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STEEPEST DESCENT ON A UNIFORMLY
CONVEX SPACE

MOHAMAD M. ZAHRAN

1. Introduction. The idea of steepest descent and how it is of
use to find zeros or critical points of nonnegative C2 functions defined
on Hilbert spaces is extensively presented in [7, 8, 9] and [14]. The
main objective of this paper is to generalize parts of these references to
many problems of interest or set naturally in the uniformly convex space
setting. We are concerned here with numerical solutions of differential
equations that fit into the uniformly convex Sobolev spaces H1,p(Ω) for
p > 2 and Ω ⊂ Rn and do not fit conveniently into the Hilbert space
H1,2(Ω). A good example of this situation is the diffusion problem of
the form

−∆y + F ′(y) = 0, y ∈ H1,p(Ω)

where F is a polynomial function. Let

(1) ϕ(y) =
1
2

∫
Ω

y2
1 + y2

2 + y2
3 + F (y),

where yi is the partial derivative with respect to the ith variable.

We seek y ∈ H1,p(Ω) so that ϕ′(y)h = 0 for all h ∈ H1,p(Ω). To do
this, note that if y ∈ H2,p(Ω),

ϕ′(y)h =
∫

Ω

h1y1 + h2y2 + h3y3 + F ′(y)h

=
∫

∂Ω

h
∂y

∂n
+

∫
Ω

(−(y11 + y22 + y33) + F ′(y))h = 0.

This implies that −∆y + F ′(y) = 0 with ∂y/∂n = 0 on the boundary
∂Ω, where n is the outward normal of Ω.

ϕ in (1) will be well defined if p is chosen so that F (y) = y8 ∈ L1(Ω)
for y ∈ H1,p(Ω) and Ω ⊂ R3. By the Sobolev embedding theorem in
[1], it is sufficient to choose p so that 8 ≤ 3p/3 − p. The best choice
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for p is 24/11. We will come back to this example in the numerical
experiment part.

2. Gradients.

Definition 1. A Banach space X is said to be uniformly convex if
and only if, for every ε > 0, there exists 0 < δ < 1 such that whenever
x and y are elements of X with ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ 2ε we
have ‖x+ y‖ ≤ 2δ.

Roughly speaking, this means that if two points on the unit sphere
of a uniformly convex Banach space are far apart, then their midpoint
must be well inside the unit ball. The Lebesgue spaces Lp(Ω) and the
Sobolev spaces Hm,p(Ω) where Ω ⊂ Rn, m is a nonnegative integer
and 1 < p < ∞, are uniformly convex. For a broad study on Sobolev
spaces, see [1]. Hilbert spaces are uniformly convex; this can be shown
by using the parallelogram law. In [4] there is a precise computation
of δ to show that the Lp spaces are uniformly convex.

Consider the fact in [6] that if X is a uniformly convex Banach space,
f is a function in the dual space X∗ of X and c > 0, then there exists
a unique x in X such that f(x) is maximum subject to ‖x‖ = c. We
present next the following definition.

Definition 2. Suppose ϕ is a C1 function on a uniformly convex
Banach space X. There exists a unique h in X such that ϕ′(x)h is a
maximum subject to ‖h‖X = |ϕ′(x)|X∗ . This h is called the gradient
of ϕ at x and is denoted by (∇ϕ)(x). And

ϕ′(x)(∇ϕ)(x) = sup
‖t‖X=|ϕ′(x)|X∗

ϕ′(x)t

where ϕ′(x) denotes the Frechet derivative of ϕ at x.

This definition agrees with the definition of a gradient on a Hilbert
space. Recall that if ϕ is a C1 function on a Hilbert space X and
x ∈ X, then

ϕ′(x)k = 〈k, (∇ϕ)(x)〉 ≤ ‖k‖X‖(∇ϕ)(x)‖X

= ‖(∇ϕ)(x)‖2
X = ϕ′(x)(∇ϕ)(x)
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for every k in X such that ‖k‖X = |ϕ′(x)|X∗ .

For n a positive integer and ϕ a real-valued C1 function on Rn+1

with the usual norm, it is customary to define ∇ϕ as the function on
Rn+1 so that

(2)
(∇ϕ)(x0, . . . , xn) = (ϕ0(x0, . . . , xn), . . . , ϕn(x0, . . . , xn)),

x = (x0, . . . , xn) ∈ Rn+1

where ϕi denotes the partial derivative of ϕ in its ith argument.
(∇ϕ)(x) is called the ordinary gradient at x.

One space of interest here is the uniformly convex Banach space
X = Rn+1 with the p-norm

(3)
‖h‖X =

( n∑
i=1

(∣∣∣∣hi − hi−1

δ

∣∣∣∣
p

+
∣∣∣∣hi + hi−1

2

∣∣∣∣
p))1/p

,

h = (h0, h1, . . . , hn) ∈ X, δ =
1
n
.

We denote the gradient of the function ϕ at x ∈ X by (∇pϕ)(x) and
we call it the p-gradient. Next we illustrate how the ordinary gradient
and the p-gradient are related.

3. Relationship between two gradients. In this section we
illustrate how to calculate the p-gradient ∇pϕ of a C2 function ϕ on
the uniformly convex Banach space X = Rn+1 with the p-norm (3) by
using the ordinary gradient ∇ϕ constructed with respect to the usual
norm.

There exists a unique h ∈ X such that ϕ′(x)h = 〈h, (∇ϕ)(x)〉Rn+1 is
maximum subject to ‖h‖p

X = |ϕ′(x)|pX∗ . This h, by definition, is the
p-gradient (∇pϕ)(x) at x.

Define the function β from Rn+1 to R so that

β(h) = ‖h‖p
X − |ϕ′(x)|pX∗ , ∀h ∈ Rn+1.

Using Lagrange multipliers, we get (∇ϕ)(x) = α(∇β)((∇pϕ)(x)).
Without loss of generality, assume α = 1. Denote by D0, D1 the
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functions form Rn+1 to Rn such that

D0h =




h1+h0
2

h2+h1
2
...

hn+hn−1
2


 ; D1h =




h1−h0
δ

h2−h1
δ
...

hn−hn−1
δ


 .

Denote by D the function from Rn+1 to Rn ×Rn such that

Dh =
(
D0h
D1h

)
, ∀h ∈ Rn+1.

Denote also by Dt the adjoint of D as defined in [13].

Define the function Q so that Q(t) = pt|t|(p−2) for all t ∈ R. Note
that

Q(Dh) =




Q(h1+h0
2 )
...

Q(hn+hn−1
2 )

Q(h1−h0
δ )
...

Q(hn−hn−1
δ )




β′(h)l = lim
t→0

‖h+tl‖p−‖h‖p

t

= lim
t→0

1
t

n∑
i=1

( ∣∣∣hi+tli−hi−1−tli−1
δ

∣∣∣p + ∣∣∣hi+tli+hi−1+tli−1
2

∣∣∣p

−
∣∣∣hi−hi−1

δ

∣∣∣p −
∣∣∣hi+hi−1

2

∣∣∣p
)

=
n∑

i=1

(
Q

(
hi−hi−1

δ

) (
li−li−1

δ

)
+Q

(
hi+hi+1

2

) (
li+li−1

2

))

= 〈Q(Dh), Dl〉Rn+1

= 〈l, DtQ(Dh)〉Rn+1 .

Hence,
(∇β)(h) = DtQ(Dh).

Therefore,
(∇ϕ)(x) = DtQ(D(∇pϕ)(x)).
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The nonlinear operator DtQ(Dh) is known as the p-Laplacian of h and
is often denoted by ∆ph.

If p = 2, X = Rn+1, with the p-norm, is a Hilbert space. There is an
argument in [12, p. 24] that shows

(∇ϕ)(x) = (DtD)(∇2ϕ)(x), ∀x ∈ Rn+1

where (∇2ϕ)(x) is called the Sobolev gradient of ϕ at x.

4. Continuous steepest descent. In this section we will seek
zeros of a C2 function ϕ, defined on a uniformly convex Banach space
X, by means of steepest descent, i.e., we seek u ∈ X so that

u = lim
t→∞ z(t) exists and ϕ(u) = 0

where z : [0,∞) → X such that z′(t) = −(∇ϕ(z(t))).
We first establish global existence for steepest descent in the uni-

formly convex setting in a way close to the one done in [10] by Neu-
berger in the Hilbert space setting.

Lemma 3. Suppose ϕ is a C1 function on a uniformly convex
Banach space X, then

ϕ′(x)(∇ϕ)(x) = ‖(∇ϕ)(x)‖2
X , ∀x ∈ X.

Proof. Since |ϕ′(x)|X∗ = sup‖t‖X=1 ϕ
′(x)t, |ϕ′(x)|2X∗= sup‖t‖X=|ϕ′(x)|X∗

ϕ′(x)t. Hence
|ϕ′(x)|2X∗ = ϕ′(x)(∇ϕ)(x).

Therefore
‖(∇ϕ)(x)‖2

X = ϕ′(x)(∇ϕ)(x).

Theorem 4. Suppose ϕ is a C2 function on X, a uniformly convex
space Banach. If x ∈ X, there is a unique function z from [0,∞) to X
such that

(4) z(0) = x, z′(t) = −(∇ϕ)(z(t)), t ≥ 0.
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You may refer to [10, p. 14] for an argument in the Hilbert space set-
ting, using Lemma 3 whenever necessary to write a proof of Theorem 4
in the uniformly convex setting.

Lemma 5. Suppose X and Y are two Banach spaces, f is a C2

function from X to Y . Define ϕ by

(5) ϕ(x) =
‖f(x)‖p

Y

p
, x ∈ X, p ≥ 2.

If a ∈ X such that f(a) = 0, then ϕ′(a) = 0 where ϕ′(a) is the Frechet
derivative of ϕ at a and ϕ′(a) ∈ L(X,R) = X∗ the dual space of X.

Proof. Suppose a ∈ X such that f(a) = 0. We need to show that
ϕ′(a) = 0. Let ε > 0. Since f is differentiable at a and f(a) = 0, there
exists δ1 > 0 such that if 0 < ‖x− a‖ < δ1 and x ∈ X, then

‖f(x)− f ′(a)(x− a)‖Y

‖x− a‖X
< 1.

This implies that

‖f(x)‖Y

‖x− a‖X
− ‖f ′(a)(x− a)‖Y

‖x− a‖X
< 1.

Therefore,
‖f(x)‖Y

‖x− a‖X
< 1 + ‖f ′(a)‖L(X,Y ).

Since f is continuous at a and f(a) = 0, there exists δ2 such that if
0 < ‖x− a‖X < δ2, then

‖f(x)‖Y <

(
pε

1 + ‖f ′(a)‖L(X,Y )

)1/(p−1)

.

Let δ = min(δ1, δ2). If 0 < ‖x− a‖X < δ, then

|α(x)− ϕ(a)|
‖x− a‖X

=
‖f(x)‖p

Y

p‖x− a‖X
< ε.
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Therefore ϕ′(a) = 0.

If p = 2 and X is a Hilbert space, the proof of Lemma 5 is
straightforward since ϕ′(a)h = 〈f ′(a)h, f(a)〉, for all h ∈ X.

Definition 6. Suppose ϕ is a C2 function defined on a subset Ω of
a uniformly convex Banach space X. ϕ is said to satisfy a gradient
inequality on Ω provided that there is a c > 0 such that

(6) ‖(∇ϕ)(x)‖X ≥ c
√
ϕ(x), x ∈ Ω.

Following are two propositions that will lead to finding zeros of ϕ by
means of steepest descent using the gradient inequality (6).

If we use Lemmas 3 and 5, the proofs of Theorems 7 and 8 are very
similar to those done in [10, Theorems 4.3 and 4.8] where p = 2 and
X is a Hilbert space. So proofs for the two theorems will be omitted.

Theorem 7. Suppose ϕ is a nonnegative C2 function on Ω, a subset
of X, X is a uniformly convex Banach space and ϕ satisfies the gradient
inequality (6).

If x ∈ Ω and z satisfies (4), then u = limt→∞ z(t) exists and ϕ(u) = 0
provided that R(z) ⊂ Ω, where R(z) is the range of the function z.

Theorem 8. Suppose X and Y are two uniformly convex Banach
spaces and f is a C2 function from X to Y . Suppose also x ∈ X and
r, c are two positive real numbers such that

‖(∇ϕ)(y)‖X ≥ c‖f(y)‖Y , ‖y − x‖X ≤ r

where ϕ is defined by (5).

If z satisfies (4), then u = limt→∞ z(t) exists and ϕ(u) = 0 if
‖f(x)‖ ≤ (cr)1/(p−1).

5. Critical points of convex functions. The convexity condition
of nonnegative C2 functions defined on a Hilbert space is of great
importance in the study of steepest descent. In [10, Theorem 4.10],



1546 M.M. ZAHRAN

the convexity condition is used to find a zero for the gradient of a
nonnegative C2 function defined on a Hilbert space. In this paper we
restrict our study to finding critical points for convex nonnegative C2

functions defined on the uniformly convex space Rn+1 with the p-norm
(3).

Definition 9. A C2 function ϕ on a uniformly convex space X is
said to be convex in the direction of the gradient ∇ϕ if and only if there
exists ε > 0 such that

ϕ′′(x)((∇ϕ)(x), (∇ϕ)(x)) ≥ ε‖(∇ϕ)(x)‖2
X , x ∈ X.

Lemma 10. Suppose ϕ is a nonnegative C2 function on a uniformly
convex space X such that ∇ϕ �= 0 and c > 0. Then there exists y ∈ X
such that (∇ϕ)(y) �= 0 and ‖(∇ϕ)(y)‖2

X ≤ c.

Proof. Let x ∈ X be such that (∇ϕ)(x) �= 0. By Theorem 4, there
exists a function z : [0,∞) → X such that

z(0) = x, z′(t) = −(∇ϕ)(z(t)), ∀ t ≥ 0.

Let g be a nonnegative function such that g(t) = ϕ(z(t)), for all t ≥ 0.

g′(t) = ϕ(z)′(t) = ϕ′(z(t))z′(t) = −ϕ′(z(t))(∇ϕ)(z(t)).

By Lemma 3,

g′(t) = −‖(∇ϕ)(z(t))‖2
X , ∀ t ≥ 0.

We intend to show that there is a t0 ≥ 0 such that ‖(∇ϕ)(z(t0))‖2
X ≤

c. Suppose that ‖(∇ϕ)(z(t))‖2
X > c for all t ≥ 0. Then −g′(t) > c for

all t ≥ 0. Hence,
∫ s

0

−g′(t) dt > cs, ∀ s > 0.

Thus
g(0)− g(s) > cs, ∀ s > 0.
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So
g(0)− cs > g(s) ≥ 0, ∀ s > 0.

Therefore,
g(0) > cs, ∀ s > 0.

This cannot happen. Hence there is a t0≥0 such that ‖(∇ϕ)(z(t0))‖2
X ≤

c. The proof of the lemma is now complete.

Lemma 11. Suppose ϕ is a C2 function, the uniformly convex
Banach space X = Rn+1 with the p-norm (3). Define the functions
g = ϕ(z) where z satisfies (4) for x ∈ Rn+1. Then

ϕ′′(z(t))((∇pϕ)(z(t)), (∇pϕ)(z(t))) = g′′(t)− p

2
(−g′(t)) p

2−1g′′(t),

∀ t ≥ 0.

Proof. By Lemma 3,

g′(t) = ϕ′(z(t))z′(t) = −ϕ′(z(t))(∇pϕ)(z(t)) = −‖(∇pϕ)(z(t))‖2
X .

So

g′′(t) = −ϕ′′(z(t))((∇pϕ)(z(t)), z′(t))− ϕ′(z(t))(∇pϕ)′(z(t))z′(t)
= ϕ′′(z(t))((∇pϕ)(z(t)), (∇pϕ)(z(t)))− ϕ′(z(t))(∇pϕ)′(z(t))z′(t).

Define the function s so that s(t) = −(−g′(t))p/2

s(t) = −‖(∇pϕ)(z(t))‖p
X = −β((∇pϕ)(z(t)))− |ϕ′(x)|pX∗.

where β is the function defined in Section 3.

s′(t) = −β′((∇pϕ)(z(t)))(∇pϕ)′(z(t))z′(t)
= −〈DtQ(D(∇pϕ)(z(t))), (∇pϕ)′(z(t))z′(t)〉Rn+1

= −〈(∇ϕ)(z(t)), (∇pϕ)′(z(t))z′(t)〉Rn+1

= −ϕ′(z(t))(∇pϕ)′(z(t))z′(t).

Hence,

g′′(t) = ϕ′′(z(t))((∇pϕ)(z(t)), (∇pϕ)(z(t))) + s′(t).
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This implies that

ϕ′′(z(t))((∇pϕ)(z(t)), (∇pϕ)(z(t))) = g′′(t)− s′(t).

Note also that
s′(t) =

p

2
(−g′(t)) p

2−1g′′(t).

Thus

ϕ′′(z(t))((∇pϕ)(z(t)), (∇pϕ)(z(t))) = g′′(t)− p

2
(−g′(t)) p

2−1g′′(t).

Theorem 12. Suppose ϕ is a nonnegative C2 function on the
uniformly convex Banach space X = Rn+1 with the p-norm (3), and
∇pϕ �= 0. Suppose also that ϕ is convex in the sense of Definition 9.
There exists x ∈ X such that (∇pϕ)(x) �= 0 and if z satisfies (4), then
u = limt→∞ z(t) exists and (∇pϕ)(u) = 0.

Proof. If g = ϕ(z) where z satisfies (4) for x ∈ Rn+1 such that
(∇pϕ)(x) �= 0, then by Lemma 11 and Definition 9,

g′′(t)− p

2
(−g′(t)) p

2−1g′′(t) ≥ ε‖(∇pϕ)(z(t))‖2
X , ∀ t ≥ 0.

Since g′(t) = −‖(∇pϕ)(z(t))‖2
X ,

g′′(t)− p

2
(−g′(t)) p

2−1g′′(t) ≥ −εg′(t).

So
g′′(t)
g′(t)

+
p

2
(−g′(t)) p

2−2g′′(t) ≤ −ε.

Integrating both sides, we get

ln
(
g′(t)
g′(0)

)
− p

p− 2
(−g′(t)) p

2−1 +
p

p− 2
(−g′(0)) p

2−1 ≤ −εt.

Hence
g′(t)
g′(0)

≤ exp(−εt) exp
(

p

p− 2
(−g′(t)) p

2−1

)

× exp
(
− p

p− 2
(−g′(0)) p

2−1

)
.
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Define the function f(t) = −g′(t). Then

(7)
0 ≤ f(t) ≤ f(0) exp(−εt) exp

(
p

p− 2
(f(t))

p
2−1

)

× exp
(
− p

p− 2
(f(0))

p
2−1

)
.

Hence

lim
t→0

f(t)− f(0)
t

≤ lim
t→0

f(0)[exp(−εt) exp[p/(p− 2)((f(t))
p
2−1 − (f(0))

p
2−1))− 1]

t
.

Using L’Hopital’s rule on the righthand side, we get

f ′(0)≤ lim
t→0

f(0)
[
− ε exp(−εt) exp

(
p

p− 2
((f(t))

p
2−1 − (f(0))

p
2−1)

)

+ exp(−εt)p
2
((f(t))

p
2−2f ′(t) exp

(
p

p−2((f(t)
p
2−1−(f(0)) p

2−1))
)]

.

Thus

f ′(0) ≤ f(0)
(
− ε+

p

2
(f(0))

p
2−2f ′(0)

)

and f ′(0) − p
2 (f(0))

p
2−1f ′(0) ≤ −εf(0) < 0 since f(0) = −g′(0) > 0.

Therefore,

(8) f ′(0)
(
1− p

2
(f(0))

p
2−1

)
< 0.

We intend to show that f ′(0) < 0. By Lemma 10 there exists x ∈ X
such that

0 < ‖(∇pϕ)(x)‖2
X ≤

(
2
p

)2/(p−2)

.

Note that we can consider such an x from the very beginning. Now

f(0) = −g′(0) = ‖(∇pϕ)(z(0))‖2
X = ‖(∇pϕ)(x)‖2

X ≤
(
2
p

)2/(p−2)

.
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Hence,
p

2
(f(0))(p−2)/2 ≤ 1.

Then (8) implies that f ′(0) < 0.

Now we intend to show that f(t) ≤ f(0), for all t ≥ 0.

Suppose there is a q > 0 such that f(q) > f(0). Since f ′(0) < 0,
there is a t0 > 0 such that f(t0) < f(0). Hence f(t0) < f(0) < f(q).
So there is a b such that t0 < b < q and f(b) = f(0).

Now by (7), we have

f(b) ≤ f(0) exp(−εb) exp
(

p

p−2(f(b))
p
2−1

)
exp

(
− p

p−2(f(0))
p
2−1

)
.

Hence,
f(b) ≤ f(0) exp(−εb),

and so f(b) < f(0), which is a contradiction, since f(b) = f(0).
Therefore,

f(t) ≤ f(0), ∀ t ≥ 0.

This implies that

p

p− 2
(f(t))

p
2−1 ≤ p

p− 2
(f(0))

p
2−1.

Hence

exp
(

p

p− 2
(f(t))

p
2−1 − p

p− 2
(f(0))

p
2−1

)
≤ 1.

Thus (7) implies that

f(t) ≤ f(0) exp(−εt).
So

0 ≤ −g′(t) ≤ −g′(0) exp(−εt).
This implies that

lim
t→∞ g′(t) = 0.

Now since g′(t) = −‖(∇pϕ)(z(t))‖2
X = −‖z′‖2

X , we have∫ a+1

a

‖z′‖2
X ≤ −f ′(0)

∫ a+1

a

exp(−εt) dt, ∀ a ≥ 0.
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Hence,

∫ a+1

a

‖z′‖2
X ≤ g′(0) exp(−ε(a+ 1))

ε
− g′(0) exp(−εa)

ε
, ∀ a ≥ 0.

Since g′(0) < 0,

( ∫ a+1

a

‖z′‖X

)2

≤
∫ a+1

a

‖z′‖2
X ≤ −g′(0) exp(−εa)

ε
, ∀ a ≥ 0.

So ∫ a+1

a

‖z′‖X ≤
(−g′(0)

ε

)1/2

exp
(−εa

2

)
, ∀ a ≥ 0.

Now ∫ ∞

0

‖z′‖X =
∞∑

n=0

∫ n+1

n

‖z′‖X

≤
∞∑

n=0

(−g′(0)
ε

)1/2

exp
(−εn

2

)

=
(−g′(0)

ε

)1/2 ∞∑
n=0

exp
(−εn

2

)

=
(−g′(0)

ε

)1/2 1
1− exp(−ε

2 )
.

Consequently, ‖z′‖X ∈ L1([0,∞]) and so u = limt→∞ z(t) exists.

Since limt→∞ g′(t) = 0, limt→∞ ‖(∇pϕ)(z(t))‖ = 0. So limt→∞(∇pϕ)
(z(t)) = 0. Hence (∇pϕ)(limt→∞ z(t)) = 0. Therefore, (∇pϕ)(u) = 0
and the proof of the theorem is now complete.

The p-norm (3) in X = R(n+1) is a finite-dimensional emulation of
the norm

‖f‖ =
( ∫ 1

0

|f |p + |f ′|p
)1/p

, f ∈ H1,p[0, 1]

in the Sobolev space H1,p[0, 1].
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The work is still underway to extend the above theorem to the infinite
dimensional case in the space H1,p[0, 1] for p > 2, with the above norm.

6. Numerical experiments. If Ω = [0, 1] × [0, 1] × [0, 1], the
domain of the function ϕ(y) = (1/2)

∫
Ω
y2
1 + y2

2 + y2
3 + F (y) with

F (y) = y8 ∈ L1(Ω) and y ∈ H1,p(Ω) which we mentioned in the
introduction will be (n+ 1)3-dimensional space whose points are real-
valued functions defined on the grid {[(i/n), (j/n), (k/n)]}n

i,j,k=1. So
one should expect computer memory trouble while running a code to
find numerically critical points for the function ϕ.

Next we present two problems that can be easily computed.

Problem 1. Consider the real-valued C1 function

(9) ϕ(y) =
1
p

∫ 1

0

(y′ − y)p, y ∈ H1,p[0, 1], p > 2.

Assume p = 4. Then ϕ is a nonnegative C1 function on H1,4[0, 1]. We
seek y ∈ H1,4[0, 1] so that ϕ′(y)h = 0, for all h ∈ H1,4[0, 1]. To do this,
note that

ϕ′(y)h =
∫ 1

0

(y′ − y)3(h′ − h)

=
∫ 1

0

(y′ − y)3h′ − (y′ − y)3h

= [h(y′ − y)3]10 +
∫ 1

0

(−3(y′ − y)2(y′′ − y′)h− (y′ − y)3h)

= [h(y′ − y)3]10 +
∫ 1

0

h(y′ − y)2(−3y′′ + 3y′ − y′ + y)

= [h(y′ − y)3]10 +
∫ 1

0

h(y′ − y)2(−3y′′ + 2y′ + y) = 0,

∀h ∈ H1,4[0, 1],

which yields the following equations

(10) (y′ − y)2(−3y′′ + 2y′ + y) = 0, y ∈ H2,4[0, 1],
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with the boundary conditions y′(0) = y(0) and y′(1) = y(1). It is
very important to mention that the solutions for (1) are not necessarily
y = cet. The following is also a solution for (10). Some special initial
condition might lead to an approximation to it.

(11) y(t) =




et t ∈
[
0,
1
3

]
(e1/9 − e−1/9

e1/9 − e5/9

)
et +

( e1/3 − e

e1/9 − e5/9

)
e−t/3 t ∈

(1
3
,
2
3

)
,

e−2/3et t ∈
[2
3
, 1

]
.

When we seek numerically critical points for (9) using its finite-
dimensional emulation

ϕ(y) =
1
4

n∑
i=1

(
yi − yi−1

δ
− yi + yi−1

2

)4

,

which is defined on the space Rn+1 with the norm

‖y‖ =
( n∑

i=1

(∣∣∣∣yi − yi−1

δ

∣∣∣∣
4

+
∣∣∣∣yi + yi−1

2

∣∣∣∣
4))1/4

,

y = (y0, y1, . . . , yn) ∈ Rn+1, δ =
1
n
,

the computer shows only y = cet as critical points. This is due to the
fact that (11) might be a saddle point. To write a computer code, we
consider the equation (∇ϕ)(y) = DtQ(Dh) from Section 3, where h is
the p-gradient (∇pϕ)(y) and (∇ϕ)(y) is the ordinary gradient (2).
To solve for h, let (∇ϕ)(y) = [ci], 0 ≤ i ≤ n. Given hi−1 and hi+1 we

need to solve for hi the equation

F (hi) =
1
2

[
Q

(
hi+1 + hi

2

)
+Q

(
hi + hi−1

2

)]

+
1
δ

[
Q

(
hi − hi−1

δ

)
−Q

(
hi+1 − hi

δ

)]
− ci = 0.

To do this we use Newton’s iteration

hi −→ hi − F (y)
F ′(y)

.
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Then we consider the following iteration to find the critical point y

y −→ y − αh

where α is chosen optimally.

Problem 2. Consider the nonnegative real-valued C1 function

(12) ϕ(y) =
1
p

∫ 1

0

|y′|p, y ∈ H1,p[0, 1], p > 2.

Assume p = 3. We seek y ∈ H1,3[0, 1] so that ϕ′(y)h = 0 for all
h ∈ H1,3[0, 1]. To do this note that

ϕ′(y)h =
∫ 1

0

y′|y′|h′

= [y′ | y′]h1
0 −

∫ 1

0

(y′|y′|)′h = 0, ∀h ∈ H1,3[0, 1],

which yields the following equation

(13) (y′|y′|)′ = 0, ∀ y ∈ H1,3,

with the boundary conditions y′(0) = y(1) = 0. The solutions for (13)
are not necessarily horizontal lines. The following is also a solution for
(13). Some special initial condition might lead to an approximation to
it.

(14) y(t) =




1 t ∈
[
0,
1
3

]

3t t ∈
(1
3
,
2
3

)

2 t ∈
[2
3
, 1

]
.

When we seek numerically critical points for (12) using its finite-
dimensional emulation

ϕ(y) =
1
3

n∑
i=1

∣∣∣∣yi − yi−1

δ

∣∣∣∣
3

,
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the computer shows only horizontal lines as critical points. This is also
due to the fact that (14) might be a saddle point. In this code we use
the same algorithm as in Problem 1.
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