like to thank Mark Tomforde for many useful comments regarding the work on this paper and especially Paul Muhly for his constant encouragement and beneficial conversations. The author would also like to express his thanks to the referee for pointing out errors in the original draft of this note and for suggesting the use of the Gauge-Invariant Uniqueness Theorem in the proof of Theorem 2.3, and to Yasuo Watatani, Alex Kumjian, and Dorin Dutkay for useful conversations after the first version of the paper was written.

REFERENCES

1. M.F. Barnsley, Fractals everywhere, 2nd ed., Academic Press Professional, Boston, MA, 1993.
2. L. Bartholdi, R. Grigorchuk and V. Nekrashevych, From fractal groups to fractal sets, in Trends in mathematics: Fractals in Graz 2001, Birkhauser, Berlin, pp. 25-118.
3. J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185.
4. J. Cuntz and W. Krieger, A class of C^{*}-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268.
5. V. Deaconu, Groupoids associated with endomorphisms, Trans. Amer. Math. Soc. 347 (1995), 1779-1786.
6. - Generalized solenoids and C^{*}-algebras, Pacific J. Math. 190 (1999), 247-260.
7. V. Deaconu, A. Kumjian and P. Muhly, Cohomology of topological graphs and Cuntz-Pimnser algebras, J. Operator Theory 46 (2001), 251-264.
8. G.A. Edgar, Measure, topology, and fractal geometry, Undergrad. Texts Math., Springer-Verlag, New York, 1990.
9. G.A. Edgar and R.D. Mauldin, Multifractal decompositions of digraph recursive fractals, Proc. London Math. Soc. 65 (1992), 604-628.
10. N.J. Fowler, M. Laca and I. Raeburn, The C^{*}-algebras of infinite graphs, Proc. Amer. Math. Soc. 128 (2000), 2319-2327.
11. N.J. Fowler, P.S. Muhly and I. Raeburn, Representations of Cuntz-Pimsner algebras, Indiana Univ. Math. J. 52 (2003), 569-605.
12. J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
13. T. Kajiwara and Y. Watatani, C^{*}-algebras associated with self-similar sets, preprint OA/0312481.
14. T. Katsura, A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C^{*}-algebras, I, Fundamental results, Trans. Amer. Math. Soc. 356 (2004), 4287-4322.
15. J. Kigami, Analysis on fractals, Cambridge Univ. Press, Cambridge, 2001.
16. A. Kumjian, D. Pask and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), 161-174.
17. E.C. Lance, Hilbert C^{*}-modules. A toolkit for operator algebraists, London Math. Soc. Lecture Note Ser., vol. 210, Cambridge Univ. Press, Cambridge, 1995.
18. R.D. Mauldin and S.C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), 811-829.
19. P.S. Muhly and B. Solel, On the Morita equivalence of tensor algebras, Proc. London Math. Soc. 81 (2000), 113-168.
20. - Tensor algebras over C^{*}-correspondences: Representations, dilations, and C^{*}-envelopes, J. Funct. Anal. 158 (1998), 389-457.
21. P. Muhly and M. Tomforde, Topological quivers, Internat. J. Math. 16 (2005), 693-755.
22. M.V. Pimsner, A class of C^{*}-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z, in Free probability theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 189-212.
23. C. Pinzari, Y. Watatani and K. Yonetani, KMS states, entropy and the variational principle in full C^{*}-dynamical systems, Comm. Math. Phys. 213 (2000), 331-379.
24. I. Raeburn, On the Picard group of a continuous trace C^{*}-algebra, Trans. Amer. Math. Soc. 263 (1981), 183-205.
25. I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace C^{*}-algebras, Math. Surveys Monogr., vol. 60, Amer. Math. Soc., Providence, 1998.
26. J. Renault, Cuntz like-algebras, J. Operator Theory 25 (1991), 3-36.
27. M.A. Rieffel, Metrics on states from actions of compact groups, Doc. Math. 3 (1998), 215-229.
28. -, Metrics on state spaces, Doc. Math. 4 (1999), 559-600.
29. M.A. Rieffel, Gromov-Hausdorff distance for quantum metric spaces, Appendix 1 by Hanfeng Li. Gromov-Hausdorff distance for quantum metric spaces. Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Mem. Amer. Math. Soc. 168 (2004), 1-65.

Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755-3551
E-mail address: marius.ionescu@dartmouth.edu

[^0]: AMS Mathematics subject classification. Primary 26A18, 37A55, 37B10, 37E25, 46L08, 46L55, 46L89.

 Received by the editors on Jan. 28, 2004, and in revised form on Nov. 29, 2004.

