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SUBGROUPS OF PURE BRAID GROUPS
GENERATED BY POWERS OF DEHN TWISTS

STEPHEN P. HUMPHRIES

ABSTRACT. Let Bn be the group of braids on n strings,
and let Pn be the corresponding pure braid group. In this
paper we consider subgroups of Bn generated by powers of
Dehn twists. For example, let A12, A13, . . . , An−1,n be the
standard Dehn twist generators for Pn and consider subgroups

of the form 〈Aεij

ij 〉; we give conditions guaranteeing that such a

subgroup has finite index in Pn. We then consider subgroups
obtained by adding in powers of other Dehn twists. In the
cases considered the finite index property is characterized in
terms of certain inequalities.

1. Introduction. The braid group Bn has the presentation
〈
σ1, . . . , σn−1

∣∣∣ σiσi+1σi = σi+1σiσi+1, 1 ≤ i < n− 1;
σiσj = σjσi, |i− j| > 1

〉
.

This makes it clear that there is an epimorphism Bn → Sn, σi �→
(i, i+1). The kernel of this map is Pn, the pure braid group of index n!.
It is well known [1] that Pn is generated by elements Aij , 1 ≤ i < j ≤ n,
where

Aij = σ−1
i · · ·σ−1

j−2 σ
−1
j−1 σ

2
j σj−1 σj−2 · · ·σi.

A presentation for Pn with these generators is indicated in [1, 5, 7]. It
thus seems natural to investigate subgroups of the form

(1.1) H = 〈Aεij

ij | 1 ≤ i < j ≤ n〉,

which we call Aij subgroups. Other relevant results on properties of
Dehn twists and groups generated by Dehn twists can be found in
[4, 8].

For H as in (1.1) the criterion for [Pn : H] to be finite is given in
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Theorem 1. Let εij = εji ∈ Z≥0. Then the following are equivalent :

(i) the Aij-subgroup H = 〈Aεij

ij 〉 has finite index in Pn;

(ii) we have

(1) εij �= 0 for all 1 ≤ i < j ≤ n; and

(2) for all distinct 1 ≤ i, j, k ≤ n we have min{εij , εjk} = 1.

(iii) We have

(1) εij �= 0 for all 1 ≤ i < j ≤ n; and

(2) for all distinct 1 ≤ i, j, k ≤ n we have

1
ε ij

+
1
ε jk

+
1
ε ik

> 2.

If H = 〈Aεij

ij 〉 is of finite index in Pn, then H is normal in Pn, with
H containing P ′

n, and the index is

[Pn : H] =
∏

1≤i<j≤n

εij .

The action of Pn on the cosets of H gives the group Pn/H ∼=∏
i<j Zεij

.

Recall that the braid group Bn can be interpreted as the mapping
class group of the n-punctured disc Dn ⊂ R2 [1], where the punctures
p1, . . . , pn are on the x-axis. In this situation each σi is a positive half
twist [1] relative to a simple closed curve ai,i+1 containing only the
puncture points pi, pi+1 in its interior. The curve ai,i+1 is the boundary
of a tubular neighborhood of the horizontal line ci,i+1 joining pi, pi+1.
Each Aij is a Dehn twist [1] about a simple closed curve aij containing
the puncture points pi, pj ; here aij , for |i− j| > 1, is the boundary of
a tubular neighborhood of a semi-circular arc ci,j joining pi, pj under
the x-axis.

Next we introduce some more elements of Pn. These are

Āij = (σiσi+1 · · ·σj−1)σ2
j (σiσi+1 · · ·σj−1)−1.

Then the Āij are Dehn twists about curves āij which are the reflections
of aij in the x-axis. Note that Āi,i+1 = Ai,i+1.
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We now investigate subgroups of the form 〈Aεij

ij , Ā
δij

ij 〉. For example,
for n = 3 we have subgroups of the form

H = H(a, b, c, d) = 〈Aa
12, A

b
23, A

c
13, Ā

d
13〉,

where a, b, c, d ∈ Z≥0 and Ā13 = A12A13A
−1
12 = A−1

23 A13A23.

The conditions a ≤ b, c ≤ d can always be assumed since

H(a, b, c, d) ∼= H(b, a, c, d) ∼= H(a, b, d, c).

Conditions for [P3 : H(a, b, c, d)] to be finite are given in

Theorem 2. For a ≤ b, c ≤ d, the subgroup H(a, b, c, d) has finite
index in P3 if and only if we have one of the following four distinct
cases :

(1) a = b = 1, c+ d �= 0;

(2) a = 1, b > 1, gcd (c, d) = 1;

(3) a = 2, b = 2, c = 1, d > 0;

(4) a = 2, b > 2, c = 1, d = 1.

Equivalently, in the cases where abcd �= 0, the index [P3 : H] is finite
if and only if

(1.2)
4
a2

+
4
b2

+
1
c2

+
1
d2

+
4

gcd (c, d)2
> 7.

Each subgroup H(a, b, c, d) in case (3), except for H(2, 2, 1, 1), is non-
normal ; all of (1), (2) and (4) give normal subgroups.

Lastly the indices in the cases (1) (4) above are, respectively,

(1) gcd (c, d); (2) b; (3) 4d; (4) 2b.

If we have a subgroup of the form H = 〈Aεij

ij , Ā
δij

ij 〉, then Theorem 2
gives necessary conditions for H to have finite index in Pn: for every
triple 1 ≤ i < j < k ≤ n there is an epimorphism

ψijk : Pn → Pi,j,k = 〈Aij , Ajk, Aik〉,
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where ψijkArs = id unless r, s ∈ {i, j, k} and ψijkArs = Ars for
r, s ∈ {i, j, k}. Note that Pi,j,k

∼= P3. Then, for this choice of i, j, k
the necessary condition is that [Pi,j,k : ψijk(H)] is finite, this being
determined by the numbers a = εij , b = εjk, c = εik, d = δik satisfying
(1.2). It would be nice if the collection of all

(
n
3

)
such necessary

conditions was also sufficient; this we now show not to be the case:

Theorem 3. Let

H = 〈A2
12, A

2
23, A

2
34, A13, A24, A14, Ā

2
13, Ā

2
24, Ā

2
14〉 ⊂ P4.

Then for all 1 ≤ i < j < k ≤ 4 the index [Pijk : ψijk(H)] is finite,
however H has infinite index in P4.

All of the finite index subgroups H generated by Dehn twist powers
that we have considered thus far have had the property that the action
of Pn on the cosets of H has given a finite solvable group. We show by
example that this is not always the case:

Example 4. Define the following elements of P3 and note that each
of them is a Dehn twist, since they are all conjugates of σ2

1 or σ2
2 .

t1 = σ2
1σ

2
2σ

−2
1 ; t2 = σ−2

1 σ2
2σ

2
1 ; t3 = σ3

2σ
2
1σ

−3
2 ;

t4 = σ−1
1 σ2

2σ
2
1σ

−2
2 σ1 t5 = σ2

2σ1σ
2
2σ

−1
1 σ−2

2 ; t6 = σ2
1 ;

t7 = σ1σ
2
2σ

−1
1 ; t8 = σ2σ

−1
1 σ2

2σ1σ
2
2σ

−1
1 σ−2

2 σ1σ
−1
2 ; t9 = σ2

2σ
2
1σ

−2
2 .

For k = 1, . . . , 100 the P3 subgroups

〈t21, t22, t33, t24, t35, t26, t27, t38, tk9〉

have index 25k and for each such subgroup H the action of P3 on
the cosets of H gives a nonsolvable group (having A5 as one of its
composition factors). The proof is a computer calculation that we
made using MAGMA [2].
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2. Necessary conditions for Theorem 1. A presentation of
Pn is given in [4, Lemma 4.1] or [7]. Note that the relations are all
commutators in the generators Aij . Thus, the abelianization Pn/P

′
n is

a free abelian group of rank
(
n
2

)
. Let

Ab : Pn → Pn/P
′
n
∼= Z(n

2),

be the abelianization map. If [Pn : H] < ∞, then [Ab (Pn) : Ab (H)] <
∞ and so for all 1 ≤ r < s ≤ n there is mrs > 0 with Ab (Amrs

rs ) ∈
Ab (H). Now we have the direct product

Ab (Pn) =
∏

1≤i<j≤n

Ab (Aij),

and since H = 〈Aεij

ij 〉 we see that Ab (H) =
∏

1≤i<j≤nAb (Aεij

ij ). It
follows that εrs �= 0 for all r, s. This gives the first necessary condition
from Theorem 1.

Now suppose that there are distinct i, j, k ≤ n with εij , εjk ≥ 2. We
will show that in this case [Pn : H] is infinite. This will give the second
necessary condition from Theorem 1.

For any subset S ⊂ {1, 2, . . . , n} there is a punctured disc DS ⊂ Dn,
unique up to isotopy, which contains only the punctures pi, i ∈ S, and
only the aij for i, j ∈ S. There is a corresponding braid group B(S) =
B(DS) which we can think of as a subgroup of Bn = B({1, 2, . . . , n}).
Note that B(S) ∼= B|S|. Let P (S) denote the pure braid subgroup of
B(S). Then there is a projection πS : Pn → P (S) which can be easily
described by saying that we fill in all the punctures pi where i /∈ S.
More formally: πS(Aij) = Aij if i, j ∈ S and otherwise πS(Aij) = 1.
In particular, we have ψijk = π{ijk}.

Returning to the situation above (where we have εij , εjk ≥ 2) we let
S = {i, j, k} and notice that

πS(H) = 〈Aεij

ij , A
εik

ik , A
εjk

jk 〉.

Since P (S) ∼= P ({1, 2, 3}) = P3 the second necessary condition will
follow from:
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Proposition 2.1. If a, b, c ∈ N with at most one of a, b, c equal
to 1, then

H = 〈Aa
12, A

b
13, A

c
23〉 ⊂ P3

is a free group of rank 3 and has infinite index in P3.

Proof. First note that conjugating by σ1σ2 permutes A12, A23, A13

cyclically and so we may assume, without loss of generality, that
b, c > 1. We may also assume that a = 1, since the result for a = 1
implies the result for general a (since 〈Aa

12, A
b
13, A

c
23〉 is a subgroup of

〈A12, A
b
13, A

c
23〉 and subgroups of free groups are free [7]).

It is well known that P3 has infinite cyclic center [3]. In fact from
the presentation for P3 one easily sees that P3

∼= F2 × Z where
F2 = 〈A13, A23〉 is a free group of rank 2 [1, 5, 7]. Thus, the second
assertion of the above result is a consequence of the first, since any
subgroup of P3 of finite index would have nontrivial center.

Now a special case of the epimorphism πS : Pn → P (S) is when
S = {1, 2, . . . , n−1}. In this situation we have the split exact sequence

(2.1) 1 −→ Fn−1 −→ Pn −→ Pn−1 −→ 1,

where Fn−1 = 〈A1,n, A2,n, . . . , An−1,n〉 is a free group of rank n − 1
and Pn−1 is naturally a subgroup of Pn (this gives the splitting) [1].
Thus, there is an action (by conjugation) of Pn−1 on Fn−1. We apply
this in the situation where n = 3, so that Pn−1 = P2 = 〈A12〉 acts on
F2 = 〈x = A13, y = A23〉. The action is:

(2.2) A12(x) = (xy)−1x(xy), A12(y) = (xy)−1y(xy),

and since xy is fixed by this action we see that the action of 〈A12〉 is
just conjugation by powers of xy.

The proof of Proposition 2.1 will follow using a more general result:

Lemma 2.2. For i, j = 1, . . . , n, i < j, let Cij = {αijkA
εijk

ij α−1
ijk |αijk

∈ Pn} be a set of Pn-conjugates of powers of Aij, and let dij =
gcd {εijk}k. Let H < Pn be the subgroup

H = 〈Cij | 1 ≤ i < j ≤ n〉.
If there are 1 ≤ u < v < n such that dun, dvn > 1, then [Pn : H] = ∞.
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Proof. In many of the results that we now prove, including Lemma
2.2, we will need the following result of elementary group theory:

Lemma 2.3. Let

1 −→ N −→ G −→ Q −→ 1

be a split exact sequence of groups, and let H be a subgroup of G. Then
[G : H] <∞ if and only if

(i) [N : N ∩H] <∞; and

(ii) [Q : π(H)] <∞.

Proof. Elementary.

The idea for the proof of Lemma 2.2 will be to apply Lemma 2.3 to
the split short exact sequence (2.1). We will show that Fn−1 ∩H has
infinite index in Fn.

First note [1, 5] that if φ ∈ Pn−1, i < n, then φ acts on Ain by
conjugation; we write this as φ(Ain) = φAinφ

−1.

Let us partition the Cij as follows:

C1 =
⋃

1≤i<n

Cin, C2 =
⋃

1≤i<j<n

Cij .

Thus, C1 ⊂ Fn−1, C2 ⊂ Pn−1.

Now if w ∈ Fn−1 ∩H, then we can write

w = φ1A1 φ2A2 · · ·φrAr φr+1,

where φi ∈ 〈C2〉 ⊂ Pn−1, Ai ∈ C1 ⊂ Fn−1 for all i. Since w ∈ Fn−1 we
see that φ1φ2 · · ·φr+1 = id so that

(2.3)
w = φ1A1 φ2A2 · · ·φrAr φ

−1
r · · ·φ−1

2 φ−1
1

= φ1 (A1) (φ1φ2) (A2) · · · (φ1φ2 · · ·φr) (Ar) .

It follows that Fn−1∩H is generated by φ(A) where φ ∈ 〈C2〉, A ∈ C1.
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For u, v as in Lemma 2.2 we let N denote the normal closure in Fn−1

of {
Adun

un , Advn
vn

} ∪ {Ain | 1 ≤ i < n, i �= u, v} .
From the above discussion it follows that φ(A) ∈ N for all φ ∈ 〈C2〉,
A ∈ C1. In particular we see that Fn−1 ∩H ⊂ N .

However, since dun, dvn > 1 the subgroup N has infinite index in
Fn−1 since the quotient Fn−1/N ∼= Zdun

∗ Zdvn
is an infinite group in

these circumstances. Thus N , and so H, has infinite index in Fn−1.
This concludes the proof of Lemma 2.2.

Returning to the situation H = 〈A12, A
b
13, A

c
23〉, where b, c > 1, we

may apply Lemma 2.2 where u = 1, v = 2 and so conclude that H has
infinite index in P3.

3. Sufficiency for Theorem 1. Suppose that H = 〈Aεij

ij 〉 satisfies
(1) and (2) of Theorem 1 (ii). We show that [Pn : H] <∞. Let

J = {{i, j} | εij �= 1} .

Let AJ = {Aij | {i, j} ∈ J}. Note that by (2) if x, y ∈ J , x �= y, then
x ∩ y = ∅. For x = {i, j} ∈ J we will let Ax also denote Aij .

Proposition 3.1. The set

C (εuv) =
{ ∏

x∈J

Aδx
x

}
,

where 0 ≤ δx < εx, is a set of coset representatives for H in Pn. The
subgroup H is normal and

Pn/H ∼= ⊕i<jZεij
.

Proof. Since we have the abelianization map Ab : Pn → Z(n
2) it is

easy to see that the elements in C(εuv) determine different cosets of H.
In fact we have the following result:



SUBGROUPS OF PURE BRAID GROUPS 809

Lemma 3.2. If H is as in the above, then H is normal in Pn and
H contains P ′

n.

Proof. We first show a) that each simple commutator Aε
ijA

δ
rsA

−ε
ij A

−δ
rs

is in H for some choice of ε, δ ∈ {±1}. We then show b) that H is
normal in Pn. The result will follow upon showing that a) and b)
imply that H contains P ′

n.

Let x = {i, j}, y = {r, s} and for any two simple closed curves c, d
on Dn let ι(c, d) denote the geometric intersection number of c and d.
Then there are three cases to be considered:

(i) x, y /∈ J .

(ii) x, y ∈ J .

(iii) x ∈ J, y /∈ J .

(i) If x, y /∈ J , then (1) and (2) imply that Ax, Ay ∈ H and so
AxAyA

−1
x A−1

y ∈ H.

(ii) If x, y ∈ J and ι(aij , ars) = 0, then we have AxAyA
−1
x A−1

y =
1 ∈ H and this does this case. If ι(aij , ars) �= 0, then (2) implies that
ι(aij , ars) = 4 and in this case we can assume that i < r < j < s so that
Air, Arj , Ajs, Ais ∈ H, by (2). In this situation the result now follows
from Lemma 3.3 (since it is sufficient to do the case i = 1, r = 2, j = 3,
s = 4).

Lemma 3.3. Let x = A−1
24 A13A24A

−1
13 . Then

x ∈ K = 〈A12, A23, A34, A14〉.

Proof. It will suffice to show that xK = K. From [5, Lemma 4.2],
[1, 7] we find the following relation in P4:

(3.1) A13A24A
−1
13 =

(
A−1

34 A
−1
14 A34A14

)
A24

(
A−1

34 A
−1
14 A34A14

)−1
.

Then, using the fact that A23A24A34 commutes with A23, A24, A34 and
that A14A24A12 commutes with A14, A24, A12 we have:

xK = A−1
24 A13A24A

−1
13 K

= A−1
24 A

−1
34 A

−1
14 A34A14A24

(
A−1

34 A
−1
14 A34A14

)−1
K
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= A−1
24 A

−1
34 A

−1
14 A34A14A24K

= A−1
24 A

−1
34 A

−1
14 A34A14 (A24A12A14) K

= A−1
24 A

−1
34 A

−1
14 A34 (A24A12A14)A14K

= A−1
24 A

−1
34 A

−1
14 A34 (A24A34A23)K

= A−1
24 A

−1
34 A

−1
14 (A24A34A23)A34K

= A−1
24 A

−1
34 A

−1
14 A24K

= A−1
24 A

−1
34 A

−1
14 (A24A12A14)K

= A−1
24 A

−1
34 (A24A12A14)A−1

14 K

= A−1
24 A

−1
34 A24K

= A−1
24 A

−1
34 (A24A34A23)K

= A−1
24 (A24A34A23)A−1

34 K

= K.

Remark 3.4. Although the above is the most convenient proof of
the lemma, one can use the same calculation to obtain the following
expression for x = a−1

24 a13a24a
−1
13 as an element of K:

a34 a23 a
−1
34 a

−1
23 a

−1
34 a12 a

−1
14 a

−1
12 a34 a23 a34

a−1
23 a

−1
34 a12 a14 a

−1
12 a

−1
14 a

−1
34 a14 a34.

Checking that this element is equal to x is a second, but messier proof
of Lemma 3.3.

This concludes the proof of case (ii).

(iii) Here we have ι(aij , ars) ∈ {0, 2, 4}. Assume first that x ∈ J, y /∈
J and that ι(aij , ars) = 0. Then AxAyA

−1
x A−1

y = 1, showing that this
case follows.

The next possibility for (iii) is that ι(aij , ars) = 2. Then we may put
x = {i, j}, y = {r, s}, where i < j = r < s (any other case is similar).
It thus suffices to deal with the case i = 1, j = 2, s = 3. So by (2) we
see that {2, 3}, {1, 3} /∈ J and so A23, A13 ∈ H.

Recall [1, 3] that the center ofBn is the infinite cyclic group generated
by

Zn = (A12A13 · · ·A1n) (A23A24 · · ·A2n) · · · (An−2,n−1An−2,n)An−1,n.



SUBGROUPS OF PURE BRAID GROUPS 811

In the case n = 3 we have Z3 = A12A13A23 = A23A12A13 and so we
have:

A12A23A
−1
12 A

−1
23 =

(
A−1

23 A
−1
13 A

−1
12

)
A12A23A

−1
12 (A12A13A23)A−1

23

= A−1
23 A

−1
13 A23A13 ∈ H,

as required.

Now assume that in (iii) we have ι(aij , ars) = 4. Here we may assume
that i < r < j < s. As in the above we may apply π{i,j,r,s} and so
simplify to the situation where i = 1, r = 2, j = 3, s = 4. Now εij > 1
together with (1) and (2) imply that we have ε12 = ε23 = ε34 = ε14 = 1.
Then K = 〈A12, A23, A34, A14〉 ⊂ H. The result now follows from
Lemma 3.3. This concludes the proof of cases (i), (ii), (iii).

We continue the proof of Lemma 3.2 by showing that H is normal in
Pn. This is again accomplished by cases. Let x = {i, j}, y = {r, s}, our
goal being to show that AxA

εy
y A−1

x , A−1
x A

εy
y Ax ∈ H. The cases are:

(1) x, y /∈ J ;

(2) x /∈ J, y ∈ J ;

(3) x ∈ J, y /∈ J .

(4) x, y ∈ J .

For (1) we have Ax, Ay ∈ H and so AxA
εy
y A−1

x , A−1
x A

εy
y Ax ∈ H.

For (2) we have Ax ∈ H, Aεy
y ∈ H, so AxA

εy
y A−1

x , A−1
x A

εy
y Ax ∈ H.

For (3) we have Aεx
x , Ay ∈ H. If x = y or aij ∩ ars = ∅, then we

have AxA
εy
y A−1

x = A
εy
y , A−1

x A
εy
y Ax = A

εy
y ∈ H, as required.

If we have (3) and ι(ax, ay) = 2, then x ∩ y ∈ {i, j} and again there
are subcases to check depending on the relative sizes of i, j, r, s. We
may clearly assume that i < j, r < s. We also have Ay ∈ H.

One subcase is where i = r < j < s. Then {i, s} /∈ J so that Ajs ∈ H
and we have

AxAy A
−1
x = Aij AisA

−1
ij = A−1

js AisAjs ∈ H;

A−1
x Ay Ax = A−1

ij AisAij = AisAjsAisA
−1
js A

−1
is ∈ H.

If i < j = r < s, then Ais ∈ H and we have

AxAy A
−1
x = Aij AjsA

−1
ij = A−1

js A
−1
is AjsAisAjs ∈ H;

A−1
x Ay Ax = A−1

ij AjsAij = AisAjsA
−1
is ∈ H.
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All other cases are similar; this does case (3).

If we have (4), then by hypothesis (2) of Theorem 1 (ii) we see that
i, j, r, s are distinct and that, by perhaps interchanging x and y, we may
assume i < r < j < s. (Here we are ignoring the trivial cases where
Ax and Ay commute.) In fact we simplify notation so as to assume
i = 1, r = 2, j = 3, s = 4. Now we have Aεy

y ∈ H and hypothesis (2)
indicates that A12, A23, A34, A14 ∈ H. Thus, using (3.1) we have

AxA
εy
y A−1

x = A13A
εy

24 A
−1
13

=
(
A−1

34 A
−1
14 A34A14

)
A

εy

24

(
A−1

34 A
−1
14 A34A14

)−1 ∈ H.

For A−1
x A

εy
y Ax a similar argument works where we replace (3.1) by

(3.2) below. That (3.2) is true can be checked using any of the solutions
to the word problem for Bn [1, 2].

(3.2) A−1
13 A24A13 =

(
A14A34A

−1
14 A

−1
34

)
A24

(
A14A34A

−1
14 A

−1
34

)−1
.

This completes the proof of the fact that H is normal in Pn. To
conclude the proof of Lemma 3.2. we need:

Lemma 3.4. Let G be a group generated by a set X, and let N be
a normal subgroup such that for all x, y ∈ X there are ε, δ ∈ {1,−1}
such that xεyδ x−εy−δ ∈ N . Then N contains the derived subgroup G′.

Proof. The proof will follow if we can show that for all u, v ∈ G we
have uvu−1v−1 ∈ N . We do this by induction on n = |u| + |v|, where
|u| is the length of u as a word in the generators X.

The cases n = 0, 1 are trivial, while the case n = 2 follows easily
from the hypothesis. So assume that n > 3, so that we have |u| > 1 or
|v| > 1.

We first however need to do the case |u| = 1 (so u = x ∈ X),
where we induct on m = |v|. The case m = 1 is easy so assume that
v = yw, y ∈ X where |w| < |u|. Then xwx−1w−1 ∈ N and we have

uvu−1 v−1 = xywx−1 w−1 y−1 =
(
xyx−1 y−1

) (
yxwx−1 w−1y−1

)
,

and one sees that the two terms are each in N , since N is normal in G.
This does the case |u| = 1.
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So now we do the induction on n = |u| + |v|, where we can assume
that |u| > 1 so that u = xw where x ∈ X and |w| < |u|. Then by
induction wvw−1v−1, xvx−1v−1 ∈ N and

uvu−1 v−1 = xwvw−1 x−1 v−1 =
(
xwvw−1 v−1 x−1

) (
xvx−1 v−1

)
,

which also belongs to N .

This concludes the proof of Lemma 3.2.

From Lemma 3.2 we see that

[Pn : H] =
[
Ab(Pn) ∼= Z(n

2) : Ab(H)
]

=
∏
x∈J

εx.

Proposition 3.1, the sufficiency of the first statement of Theorem 1,
together with the rest of Theorem 1 now follow.

4. The 〈Aa
12, A

b
23, A

c
13, Ā

d
13〉 cases: Infinite index subgroups. In

this section we investigate the subgroup

H = H(a, b, c, d) = 〈Aa
12, A

b
23, A

c
13, Ā

d
13〉,

where a, b, c, d ∈ Z≥0 and Ā13 = ab2a−1 = A12A13A
−1
12 = A−1

23 A13A23.
We consider under what conditions [P3 : H] is infinite. First we have:

Lemma 4.1. For H as above the index [P3 : H] is infinite if either
(i) a = 0 or (ii) a, b, c, d > 1.

Proof. To prove Lemma 4.1 we apply Lemma 2.3 to (2.1) with n = 3,
so that N = F2 = 〈A13, A23〉 and Q = 〈A12〉. First we note that if
a = 0, then π(H) = {id} which does not have finite index in 〈A12〉.
This finishes (i) of Lemma 4.1.

For (ii) assume that a, b, c, d > 1. Let x = A13, y = A23, and let

K =
{

(xy)akx±c (xy)−ak
, (xy)ak

y±b (xy)−ak
,

(xy)ak y−1x±dy (xy)−ak | k ∈ Z
}
.
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As in (2.3) we note that any element of F2 ∩H has the form

An1
12 w1A

n2
12 w2 · · ·Anr

12 wr A
nr+1
12 ,

where ni �= 0, i ≤ r, n1 +n2 + · · ·+nr+1 = 0 and wi ∈ 〈xc, yb, y−1xdy〉.
Then using (2.2) it follows that K is a generating set for F2 ∩H.

For any element u in a free group F we let #u denote the freely
reduced length of u.

Recall [6] that a subset U = {u1, u2, . . . } of a free group F is Nielsen
reduced if we have:

(NR1) ui �= 1 for all i;

(NR2) if uε
i u

δ
j �= 1, then

#
(
uε

i u
δ
j

) ≥ max
(
#uε, #vδ

)
,

for ε, δ ∈ {±1};
(NR3) for all ui, uj , uk such that uε

i u
δ
j �= 1 and uδ

j u
γ
k �= 1 we have

#
(
uε

i u
δ
j u

γ
k

)
> #uε

i − #uδ
j + #uγ

k ,

for ε, δ, γ ∈ {±1}.
The key property of a Nielsen reduced set is indicated in

Lemma 4.2 [6, Proposition 2.5]. Any Nielsen reduced subset of a
free group F freely generates the subgroup that it generates.

Now one has:

Lemma 4.3. The set K is Nielsen reduced.

Proof. One checks the conditions (NR1), (NR2), (NR3) in the
definition. The condition (NR1) is clear. From the definition of K
we see that there are three types of elements which we denote

E = E (k) = (xy)ak
x±c (xy)−ak

, F = F (k) = (xy)ak
y±b (xy)−ak

,

G = G (k) = (xy)ak y−1x±dy (xy)−ak .
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To check (NR2) there are now 9 cases. We indicate how to check some
of these, leaving the rest to the reader. Let u, v ∈ K. If u and v have the
same type, then (NR2) is clear. If u and v do not have the same type,
then neither do v−1 and u−1 and checking the pair u, v (with product
uv) also checks the pair v−1, u−1 (with product v−1u−1 = (uv)−1).
Thus there are only three cases left to check.

If u = E(k), v = F (m) and k �= m, then (NR2) is clear since a > 1.
If k = m, then (NR2) follows easily from the fact that b, c > 1.

If u = E(k), v = G(m) and k �= m, then (NR2) is clear since a > 1.
If k = m, then (NR2) follows since c, d > 1.

The last case, u = F (k), v = G(m), is similar. This checks (NR2).

For (NR3) there are 27 cases for u, v, w ∈ K. If u, v, w all have the
same type, then it is easy to see that (NR3) follows. Again the rest
of the cases may be partitioned as triples {(u, v, w) ,

(
w−1, v−1, u−1

)},
leaving 12 cases to check. One now checks these cases.

Since K is an infinite set we see that F2∩H is a free group of infinite
rank and so cannot have finite index in F2. From Lemma 2.3 we see
that H has infinite index in P3. This completes the proof of Lemma 4.1.

As indicated in Section 1, by symmetries of D3 we only have to
consider the cases where a ≤ b and c ≤ d. Then from Lemma 4.1
we now need only consider the situation where either a = 1 or c = 1.
By Theorem 1 we see that H has finite index if either (i) a = b = 1; or
(ii) 1 ∈ {a, b} ∩ {c, d}.

Lemma 4.4. In the following cases H has infinite index :

(1) a, b > 2;

(2) a = 2, b > 2, c = 1, d > 1.

Proof. (1) If a, b > 2 and cd = 0, then the result follows from
Theorem 1; so we may assume that c, d > 0. Then without loss we
may assume that c = d = 1, as all other cases follow from this case
(these being subgroups of this case). The proof now follows the same
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pattern as for Lemma 4.1, namely, writing down the set K:

K =
{

(xy)ak x (xy)−ak , (xy)ak y±b (xy)−ak ,

(xy)ak y−1 x±1y (xy)−ak | k ∈ Z
}
.

Unfortunately, K is not Nielsen reduced. Thus, we need to show that
K can be reduced to an infinite set which is Nielsen reduced. Thus, we
will produce from K an infinite sequence of elements U = (u1, u2, . . . , )
which will be Nielsen reduced and which generate the same subgroup
as does K (namely F2 ∩H).

We start by putting

u1 = x, u2 = x−1, u3 = yb, u4 = y−b,

u5 = y−1x1y, u6 = y−1x−1y,

u7 = yb
(
y−1xy

) [
(xy)−ax(xy)a

] (
y−1x−1y

)
y−b

= yb−2x−1 (xy)3−a
y−1 (xy)a−2

y2−b,

u8 = x−1
[
(xy)ay−1x−1y(xy)−a

]
x = y (xy)a−2 x−1 (xy)2−a y−1.

Now using the above we define elements ui corresponding to other ele-
ments ofK. For example, consider the elements Yk = (xy)−ka x(xy)ka ∈
K for k ≥ 2 (the case k = 1 is given by u7 above). Then the element
in U corresponding to Yk will be

u7 u3 u5 Yk u6 u4

= yb
(
y−1xy

)
(xy)−a x (xy)a [

(xy)−kax(xy)ka
] (
y−1x−1y

)
y−b

= yb−1 (xy)1−a
x (xy)a(1−k)

x (xy)ka−1
y1−b.

Here we have written the element a second way so as to indicate its
freely reduced form; we will also do this in each of the cases below.

For Yk = (xy)ka x(xy)−ka ∈ K for k ≥ 1 the element in U corre-
sponding to Yk will be

u8 u2 Yk u1 = x−1 (xy)a (
y−1x−1y

)
(xy)−a [

(xy)kax(xy)−ka
]
x

= y (xy)a−2 y (xy)a(k−1) x (xy)1−ka y−1.
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For Yk = (xy)ka yb(xy)−ka ∈ K for k ≥ 1 the element in U
corresponding to Yk will be

u8 u2 Yk u1 = x−1 (xy)a y−1x−1y (xy)−a [
(xy)kayb(xy)−ka

]
x

= y (xy)a−2 x−1 (xy)ka+1−k yb (xy)1−ka y−1.

For Yk = (xy)−ka yb(xy)ka ∈ K for k ≥ 1 the element in U
corresponding to Yk will be

u7 u3 u5 Yk u6 u4 = yby−1xy (xy)−a x (xy)a [
(xy)−kayb(xy)ka

]
y−1x−1xy−b

= yb−2x−1 (xy)2−a
x (xy)a−ak

yb (xy)ka−1
y1−b.

For Yk = (xy)ka(y−1xy) (xy)−ka ∈ K for k ≥ 1 the element in U
corresponding to Yk will be

u8 u2 Yk u1 = x−1 (xy)a
y−1x−1y (xy)−a [

(xy)kay−1xy(xy)−ka
]
x

= y (xy)a−2
y (xy)ka−a

y−1 (xy)2−ka
y−1.

For Yk = (xy)−ka(y−1xy)(xy)ka ∈ K for k ≥ 1 the element in U
corresponding to Yk will be

u7 u3 u5 Yk u6 u4

= yby−1xy (xy)−1 x (xy)a [
(xy)−kay−1xy(xy)ka

]
y−1x−1yy−b

= yb−2x−1 (xy)2−a
x (xy)a−ka

y−1 (xy)ka
y1−b.

It is clear from the above construction of the elements of U that the
elements in U determine the same subgroup of F2 as does K. It is also
clear that the infinitely many elements of the sequence U are distinct.

It remains to show that the elements of U are Nielsen reduced and this
is a routine checking of a number of cases; as in the above the number of
cases to be considered can be somewhat reduced. This proves Lemma
4.4 (1).

For Lemma 4.4 (2) we assume that a = 2, b > 2, c = 1, d > 1. Again
we have the set

K =
{

(xy)2k
x±1 (xy)−2k

, (xy)2k
y±b (xy)−2k

,

(xy)2k y−1x±dy (xy)−2k | k ∈ Z
}
,
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of generators of F2 ∩ H. Again K is not Nielsen reduced and as in
case (1) we now define an infinite sequence U = (u1, u2, . . . ) such that
〈K〉 = 〈U〉 and U is Nielsen reduced. We let

u1 = x, u2 = y−1xdy,

u3 = yb, u4 = (xy)−2
x (xy)2 = (xy)−1

y−1 (xy)2 ;

u5 = (xy)2 x (xy)−2 ; u6 = (xy)−2
yb (xy)2 ;

u7 = (xy)2 yb (xy)−2 = xyxybx−1 (xy)−1 .

For Yk = (xy)2kx (xy)−2k ∈ K for k ≥ 2 the element in U corre-
sponding to Yk will be

u−1
1 Yk u5 u7 u1 = x−1

[
(xy)2kx(xy)−2k

]
(xy)2 x (xy)−2 (xy)2 yb (xy)−2

x

= y (xy)2k−1 x (xy)3−2k yb−2x−1y−1.

For Yk = (xy)−2kx (xy)2k ∈ K for k ≥ 2 the element in U corre-
sponding to Yk will be

u4 u6 Yk u
−1
4

= (xy)−2 x (xy)2 (xy)−2 yb (xy)2
[
(xy)−2kx(xy)2k

]
(xy)−2 x−1 (xy)2

= (xy)−1
yb−2x−1 (xy)3−2k

x (xy)2k−2
yxy.

For Yk = (xy)2kyb(xy)−2k ∈ K for k ≥ 2 the element in U corre-
sponding to Yk will be

u−1
1 Yk u5 u7 u1 = x−1[(xy)2kyb(xy)−2k] (xy)2 x (xy)−2 (xy)2 yb (xy)−2 x

= y (xy)2k−1
yb−1x−1 (xy)4−2k

yb−1 (xy)−1
y−1.

For Yk = (xy)−2kyb(xy)2k ∈ K for k ≥ 2 the element in U corre-
sponding to Yk will be

u4 u6 Yk u
−1
4

= (xy)−2
x (xy)2 (xy)−2

yb (xy)2
[
(xy)−2kyb(xy)2k

]
(xy)−2

x−1 (xy)2

= y−1x−1yb−1 (xy)2−2k yb (xy)2k−2 yxy.
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For Yk = (xy)2ky−1xdy(xy)−2k ∈ K for k ≥ 2 the element in U
corresponding to Yk will be

u−1
1 Yku5u7u1 = x−1[(xy)2ky−1xdy(xy)−2k](xy)2x(xy)−2(xy)2yb(xy)−2x

= y (xy)2k−2
xd (xy)3−2k

xyb−1x−1y−1.

For Yk = (xy)−2ky−1xdy(xy)2k ∈ K for k ≥ 2 the element in U
corresponding to Yk will be

u4 u6 Yk u
−1
4

= (xy)−2 x (xy)2 (xy)−2yb (xy)2
[
(xy)−2ky−1xy(xy)2k

]
(xy)−2x−1(xy)2

= (xy)−1
yb−2x−1 (xy)3−2k

y−1 (xy)2k−1
yxy.

Again it is easy to see that 〈K〉 = 〈U〉 and that the elements in U
are distinct, there thus being infinitely many of them. It remains to
show that they are Nielsen reduced and this again consists of checking
various cases. Doing this completes the proof of Lemma 4.4.

Lemma 4.5. Suppose that b > 1 and that e = gcd (c, d) > 1. Then
H(1, b, c, d) has infinite index in P3.

Proof. Note that Ad
13 = A−1

12 Ā
d
13A12 and so

H(1, b, c, d) = H(1, b, gcd (c, d), 0).

Thus, by Theorem 1, H(1, b, gcd (c, d), 0) has infinite index in P3 if
b, gcd (c, d) > 1.

We gather together the results of this section in

Lemma 4.6. Let a, b, c, d ∈ Z≥0 where a ≤ b and c ≤ d. If
H(a, b, c, d) has finite index in P3, then we have one of the following
situations :

(1) a = b = 1, c+ d �= 0;

(2) a = 1, b > 1, gcd (c, d) = 1;
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(3) a = 2, b = 2, c = 1, d > 0;

(4) a = 2, b > 2, c = 1, d = 1.

Proof. Note that a = 0 is precluded by Lemma 4.1 (i), and so b = 0
is also not allowed. If c = 0, then we have the situation of Theorem 1
and so must have a = 1, b = 1 or a = 1, d = 1, both of which are
included in Lemma 4.6. Thus, all other cases must have a, b, c, d �= 0.

The case a = 1, b = 1, c+ d �= 0 is included in the list, while a = 1,
b = 1, c + d = 0 is not allowed by Theorem 1. If a = 1, b > 1, then
Lemma 4.5 shows that we must have gcd (c, d) = 1, one of the included
cases.

All further cases must have a, b > 1 and so we have c = 1 by
Lemma 4.1. Now a, b > 2 is not allowed by Lemma 4.1 and so we
must have a = 2, (with c = 1). By Lemma 4.4 if b > 2, then
d = 1, a possibility in Lemma 4.6. So, lastly, we now consider a = 2,
b = 2, c = 1, d ≥ c = 1 and this case is included. This concludes the
proof of Lemma 4.6.

5. Finite index cases for H(a, b, c, d). In this section we show
that all of the cases listed in Lemma 4.6 have finite index.

We start with case (1): a = b = 1, c + d > 0, c ≤ d. Recall that
Ā13 = A12A13A

−1
12 . Thus, H(1, 1, c, d) contains Agcd (c,d)

13 . If c �= 0,
then the finite index result follows from Theorem 1. So assume that
c = 0, in which case d �= 0 and Theorem 1 again gives the result.
Theorem 1 also tells us that the index is gcd (c, d) and that the action
on cosets gives an abelian group and that H is normal in P3.

(2) Here we have H = 〈A12, A
b
23, A

c
13, Ā

d
13 = A12A13A

−1
12 〉 =

〈A12, A
b
23, A

1
13〉, since 1 = gcd (c, d). Thus, H has index b in P3 by

Theorem 1. This case also gives an abelian action on cosets and H is
normal in P3.

(3) We will need:
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Lemma 5.1. Let H = 〈A2
12, A

2
23, A13, Ā

d
13〉 where d ≥ 1. Then the

following elements include a set of coset representatives for H:

Āk
13, k = 0, . . . , d− 1;

Āk
13A12, k = 0, . . . , d− 1;

Āk
13A23, k = 0, . . . , d− 1;

Āk
13A12A23, k = 0, . . . , d− 1.

Proof. Let C denote the above set of elements, so that |C| = 4d.
Note that 〈A12, A23, Ā13〉 = P3. The idea will be to show that for
x ∈ {A12, A23, Ā13} and for y ∈ C there is z ∈ C such that Hyx = Hz.
This will then conclude the proof of case (3).

We will need:

Lemma 5.2. Let H ′ = 〈A2
12, A

2
23, A13〉 ⊂ H. Then we have

(i) Let X ∈ H ′. Then for all k ≥ 0 we have Āk
13XĀ

−k
13 ∈ H ′. If

X ∈ H, then for all k ≥ 0 we have Āk
13XĀ

−k
13 ∈ H.

(ii) For all k ≥ 0 we have Āk
13A

2
12 Ā

−k
13 , Āk

13A13 Ā
−k
13 ∈ H ′.

(iii) For all k ≥ 1 we have Āk
13A12A23A12A

−1
23 Ā

1−k
13 ∈ H ′.

(iv) For all k ≥ 0 we have Āk
13A12A

2
23A

−1
12 Ā

−k
13 ∈ H ′.

(v) For all k ≥ 0 we have Āk
13A12 Ā13A

−1
12 Ā

−k
13 ∈ H ′.

(vi) For all k ≥ 0 we have Āk
13A23 Ā13A

−1
23 Ā

−k
13 ∈ H ′.

(vii) For all k ≥ 0 we have Āk
13A12A23 Ā13A

−1
23 A

−1
12 Ā

−i−1
13 ∈ H ′.

Proof. (i) Clearly the second statement of (i) follows from the
first. Now note that if, in a group, z centralizes 〈w, x, y〉, then
xywy−1x−1 = xzywy−1z−1x−1. Using this we have:

Āk
13XĀ

−k
13 =

(
A12A13A

−1
12

)k
X

(
A12A13A

−1
12

)−k

=
[
A12

(
A−1

12 A
−1
23 A

−1
13

)
A13

(
A−1

23 A
−1
13 A

−1
12

)
A−1

12

]k
X

× [
A12

(
A−1

12 A
−1
23 A

−1
13

)
A13

(
A−1

23 A
−1
13 A

−1
12

)
A−1

12

]−k

=
(
A−2

23 A
−1
13 A

−2
12

)k
X

(
A−2

23 A
−1
13 A

−2
12

)−k ∈ H

as required. This proves (i).
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Now each case of (ii) follows from (i).

For (iii) we note that

Ā13A12A23A12A
−1
23 = A13 ∈ H.

This is (iii) with k = 1. The result for k > 1 now follows from (i). This
concludes the proof of (iii).

For each of (iv), (v) , (vi), (vii), we only need to check the case k = 1
(using a solution to the word problem in Bn [1, 2]) and then the general
result follows from (i).

Now we consider xA12 for x ∈ C. If x = Āk
13, k = 0, . . . , d−1, then

xA12 ∈ C.

If x = Āk
13A12, then from Lemma 5.2 (ii) we see that

H xA12 = H Āk
13A

2
12 = HĀk

13 ∈ HC,

as required.

If x = Āk
13A23, then from Lemma 5.2 (iii) we see that

H xA12 = H Āk
13A23A12 = H Āk−1

13 A12A23 ∈ HC,

as required.

Lastly, if x = Āk
13A12A23, then from Lemma 5.2 (iv) we see that

H xA12 = H Āk
13A12A23A12 = H Āk−1

13 A23 ∈ HC,

as required.

This concludes the case of multiplication by A12.

We now consider HxA23 for x ∈ C. If x = Āk
13 or x = Āk

13A12, then
xA23 ∈ C, and this concludes consideration of these cases.

If x = Āk
13A23, then from Lemma 5.2 (i) we see that Āk

13A
2
23Ā

−k
13 ∈ H

and so xA2
23 = HĀk

13, which does this case.

If x = Āk
13A12A23, then from Lemma 5.2 (iv) we have

H xA23 = H Āk
13A12A

2
23 = H Āk

13A12 ∈ HC;
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this finishes the case x = Āk
13A12A23 and concludes the case of multi-

plication by A23.

We now considerHxĀ13 for x ∈ C. If x = Āk
13, thenHxĀ13 = HĀk+1

13

and using the fact that Ād
13 ∈ H this case follows.

The rest of the cases follow as above using Lemma 5.2 (v), (vi), (vii).

This shows that the action of multiplication by A12, A23, Ā13 on the
right preserves the finite set of cosets {Hx, x ∈ C} and so H has finite
index at most 4d in case (3) of Lemma 4.6. The fact that the index
is 4d follows since the above coset representatives are distinct under
mapping to the abelianization of P3. This concludes discussion of (3)
of Lemma 4.6.

We now consider case (4) from Lemma 4.6. Here H = 〈A2
12, A

b
23, A13,

Ā13〉, and we show thatH is normal in P3 andH contains P ′
3. We follow

the same strategy as in the proof of Lemma 3.2, namely, we show that
H contains commutators [A±1

ij , A
±1
rs ] and then that it is normal.

First note that H contains

Ā13A
−1
13 = A12A13A

−1
12 A

−1
13 = A−1

23 A13A23A
−1
13 ;

this finishes two of the commutators, and lastly one can show that
Ā−1

13 A13 = A12A23A
−1
12 A

−1
23 .

Now we show that H is normal in P3 by showing that for all x ∈
{A2

12, A
b
23, A13, Ā13} and all y ∈ {A±1

12 , A
±1
23 , A

±1
13 } we have yxy−1 ∈ H.

Of course, for y = A±1
13 , then we clearly have yxy−1 ∈ H. Thus, we let

y ∈ {A±1
12 , A

±1
23 }.

The nontrivial cases where y = A±1
12 are indicated in:

A−1
12 A

b
23A12 = A13A

b
23A

−1
13 ∈ H;

A12A
b
23A

−1
12 =

(
A12

(
A−1

13 A
−1
12 A

−1
23

))
Ab

23

(
A12

(
A−1

13 A
−1
12 A

−1
23

))−1

= Ā−1
13 A

b
23 Ā13 ∈ H;

A12A13A
−1
12 = Ā13 ∈ H;

A−1
12 A13A12 = A−2

12 A12A13A
−1
12 A

2
12 = A−2

12 Ā13A
2
12 ∈ H;

A−1
12 Ā13A12 = A13 ∈ H;

A12 Ā13A
−1
12 = A2

12A13A
−2
12 ∈ H.
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For y = A23 we have:

A23A
2
12A

−1
23 = A−1

13 A
2
12A13 ∈ H;

A−1
23 A

2
12A23 = A12A13A

2
12A

−1
13 A

−1
12 = Ā13A

2
12Ā

−1
13 ∈ H;

A23A13A
−1
23 = A−1

13 A
−2
12 (A12A13A

−1
12 )A2

12A13 = A−1
13 A

−2
12 Ā13A

2
12A13 ∈ H;

A−1
23 A13A23 = A12A13A

−1
12 = Ā13 ∈ H;

A23Ā13A
−1
23 = A23A12A13A

−1
12 A

−1
23 = A13;

A−1
23 Ā13A23 = A−1

23 A12A13A
−1
12 A23

=
(
A−1

23 A12A23A
−1
23

)
A13

(
A−1

23 A12A23A
−1
23

)−1

=
(
A12A13A12A

−1
13 A

−1
12 A

−1
23

)
A13(A12A13A12A

−1
13 A

−1
12 A

−1
23 )−1

= Ā13A
2
12A13A

−2
12 Ā13 ∈ H.

This concludes considerations of all cases and so proves Lemma 5.1.

It is now easy to show that in cases (1) (4) of Lemma 4.6 with
abcd �= 0 we have

4
a2

+
4
b2

+
1
c2

+
1
d2

+
4

gcd (c, d)2
> 7.

We now show that

4
a2

+
4
b2

+
1
c2

+
1
d2

+
4

gcd (c, d)2
≤ 7

in all cases where [P3 : H] = ∞. From the proof of Lemma 4.6 it suffices
to show that

4
a2

+
4
b2

+
1
c2

+
1
d2

+
4

gcd (c, d)2
≤ 7

in the situations described in Lemma 4.1 (ii), Lemma 4.4 (1), (2) and
Lemma 4.5. Doing this will conclude the proof of Theorem 2.

For Lemma 4.1 (ii) we have a, b, c, d > 1 and so

4
a2

+
4
b2

+
1
c2

+
1
d2

+
4

gcd (c, d)2
≤ 1 + 1 + 1/4 + 1/4 + 4 < 7.
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For Lemma 4.4 (1) we have a, b > 2 and so

4
a2

+
4
b2

+
1
c2

+
1
d2

+
4

gcd (c, d)2
≤ 4/9 + 4/9 + 1 + 1 + 4 < 7.

For Lemma 4.4 (2) we have a = 2, b > 2, c = 1, d > 1 and so

4
a2

+
4
b2

+
1
c2

+
1
d2

+
4

gcd (c, d)2
≤ 1 + 4/9 + 1 + 1/4 + 4 < 7.

For Lemma 4.5 we have a = 1, b > 1, gcd (c, d) > 1 so that c, d > 1,
and so

4
a2

+
4
b2

+
1
c2

+
1
d2

+
4

gcd (c, d)2
≤ 4 + 1 + 1/4 + 1/4 + 1 < 7.

This concludes the proof of Theorem 2.

6. H = 〈A2
12, A

2
23, A

2
34, A13, A24, A14, Ā

2
13, Ā

2
24, Ā

2
14〉 has infinite

index in P4. In this section we prove Theorem 3.

If 1 ≤ i < j < k < 4, then [Pijk : ψijk(H)] is finite by Theorem 2.
We now show that H has infinite index in P4.

Let F = 〈x1 = A14, x2 = A24, x3 = A34〉 ∼= F3 be the free group of
rank 3. The method of proof will be to show that H ∩ F has infinite
index in F . Then Theorem 3 follows by Lemma 2.3.

Now ψ123(H) = 〈A2
12, A

2
23, A13, A12A

2
13A

−1
12 〉 has finite index in P3 by

Theorem 2. Also H ∩ F contains

G = {A2
34, A24, A14, Ā

2
24 = A−1

34 A
2
24A34, Ā

2
14 = A−1

34 A
−1
24 A

2
14A24A34}.

The expressions for Ā2
24, Ā

2
14 can be checked [1, 3, 5]. Further, as we

saw (2.3), H∩F is generated by elements of the kind α(g), where g ∈ G
and α ∈ ψ123(H), this latter being an infinite set.

To show that H ∩ F has infinite index in F we do the following: let
N be the normal subgroup of F generated by the finite set of elements

(6.1)
{
α(g)g−1 | g ∈ G, α ∈ {A2

12, A
2
23, A13, A12A

2
13A

−1
12 }

}
.
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Let Q = F/N , let πQ : F → Q be the quotient map, and let
H ′ = πQ(H ∩ F ). It will suffice to show that H ′ = πQ(H ∩ F ) has
infinite index in Q = πQ(F ). We will let Q1 = πQ(A14), Q2 = πQ(A24),
Q3 = πQ(A34).

To do this we construct an infinite family of permutation representa-
tions

ρn : Q→ S8n,

which have the following properties:

(1) ρn(Q) is transitive.

(2) ρn(H ′) fixes 1.

(3) [ρn(Q) : ρn(H ′)] ≥ 8n.

We define ρn by

ρn (Q1) =
n−1∏
i=0

(3 + 8i, 4 + 8i) (5 + 8i, 7 + 8i) ;

ρn (Q2) = (8n− 3, 8n− 11, 8n− 19, . . . , 21, 13, 5)
× (8n, 8n− 8, 8n− 16, . . . , 24, 16, 8)

×
n−1∏
i=0

(2 + 8i, 3 + 8i) (4 + 8i, 6 + 8i) ;

ρn(Q3) =
n−1∏
i=0

(1+8i, 2+8i) (3+8i, 7+8i) (4+8i, 5+8i) (6+8i, 8+8i) .

We first need to show that this is a representation of Q, i.e., we
need to show that each element listed in (6.1) acts trivially. If we let
ri = ρn(Qi), then this amounts to checking that the ri satisfy a small
number of relations.

For example, if α = A2
12, g = A14, then

α(g)g−1 = A−1
24 A

−1
14 A

−1
24 A14Aa24A14A24A

−1
14

and so we must show that r1 commutes with r2r1r2. In fact the relations
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that must hold are the following commutators:

(r1, r2 r1 r2) = 1,
(r2, r3 r2 r3) = 1,(
r21, r2 r3 r

−1
2 r1 r2 r3 r

−1
2

)
= 1,(

r3, r
−1
2 r1 r2 r3 r

−1
2 r1 r2

)
= 1,(

r22, r
−1
3 r−1

2 r−1
1 r2 r

−1
3 r−1

2 r−1
1 r2 r3 r

−1
2 r1 r2 r3 r

−1
2 r1

)
= 1.

These one now checks.

The point of quotienting F byN to getQ is that this makes πQ(H∩F )
finitely generated, namely, generated by the finite set πQ(G).

We now have a representation, and it is easy to see that it acts
transitively. It is also easy to see that ρn(H ′) fixes 1. Thus ρn(H ′)
is contained in the stabilizer Stn = Stabρn(Q)(1). Since ρn(Q) acts
transitively we have [ρn(Q) : Stn] = 8n and so

[ρn(Q) : ρn(H ′)] = [ρn(Q) : Stn] [Stn : ρn(H ′)] ≥ 8n,

as required.

Having shown (1), (2) and (3) for all n it easily follows that [Q : H ′]
is infinite. This proves Theorem 3.
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