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LOCAL CONNECTIVITY OF LIMIT SETS

M.H. VANDERSCHOOT

ABSTRACT. This paper examines the dynamics of a con-
tinuous flow on a compact surface of genus greater than one
with an orbit whose ω-limit set is locally connected. We show
that if the orbit’s lift to the Poincare disk limits to a rational
point, then its ω-limit set contains a simple closed invariant
curve that is not null homotopic. We also find sufficient con-
ditions for the orbit’s lift to stay a bounded distance from a
geodesic with the same limiting point.

1. Introduction. When the ω-limit set is locally connected, the
dynamics of a continuous flow on a compact surface M is linked to the
existence of invariant simple closed curves on M . The focus of this
paper will be when M is orientable and has genus g > 1. Theorems 5.1
and 5.2 state that such a curve exists if there is a positive orbit on M
satisfying the following conditions: (a) its lift to the Poincare disk limits
to a rational point and (b) either its ω-limit set is locally connected or
the set of fixed points in its ω-limit set is totally disconnected. These
theorems were proved by Markley for the torus in [5].

Note that if condition (a) fails, then ω(x) might be a Denjoy minimal
set. If condition (b) fails, then ω(x) might look like the topologist’s
sine curve. In both cases the results no longer hold.

Markley also showed in [5] that if a positive orbit of a continuous
flow on the torus has a lift O+(x̃) to the plane that goes to infinity, i.e.,
|x̃t| → ∞ as t → ∞, and its ω-limit set contains a moving point, then
O+(x̃) will lie between two parallel lines. This result only holds for the
torus. In [6] Markley and the author gave an example of a continuous
flow on a compact surface of genus 2 with a positive orbit whose ω-
limit set contains a nonperiodic orbit along with a simple closed curve
of fixed points. The orbit does not wrap down on this simple closed
curve in the usual way, and its lift to the Poincaré disk does not stay a
bounded distance from a hyperbolic ray with the same limiting point
on the unit circle. Theorem 6.5 shows that it was no accident that the
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ω-limit set in our example was not locally connected. It states that if a
positive orbit on M has an unbounded lift and its ω-limit set is locally
connected, contains a moving point and has empty interior, then its
lift stays a bounded distance from some rational hyperbolic ray, and
the ω-limit set of the positive orbit contains an invariant simple closed
curve that is not null homotopic.

2. Main definitions. A flow or continuous real action on M is a
continuous mapping φ : M × R → M where R is the reals, such that
φ(φ(x, t), s) = φ(x, t+s) and φ(x, 0) = x for all x ∈ M and s, t ∈ R. For
convenience we will often follow the convention of writing xt for φ(x, t).
The set of fixed points of φ is F = {x ∈ M : xt = x for all t ∈ R}.
If x /∈ F , then we say x is a moving point. The orbit of x is
defined by O(x) = {xt : t ∈ R}. The positive orbit of x is defined
by O+(x) = {xt : t ≥ 0}. The ω-limit set of x is defined by
ω(x) = ∩t≥0O+(xt), and the α-limit set is defined similarly.

Let φ be a flow on M . A local cross section
∑

of φ at a point
x ∈ M is a closed subset

∑
of M containing x such that the map

(x, t) → xt is a homeomorphism of
∑×[−ε, ε] onto the closure of an

open neighborhood V of x for some ε > 0. If x is a moving point, then
a local cross section exists at x [8]. When M is a compact connected
surface,

∑
is a closed arc [10].

Throughout this paper M will be a compact surface of genus g > 1.
Thus the universal cover M̃ of M is the Poincare disk: the open unit
disk with the hyperbolic metric dh. The flow on M lifts to a unique
flow φ̃ on M̃ such that the covering projection π : M̃ → M is a
homomorphism of flows, i.e., π(φ̃(x̃, t)) = φ(π(x̃), t), and every covering
transformation T of M̃ is an automorphism of the flow φ̃. Moreover,
π(x̃) ∈ F if and only if x̃ ∈ F̃ , where F̃ denotes the fixed points of φ̃.
These results are consequence of the homotopy lifting theorem and can
be found in [4].

Furthermore, the group of covering transformations is a discrete
group of hyperbolic linear fractional transformations Γ and M is home-
omorphic to the quotient space M̃/Γ. Each T ∈ Γ has exactly two fixed
points. These lie on the unit circle denoted by S∞; one fixed point is
attracting and the other is repelling. Following Aranson in [2], the set
of all fixed points of Γ will be called the set of rational points.
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Let x̃ ∈ M̃ and let U be the closed unit disk with Euclidean metric
d, so U = M̃ ∪ S∞. The following definitions can be found in [1] and
[2]. We say that O+(x̃) is unbounded if limt→∞ dh(x̃, x̃t) = ∞. If
limt→∞ dh(x̃, x̃t) = ∞, then its limit set does not belong to M̃ . To
study the asymptotic behavior of O+(x̃) we can extend the lifted flow
to U by taking S∞ to be fixed points of (M̃, φ̃). We say that O+(x̃) is
the type of a rational h-ray if it satisfies the following two conditions.
It limits to a rational point σ of S∞, i.e., d(x̃t, σ) → 0 as t → ∞ and,
for any hyperbolic ray R that also limits to σ, K > 0 exists such that
dh(x̃t, R) < K for all t ≥ 0. (We assume the reader has a rudimentary
knowledge of the hyperbolic geometry of M̃ from a book like Katok’s
[3].)

We will use the following notation found in [5] for segments of curves
and orbits. If C is a simple curve, hence homeomorphic to an interval,
and a and b lie on C, then (a, b)C will denote the open segment of C
between a and b. If s, τ ∈ R, then [xs, xτ ]φ will denote {xt : s ≤ t ≤ τ}
or {xt : τ ≤ t ≤ s}, according to whether s < τ or τ < s. Then [a, b]C
and (xs, xτ)φ have the obvious meanings.

3. Curves in ω(x). Let φ be a continuous flow on M and let x ∈ M .
We next prove some results about curves in ω(x) when it has empty
interior.

Lemma 3.1. Let γ be a curve in ω(x), say γ : [0, 1] → ω(x) and γ is
one-to-one. If Int (ω(x)) = ∅, then given 0 < τ < 1, there exists α > 0
such that φ(γ(τ ), t) ∈ γ for |t| < α.

Proof. We may as well assume that γ(τ ) /∈ F . Let
∑

be a local
cross section of length ε at γ(τ ). There exists δ > 0 such that
(γ(τ − δ), γ(τ + δ))γ is contained in the interior of

∑×[−ε, ε]. The
projection of (γ(τ − δ), γ(τ + δ))γ onto

∑
is an interval, including a

single point, which contains γ(τ ). Since Int (ω(x)) = ∅, this interval
must equal γ(τ ). Thus (γ(τ − δ), γ(τ + δ))γ ⊂ O(γ(τ )). Since γ is one-
to-one it follows that α > 0 exists such that φ(γ(τ ), t) ∈ γ for |t| < α.
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Proposition 3.2. Let γ be a curve in ω(x), say γ : [0, 1] → ω(x)
and γ is one-to-one. If Int (ω(x)) = ∅, then given 0 < τ < 1, either

1. There exists t0 ∈ [0, 1] such that φ(γ(τ ), t) → γ(t0) as t → ∞, and
γ(t0) ∈ F , or

2. [γ(τ ), γ(1)]γ ⊂ O+(γ(τ )) or [γ(0), γ(τ )]γ ⊂ O+(γ(τ )).

Proof. We may assume that γ(τ ) /∈ F . Let V = {t > 0 :
(γ(τ ), φ(γ(τ ), t))φ ⊂ γ}. By Lemma 3.1 V is open and nonempty.
Note that if s ∈ V , then for large n, we have φ(γ(τ ), s − (1/n)) ∈ γ.
Since γ is compact, it follows that φ(γ(τ ), s) ∈ γ.

If sup(V ) = ∞, then O+(γ(τ )) ⊂ γ. Hence limt→∞ φ(γ(τ ), t) = γ(t0)
for some t0 ∈ [0, 1] and γ(t0) ∈ F .

If ρ = sup(V ) < ∞, then φ(γ(τ ), ρ) = γ(t̂) for some t̂ where either
0 ≤ t̂ < τ or τ < t̂ ≤ 1. It suffices to show that t̂ = 0 or t̂ = 1.
We will proceed by contradiction, that is, we will assume that either
0 < t̂ < τ or τ < t̂ < 1. The proofs of both cases are analogous and
we will give the proof for the latter case. Since γ(t̂) /∈ F , we can apply
Lemma 3.1 to find α > 0 such that φ(γ(t̂), s) ∈ γ for t̂ ≤ s ≤ t̂ + α.
But for such s we have φ(γ(t̂), s) = φ(φ(γ(τ ), ρ), s) = φ(γ(τ ), ρ + s),
which contradicts ρ being the supremum of V . Thus t̂ = 1 and hence
[γ(τ ), γ(1)]γ ⊂ O+(γ(τ )).

An immediate consequence of Proposition 3.2 is the following.

Corollary 3.3. Let γ be a curve in ω(x), say γ : [0, 1] → ω(x) and
γ is one-to-one. If Int (ω(x)) = ∅, γ(0) ∈ F and γ(1) ∈ F , then given
0 < τ < 1, O(γ(τ )) ⊂ γ and γ is invariant.

4. Locally connected ω-limit sets. Let ω̃(x) denote π−1(ω(x)),
and let Cα, α ∈ Λ, denote the components of ω̃(x). The following
proposition will be used to prove Theorems 5.1 and 5.2.

Proposition 4.1. Let φ be a continuous flow on M ; x ∈ M ;
x̃ ∈ {π−1(x)}; and let Cα be a component of ω̃(x). If ω(x) is locally
connected, Int (ω(x))=∅ and O+(x̃) is unbounded, then {π−1(y)}∩Cα
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contains more than one point for all y ∈ ω(x) and {T ∈ Γ : TCα =
Cα} �= {I}.

The proof of the proposition will be given at the end of this section,
following the development of some preliminary material and lemmas.
Throughout this section we will assume that ω(x) is locally connected
and has empty interior. Recall that a complete metric space which
is locally connected and connected is path connected [7]. Since the
ω-limit sets of a continuous flow on a compact Hausdorff space are
compact and connected, it follows that ω(x) is path connected if it is
locally connected. Also note that, if ω(x) is locally connected, then
ω̃(x) is locally connected.

Lemma 4.2. There exists δ > 0 such that dh(Cα, Cβ) > δ for all
α, β ∈ Λ, α �= β.

Proof. Suppose not. Then for every n > 0, distinct components Cn

and Cn′ of ω̃(x) exist such that dh(Cn, Cn′) < 1/n. Hence sequences
{yn} and {yn′}, yn ∈ Cn, yn′ ∈ Cn′ exist such that dh(yn, yn′) < 1/n.

Let D be a fundamental domain in M̃ . For every n, Tn ∈ Γ exists such
that Tn(yn) ∈ D. Taking a subsequence if necessary, we can assume
that Tn(yn) → y ∈ D. Note that Tn(yn′) → y, π(yn′) → π(y) and
π(y) ∈ ω(x). Also note that since ω̃(x) is invariant under Γ, Tn(Cn)
and Tn(Cn′) are components of ω̃(x).

Choose ε > 0 such that π|Bε(y) is a homeomorphism onto a neighbor-
hood of π(y) where Bε(y) is the open ε-ball about y in the Hausdorff
metric. Let U = Bε(y) ∩ ω̃(x). (U is open in the subspace topology.)
Since ω̃(x) is locally connected, a connected neighborhood V of y ex-
ists which is contained in U . Observe that V = V ′ ∩ ω̃(x) for some
open set V ′ ⊂ Bε(y). There exists N such that TN (CN ) ∩ V ′ �= ∅

and TN (CN ′) ∩ V ′ �= ∅. Since TN (CN ) ⊂ ω̃(x) and TN (CN ′) ⊂ ω̃(x),
it follows that TN (CN ) ∩ V �= ∅ and that TN (CN ′) ∩ V �= ∅. Hence
V ⊂ TN (CN ) and V ⊂ TN (CN ′), implying CN = CN ′ which contra-
dicts our assumption. Thus δ > 0 exists such that dh(Cα, Cβ) > δ for
all α, β ∈ Λ, α �= β.

The next result shows that a lifted orbit will eventually stay close to
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one component.

Corollary 4.3. Suppose δ > 0 is given by Lemma 4.2. Given ε,
0 < ε < δ/2, τ ≥ 0 exists such that for every x̃ ∈ {π−1(x)} there is a
unique component Cα of ω̃(x) satisfying dh(x̃t, Cα) < ε for all t ≥ τ .

Proof. There exists τ ≥ 0 such that dh(x̃t, ω̃(x)) < ε for all t ≥ τ
and x̃ ∈ {π−1(x)}. There exists a component Cα of ω̃(x) such that
dh(x̃τ, Cα) < ε. This component is unique by Lemma 4.2.

We will proceed by contradiction. Suppose that t0 > τ exists such
that dh(x̃t0, Cα) ≥ ε. By continuity a time s, τ < s ≤ t0 exists
such that dh(x̃s, Cα) = ε. By Lemma 4.2, a unique component Cβ

of ω̃(x), Cβ �= Cα, exists such that dh(x̃s, Cβ) < ε. Thus dh(Cα, Cβ) ≤
dh(x̃s, Cβ) + dh(x̃s, Cα) < ε+ ε < δ, contradicting Lemma 4.2.

Lemma 4.4. The path components and the components of ω̃(x)
coincide.

Proof. Since each component of ω̃(x) is closed and, by Lemma 4.2,
the components are locally finite, the union of any collection of the
components is closed. Thus each component Cα is open in ω̃(x) since
its complement, the union of all the components except Cα is closed. It
follows by Lemma 4.2 that each component of ω̃(x) is locally connected.

Since each component is connected, locally connected, and a complete
metric space, each component is path connected. Because each compo-
nent is a maximal connected set, the components and path components
must coincide.

Proof of Proposition 4.1. Let Cα be a component of ω̃(x). Note that
π(Cα) = ω(x). Since ω(x) is compact, connected, locally connected,
and metrizable, by the Hahn-Mazurkiewicz theorem, a continuous and
onto function β : [0, 1] → ω(x) exists. Let β̃ : [0, 1] → Cα be a lift of β.
Next, arguing by contradiction, we will show that π is not one-to-one
on Cα.

Suppose π is one-to-one on Cα. Observe that β̃ must map [0, 1]
onto Cα and hence Cα is compact. Let ε > 0. By Corollary 4.3
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τ ≥ 0 and T ∈ Γ exist such that dh(x̃t, TCα) < ε for all t ≥ τ .
Since O+(x̃) is unbounded and TCα is compact, t0 > τ exist such
that dh(x̃t0, TCα) > ε, which contradicts Corollary 4.3. Thus π is
not one-to-one on Cα. Hence Cα must contain two equivalent points,
i.e., T ∈ Γ \ I exists such that T (Cα) ∩ Cα �= ∅. If two path
components intersect they must be equal. Thus T (Cα) = Cα and
hence {π−1(y)} ∩ Cα contains more than one point for all y ∈ ω(x).

5. Invariant simple closed curves. We now prove the two main
results about the existence of invariant simple closed curves that are
not null homotopic. Recall that M is a compact orientable surface of
genus g > 1.

Theorem 5.1. Let φ be a continuous flow on M , x ∈ M and
x̃ ∈ {π−1(x)}. If O+(x̃) limits to a rational point of S∞ and ω(x) is
locally connected, then ω(x) contains an invariant simple closed curve
that is not null homotopic.

Proof. Since M is a compact Hausdorff surface, ω(x) is connected
and compact and hence path connected because it is locally connected
by hypothesis. Let Cα be a component of ω̃(x). By Lemma 4.4, Cα is
a path component of ω̃(x).

Since ω(x) is compact and invariant, it must contain a minimal set.
By Theorem 1 of [2], ω(x) cannot contain a strictly recurrent point
since σ+, the limiting point of O+(x̃), is rational. Moreover, the
unboundedness of O+(x̃) and the Poincare Bendixson theorem imply
that ω(x) cannot contain a null homotopic periodic orbit. Hence ω(x)
must contain a fixed point or a periodic orbit that is not null homotopic.
Thus it suffices to restrict our attention to the case where ω(x)∩F �= ∅.

Furthermore, Int (ω(x)) must be empty because x cannot be strictly
recurrent. Thus the results of the previous section can be used in this
proof.

Let a ∈ ω(x) ∩ F . By Proposition 4.1, Cα ∩ {π−1(y)} contains more
than one point for all y ∈ ω(x). Let ã1 and ã2 be lifts of a lying in Cα,
and let β be a simple path in Cα between ã1 and ã2.
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We can extract a curve from β whose projection onto M is simple as
follows. Let A = {σ ∈ [0, 1]: there exist σ′ ∈ (σ, 1] and T ∈ Γ, T �= I,
such that T (β(σ)) = β(σ′)}. The set A is a nonempty closed curve
subset of [0, 1] such that T (β(σ)) = β(σ′)}. The set A is a nonempty
closed subset of [0, 1] that does not contain 1. Let σ0 = sup(A) and
note σ0 ∈ A. Let γ = β|[σ0,σ′

0]
. Then π ◦ γ is a simple curve on M that

is not null homotopic.

We now argue by contradiction to show that β(σ0) ∈ F̃ . Suppose
β(σ0) /∈ F̃ . Applying Lemma 3.1 to β(σ0) and β(σ′

0) we find α0 > 0
and α′

0 > 0 such that φ(β(σ0), t) ∈ β for 0 < t < α0 and that
φ(β(σ′

0), t) ∈ β for 0 < t < α′
0. Let α = min(α0, α

′
0). There exist σ1 and

σ′
1, σ0 < σ1 < 1 and σ′

0 < σ′
1 < 1 such that φ(β(σ0), (α/2)) = β(σ1) and

that σ(β(σ′
0), (α/2)) = β(σ′

1). There exists T ∈ Γ such that Tβ(σ0) =
β(σ′

0). We have Tβ(σ1) = Tφ(β(σ0), (α/2)) = φ(Tβ(σ0), (α/2)) =
φ(β(σ′

0), (α/2)) = β(σ′
1). Hence σ1 ∈ A which contradicts σ0 being the

supremum of A. Thus β(σ0) ∈ F̃ .

Since β(σ′
0) = Tβ(σ0) we also have that β(σ′

0) ∈ F̃ . By Corollary
3.3, γ is invariant and therefore π ◦ γ is also invariant.

Theorem 5.2. Let φ be a continuous flow on M , x ∈ M and
x̃ ∈ {π−1(x)}. If O+(x̃) is the type of a rational h-ray and ω(x) ∩ F
is totally disconnected, then ω(x) is locally connected and contains an
invariant simple closed curve that is not null-homotopic.

Proof. By Theorem 5.1 it suffices to show just that ω(x) is locally
connected. We will make use of the following theorem of Markley found
in [5].

Theorem. Let π be a continuous flow on an open subset W of
R2 and let w ∈ W . If O+(w) is bounded and ω(w) ∩ F is totally
disconnected, then ω(w) is locally connected.

Let σ+ be the limiting point of O+(x̃). Let T ∈ Γ be the transfor-
mation which fixes σ+ and let A denote the axis of T . Since O+(x̃) is
the type of an h-ray, equidistant curves E1 and E2 from A exist such
that O+(x̃) lies in the region between E1 and E2.
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Let [T ] be the cyclic group {Tn : n ∈ Z}. Covering maps π1 :
M̃/[T ] → M and π2 : M̃ → M̃/[T ] exist such that π = π1 ◦ π2.
Note that M̃/[T ] is a cylinder and that π2(E1) and π2(E2) are simple
closed homotopic curves on the cylinder that are not null homotopic.
Since ω(x) ∩ F is totally disconnected, π−1

1 (ω(x) ∩ F ) is also totally
disconnected. Let Z denote the open region of the cylinder M̃/[T ]
between the curves π2(E1) and π2(E2). Note that Z is homeomorphic
to an annulus in R2. Let y = π2(x̃). By the aforementioned theorem
of Markley, ω(y) is locally connected. Thus π1(ω(y)) = ω(x) is locally
connected.

6. Asymptotic behavior and ω(x). In this section we will assume
that ω(x) is locally connected and has empty interior in M . In addition
we will assume that ω(x) �⊂ F and O+(x̃) is unbounded. Let

∑
be a

section at a moving point p ∈ ω(x), and let
∑a and

∑b denote the two
sides of p on

∑
. Let x̃ ∈ {π−1(x)}.

Since ω(x) is locally connected, ω(x) ∩∑
must be finite because the

interior of ω(x) is empty. It follows that if x is recurrent it must be
periodic.

The following dichotomy occurs: either p̃ ∈ ω(x̃) with π(p̃) = p
exists or does not. We first suppose that p̃ ∈ ω(x̃) exists such that
π(p̃) = p. (In Lemma 6.3 we will show that this case cannot occur.)
Let Σ̃ denote the lift of

∑
containing p̃. By Poincare-Bendixson theory,

relabeling if necessary, we can assume without loss of generality that
O+(x̃) ∩ Σ̃b = ∅, and that {tn}, tn → ∞ as n → ∞ exists such that
x̃tn ∈ Σ̃a, {x̃tn} converges monotonely to p̃ and, if x̃t ∈ Σ̃a, then t = tn
for some n. Without loss of generality t0 = 0.

Lemma 6.1. If there exists p̃ ∈ ω(x̃) such that π(p̃) = p, then O+(x̃)
crosses only one lift of

∑a.

Proof. We will argue by contradiction. Suppose τ > 0 and S ∈ Γ
exist with S �= I, such that x̃τ ∈ SΣ̃a. There exists tj ∈ {tn}
with tj < τ < tj+1. Without loss of generality we may assume that
(x̃tj , x̃τ)φ̃ ∩ T Σ̃a = ∅ for all T ∈ Γ.

Let J be the simple curve defined by J = ∪n∈ZS
n([x̃tj , x̃τ ]φ̃ ∪
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(x̃tj , S−1x̃τ)Σ̃a). The curve J divides M̃ into two invariant regions:
J+ which is positively invariant and J− which is negatively invariant.
Observe that O+(x̃τ) ⊂ J+ and O−(x̃tj) ⊂ J−.

Since p̃ ∈ ω(x̃) it follows that p̃ ∈ J+. Let G be the Jordan curve
defined by G = [x̃tj , x̃tj+1]φ̃ ∪ (x̃tj , x̃tj+1)Σ̃α . Note that G ∩ J− = ∅

since O+(x̃τ) ⊂ J+. Hence Int (G) ⊂ J+. Since O+(x̃) is unbounded,
Ext (G) is positively invariant and Int (G) is negatively invariant. Thus
O−(x̃tj) ⊂ Int (G) and hence x̃(tj − ε) ∈ Int (G) ⊂ J+ for ε > 0 which
contradicts O−(x̃tj) ⊂ J−. Thus O+(x̃) crosses only one lift of

∑a.

Lemma 6.2. If O+(x̃) crosses only one lift of
∑a, then any path

between two different points on two different lifts of O+(x) must contain
a point of ω̃(x).

Proof. It suffices to show that this holds for a path between two
distinct lifts of x because ω̃(x) is invariant. Let x̃1 and x̃2 be distinct
lifts of x, say T x̃1 = x̃2. Let β be a path between x̃1 and x̃2.
By hypothesis a lifted section Σ̃ of

∑a exists such that x̃1 ∈ Σ̃
and O+(x̃1) ∩ HΣ̃ = ∅ for all H ∈ Γ \ I. Let p̃ be the lift of
p contained on Σ̃. Let Gn be the Jordan curve defined by Gn =
[x̃1tn, x̃1tn+1]φ̃∪(x̃1tn, x̃1tn+1)Σ̃. Since O+(x̃1) is unbounded it follows
by Poincare-Bendixson theory that p̃ ∈ Ext (Gn) for all n ≥ 0.
Moreover, x̃1 ∈ Int (Gn) for all n ≥ 1.

Suppose GN ∩ β = ∅ for some N > 1. Since β is connected, either
β ⊂ Int (GN ) or β ⊂ Ext (GN ). If β ⊂ Int (GN ), then x̃2 ∈ Int (GN ).
Since O+(x̃2) is unbounded, x̃2τ ∈ Σ̃ for some τ > 0. Hence
T−1x̃2τ = x̃1τ ∈ T−1Σ̃, which is a contradiction. If β ⊂ Ext (GN ),
then x̃1 ∈ Ext (GN ) which is also a contradiction. ThereforeGn∩β �= ∅

for all n ≥ 1. Now one can show that a sequence {τn}, tn < τn < tn+1,
exists such that x̃1τn ∈ β. Since β is compact {x̃1τn} has a convergent
subsequence which limits to a point z ∈ B. Clearly z ∈ ω̃(x).

Lemma 6.3. There does not exist a point p̃ ∈ ω(x̃) with π(p̃) = p,
that is, p̃ /∈ ω(x̃) for all p̃ ∈ {π−1(p)}.
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Proof. We will argue by contradiction. Suppose p̃ ∈ ω(x̃) exists with
π(p̃) = p. By Lemma 6.1, O+(x̃) crosses only one lift of

∑a. We will
show that if this occurs then ω(x) is not locally connected at some
point.

Since O+(x̃) is unbounded, it follows that {τn}, τn → ∞ as n → ∞,
exists such that dh(x̃τn, p̃) → ∞. Let K > 1 so that, taking a
subsequence if necessary, dh(x̃τj , x̃τm) > K for all j �= m. Consider
{π(x̃τn)}. Taking a subsequence if necessary, this sequence converges to
some point q ∈ ω(x). Note that q �= p. (If q = p, then x̃τn ∈ T Σ̃a(−ε, ε)
for large n and some T ∈ Γ, which is impossible by Lemma 6.1.)
Let U be a neighborhood of some lift q̃ of q. Choose U so that
diam (U) < (K/2), π|U is a homeomorphism, {π−1

∑a} ∩ U = ∅ and
{π−1(x)} ∩ U = ∅.

Because the covering transformations are isometries, an infinite num-
ber of distinct lifts of O+(x) intersect U . (If there exists H ∈ Γ
such that Hx̃τj and Hx̃τk are both in U for some j �= k, then
dh(Hx̃τj , Hx̃τk) = dh(x̃τj , x̃τk) > K.) Hence there exists {x̃n} with
π(x̃n) = x and x̃n �= x̃m for n �= m such that x̃nτn → q̃.

Let Sε(q̃) denote the circle of radius ε at q̃. If a, b ∈ Sε(q̃), then
(a, b)Sε(q̃) will denote the clockwise arc of the circle between a and b.

There exists ε > 0 such that Bε(q̃) ⊂ U . Let A = {y|(ε/2) <
dh(y, q̃) < ε}. We will show that z ∈ A ∩ ω̃(x) exists where ω̃(x)
is not locally connected. Without loss of generality x̃nτn ∈ Bε/4(q̃).
Hence there exist sequences {sn} and {λn} such that λn < sn < τn;
dh(x̃nλn, q̃) = ε; dh(x̃nsn, q̃) = ε/2; and Kn := {x̃nt : λn < t < sn} ⊂
A for all n ≥ N .

Because π|U is a homeomorphism, we must have that λn → ∞
as n → ∞. By continuity, passing to a subsequence if necessary, a
sequence {t′n}, λn < t′n < sn, exists such that dh(x̃nt

′
n, q̃) = 3ε/4. By

taking a subsequence if necessary, x̃nt
′
n → z where π(z) ∈ ω(x).

We may assume without loss of generality that {x̃nλn} is a clockwise
monotone sequence on Sε(q̃), i.e., (x̃n−1λn−1, x̃nλn, x̃n+1λn+1) is a
clockwise triple on Sε(q̃) for all n. This implies that {x̃nsn} is also
a clockwise monotone sequence on Sε/2(q̃).

Let Vn denote the interior of the region bounded by Kn,Kn+1,
(x̃nsn, x̃n+1sn+1)Sε/2(q̃) and (x̃nλn, x̃n+1λn+1)Sε(q̃). Note that Vj ∩
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Vk = ∅ for j �= k. Let W be any neighborhood of z. There exists
M > 0 such that Vn ∩W �= ∅ for all n ≥ M .

Let y ∈ KM ∩ S(3/4)ε(q̃). For each n > M , times an, bn exist with
λn < an ≤ bn < sn, such that as one moves clockwise from y along
S(3/4)ε(z̃), x̃nan(x̃nbn) is the first (last) occurrence of Kn crossing
S(3/4)ε(z̃). Let βn = (x̃nbn, x̃n+1an+1)S(3/4)ε(q̃). Note that βn ⊂ Vn.

Since z ∈ S(3/4)ε(q̃), there exists a closed arc E of S(3/4)ε(q̃) of length
δ such that z ∈ E ⊂ W . There exists M > 0 such that βn ⊂ E for
all n ≥ M . By Lemma 6.2, βn ∩ ω̃(x) �= ∅ for all n. Thus ω̃(x) is
not locally connected at z because each component of ω̃(x) ∩W must
be contained in a single Vn and a sequence of distinct components of
ω̃(x)∩W accumulates at z. Since we are assuming that ω(x) is locally
connected we have reached a contradiction. Thus p̃ /∈ ω(x̃) for all
p̃ ∈ {π−1(p)}.

It follows by Lemma 6.3 and the fact that O+(x̃) is unbounded that
O+(x̃) must cross infinitely many distinct lifts of

∑a (again, relabeling
∑a and

∑b if necessary).

Lemma 6.4. There exists τ > 0 such that O+(x̃τ) crosses any lift
of

∑a at most once.

Proof. By hypothesis times 0 ≤ τ0 < τ1, a lift Σ̃ of
∑a and a transfor-

mation T ∈ Γ, T �= I, exist such that x̃τ0 ∈ Σ̃ and x̃τ1 ∈ T Σ̃. Without
loss of generality we may assume that (x̃τ0, x̃τ1)φ̃ ∩ {π−1

∑a} = ∅.
Let J be the simple curve defined by J = ∪n∈ZT

n([x̃τ0, x̃τ1]φ̃ ∪
(x̃τ0, T−1x̃τ1)Σ̃). Observe that O+(x̃τ1) ⊂ J+.

We will proceed by contradiction. Suppose times s0, s1 exist, where
τ1 < s0 < s1 and S ∈ Γ such that x̃s0 ∈ SΣ̃ and x̃s1 ∈ SΣ̃.
Without loss of generality (x̃s0, x̃s1)φ̃ ∩ SΣ̃ = ∅. Let G be the
Jordan curve defined by G = [x̃s0, x̃s1]φ̃ ∪ (x̃s0, x̃s1)SΣ̃. Since O+(x̃)
is unbounded, O+(x̃s1) ⊂ Ext (G), Int (G) is negative invariant and
Ext (G) is positively invariant. Note that G ⊂ J+ and hence Int (G) ⊂
J+.

Let ε > 0. Since Int (G) is negatively invariant x̃(τ0−ε) ∈ O−(x̃s1) ⊂
Int (G). But we also have that x̃(τ0−ε) ∈ J−. Hence Int (G)∩J− �= ∅,
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which contradicts Int (G) ⊂ J+. Therefore if τ > τ1, then O+(x̃τ)
crosses any lift of

∑a at most once.

Theorem 6.5. Let φ be a continuous flow on M , x ∈ M and
x̃ ∈ {π−1(x)}. If ω(x) is locally connected, Int (ω(x)) = ∅ and
ω(x) �⊂ F , then either (a) O+(x̃) is bounded or (b) O+(x̃) is the type
of a rational h-ray and ω(x) contains an invariant simple closed curve
that is not null homotopic.

Proof. We may assume thatO+(x̃) is unbounded and x is not periodic
since otherwise the result immediately follows. Let

∑
be a section at

a moving point p ∈ ω(x) and let
∑a and

∑b denote the two sides of
p on

∑
. By Lemma 6.4 relabeling if necessary, τ > 0 exists such that

O+(x̃τ) crosses any lift of
∑a at most once. Thus times τ1 < τ2, a lift

Σ̃ of
∑a and a transformation T ∈ Γ, T �= I, exist such that x̃τ1 ∈ Σ̃,

x̃τ2 ∈ T Σ̃ and T−1x̃τ2 ∈ (x̃τ1, p̃)Σ̃. It is easy to check that we may also
assume that τ1 and τ2 satisfy (x̃τ1, x̃τ2)φ̃ ∩ SΣ̃ = ∅ for all S ∈ Γ.

As in Lemma 6.1 let J be the simple curve defined by J =
∪n∈ZT

n([x̃τ1, x̃τ2]φ̃ ∪ (x̃τ1, T−1x̃τ2)Σ̃) and let a+ and a− denote the
attracting and repelling fixed points of T , respectively.

Let p̃ denote the lift of p contained on Σ̃. Since we can choose τ ,
arbitrarily large, we can apply Corollary 4.3 and Lemma 4.4 to conclude
that p̃ and T p̃ lie in the same path component Cα of ω̃(x). Let γ ⊂ Cα

be a simple path between p̃ and T p̃ (π ◦ γ may not be simple). Since
T−1x̃τ2 ∈ (x̃τ1, p̃)Σ̃, we have that p̃ and T p̃ lie in J+.

Observe that ifO+(x̃τ1)∩Tnγ �= ∅ for some n ∈ Z, then x ∈ ω(x) and
so x is recurrent. This is impossible since Int (ω(x)) = ∅, ω(x) is locally
connected and x is neither periodic nor fixed. Thus O+(x̃τ1)∩Tnγ = ∅,
and hence γ ⊂ J+. Let Q be the Jordan curve determined by
γ, [x̃τ1, x̃τ2]φ̃, (x̃τ1, p̃)Σ̃, and (x̃τ2, T p̃)T Σ̃. Let Q̂ = ∪n∈Z(TnIntQ).
Note that Q̂ is positively invariant and O+(x̃τ2) ⊂ Q̂.

Note that O+(x̃τ2) must leave Tn(IntQ) for each n since O+(x̃) is
unbounded. Moreover, once O+(x̃τ2) leaves Tn(IntQ) it cannot return.
Hence for each N , O+(x̃τ2) is eventually in ∪∞

n=NTn(IntQ). Thus
ω(x̃τ2) ⊂ ∩N (∪∞

n=NTn(IntQ)) = {a+}. Hence x̃t → a+ at t → ∞.
Since O+(x̃τ1) ⊂ Q̂, we have that O+(x̃) is the type of a rational h-ray.
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By Theorem 5.1, ω(x) must contain an invariant simple closed curve
that is not null homotopic.
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