REFINED ARITHMETIC, GEOMETRIC AND HARMONIC MEAN INEQUALITIES

PETER R. MERCER
Dedicated to Mari Mercer, in loving memory

Abstract

We obtain refinements of the arithmetic, geometric, and harmonic mean inequalities. A main ingredient is Hadamard's inequality. In an application, we obtain a refined version of Ky Fan's inequality.

1. Preliminaries. For $n \geq 2$, let $x_{1}, x_{2}, \ldots, x_{n}$ be positive numbers, and let $w_{1}, w_{2}, \ldots, w_{n}$ be positive weights: $\sum w_{j}=1$. We denote by

$$
A=\sum_{j=1}^{n} w_{j} x_{j}, \quad G=\prod_{j=1}^{n} x_{j}^{w_{j}}, \quad H=\left(\sum_{j=1}^{n} \frac{w_{j}}{x_{j}}\right)^{-1},
$$

the (weighted) arithmetic, geometric, and harmonic means of the x_{j} 's.
It is well known that

$$
H \leq G \leq A
$$

with the inequalities being strict unless all x_{j} 's are equal.
In this paper we obtain various refinements, including upper and lower bounds for $A-G, A-H, A / G$ and G / H. An important ingredient in our approach is the following.

Hadamard's inequality. Let f be a concave function on $[a, b]$. Then

$$
\frac{f(a)+f(b)}{2} \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq f\left(\frac{a+b}{2}\right)
$$

[^0] 2001.

2. Results.

Proposition 1. The following estimates hold, with equality occurring if and only if all x_{j} 's are equal.

$$
\sum_{j=1}^{n} \frac{w_{j}\left(x_{j}-G\right)^{2}}{x_{j}+\max \left(x_{j}, G\right)} \leq A-G \leq \sum_{j=1}^{n} \frac{w_{j}\left(x_{j}-G\right)^{2}}{x_{j}+\min \left(x_{j}, G\right)}
$$

Proof. For $x>0$, we have

$$
x-1-\log (x)=\int_{1}^{x} \frac{t-1}{t} d t
$$

The integrand is concave and so Hadamard's inequality yields

$$
\frac{(x-1)^{2}}{2 x} \leq x-1-\log (x) \leq \frac{(x-1)^{2}}{x+1} \quad \text { for } x>1
$$

and

$$
\frac{(x-1)^{2}}{x+1} \leq x-1-\log (x) \leq \frac{(x-1)^{2}}{2 x} \quad \text { for } 0<x \leq 1
$$

Equalities occur only for $x=1$.
Substituting x_{j} / G for x, multiplying by w_{j} and summing, we obtain

$$
\frac{1}{G} \sum_{x_{j}>G} \frac{w_{j}\left(x_{j}-G\right)^{2}}{2 x_{j}} \leq \sum_{x_{j}>G} w_{j}\left(\frac{x_{j}}{G}-1-\log \left(\frac{x_{j}}{G}\right)\right) \leq \frac{1}{G} \sum_{x_{j}>G} \frac{w_{j}\left(x_{j}-G\right)^{2}}{x_{j}+G}
$$

and
$\frac{1}{G} \sum_{x_{j} \leq G} \frac{w_{j}\left(x_{j}-G\right)^{2}}{x_{j}+G} \leq \sum_{x_{j} \leq G} w_{j}\left(\frac{x_{j}}{G}-1-\log \left(\frac{x_{j}}{G}\right)\right) \leq \frac{1}{G} \sum_{x_{j} \leq G} \frac{w_{j}\left(x_{j}-G\right)^{2}}{2 x_{j}}$
respectively.

Taken together, these inequalities read

$$
\frac{1}{G} \sum_{j=1}^{n} \frac{w_{j}\left(x_{j}-G\right)^{2}}{x_{j}+\max \left(x_{j}, G\right)} \leq \frac{A}{G}-1 \leq \frac{1}{G} \sum_{j=1}^{n} \frac{w_{j}\left(x_{j}-G\right)^{2}}{x_{j}+\min \left(x_{j}, G\right)}
$$

as desired.

Remarks 1.1. Observing only that the integral is nonnegative leads to a proof of the arithmetic-geometric mean inequality $0 \leq A-G$, cf., [6, Section 6.7]. Also, Proposition 1 improves

$$
\frac{1}{2 \max \left(x_{j}\right)} \sum_{j=1}^{n} w_{j}\left(x_{j}-G\right)^{2} \leq A-G \leq \frac{1}{2 \min \left(x_{j}\right)} \sum_{j=1}^{n} w_{j}\left(x_{j}-G\right)^{2}
$$

which is proved in [7]. The lefthand inequality above is due to Alzer [3].

Applying the same technique, but instead substituting x_{j} / A and H / x_{j} for x respectively, we obtain the following two results.

Proposition 2. We have

$$
\frac{1}{A} \sum_{j=1}^{n} \frac{w_{j}\left(x_{j}-A\right)^{2}}{x_{j}+\max \left(x_{j}, A\right)} \leq \log (A)-\log (G) \leq \frac{1}{A} \sum_{j=1}^{n} \frac{w_{j}\left(x_{j}-A\right)^{2}}{x_{j}+\min \left(x_{j}, A\right)}
$$

with equality occurring if and only if all x_{j} 's are equal.

Proposition 3. We have

$$
\sum_{j=1}^{n} \frac{w_{j}}{x_{j}} \frac{\left(x_{j}-H\right)^{2}}{H+\max \left(x_{j}, H\right)} \leq \log (G)-\log (H) \leq \sum_{j=1}^{n} \frac{w_{j}}{x_{j}} \frac{\left(x_{j}-H\right)^{2}}{H+\min \left(x_{j}, H\right)}
$$

with equality occurring if and only if all x_{j} 's are equal.

Again, using an argument similar to the proof of Proposition 1, but beginning with a different function, we obtain the following.

Proposition 4. The following estimates hold, with equality occurring if and only if all x_{j} 's are equal.

$$
\begin{aligned}
& \sum_{j=1}^{n} w_{j}\left(x_{j}-H\right)^{2} \frac{x_{j}+2 H+\max \left(x_{j}, H\right)}{\left(x_{j}+\max \left(x_{j}, H\right)\right)^{2}} \leq A-H \\
& \leq \sum_{j=1}^{n} w_{j}\left(x_{j}-H\right)^{2} \frac{x_{j}+2 H+\min \left(x_{j}, H\right)}{\left(x_{j}+\min \left(x_{j}, H\right)\right)^{2}} .
\end{aligned}
$$

Proof. For $x>0$ we have

$$
x-2+\frac{1}{x}=\int_{1}^{x} \frac{t^{2}-1}{t^{2}} d t
$$

The integrand is concave, and Hadamard's inequality yields

$$
(x-1)^{2} \frac{x+1}{2 x^{2}} \leq x-2+\frac{1}{x} \leq(x-1)^{2} \frac{x+3}{(x+1)^{2}} \quad \text { for } x>1
$$

and

$$
(x-1)^{2} \frac{x+3}{(x+1)^{2}} \leq x-2+\frac{1}{x} \leq(x-1)^{2} \frac{x+1}{2 x^{2}} \quad \text { for } 0<x \leq 1
$$

Equalities occur only for $x=1$.

Now we proceed as before. Substitute x_{j} / H, or H / x_{j}, for x, multiply by w_{j}, and sum.

Remark 4.1. These estimates improve

$$
\frac{1}{2 \max \left(x_{j}\right)} \sum_{j=1}^{n} w_{j}\left(x_{j}-H\right)^{2} \leq A-H
$$

which is obtained in [7].
3. An application. Here we further restrict the x_{j} 's to be $\leq 1 / 2$, and let $y_{j}=1-x_{j}$. We denote by $A^{\prime}(=1-A)$ and G^{\prime} the (weighted)
arithmetic and geometric means of the y_{j} 's. The following result is well known, e.g., $[4,9]$, and Proposition 5 below is a refinement.

Ky Fan's inequality. We have

$$
\frac{A^{\prime}}{G^{\prime}} \leq \frac{A}{G}
$$

with equality occurring if and only if all of the x_{j} 's are equal.

Proposition 5. If not all of the x_{j} 's are equal, then we have

$$
\frac{A^{\prime}}{G^{\prime}}<\left(\frac{A}{G}\right)^{q}
$$

where $q<1$ is given by

$$
q=\frac{A}{1-A} \frac{\sum_{j=1}^{n} w_{j}\left(x_{j}-A\right)^{2} /\left(2-x_{j}-\max \left(x_{j}, A\right)\right)}{\sum_{j=1}^{n} w_{j}\left(x_{j}-A\right)^{2} /\left(x_{j}+\max \left(x_{j}, A\right)\right)}
$$

Proof. Applying the righthand inequality of Proposition 2 to the y_{j} 's and the lefthand inequality to the x_{j} 's, we obtain

$$
\log \left(A^{\prime} / G^{\prime}\right) \leq \frac{1}{A^{\prime}}\left(\sum_{y_{j} \leq A^{\prime}} \frac{w_{j}\left(y_{j}-A^{\prime}\right)^{2}}{2 y_{j}}+\sum_{y_{j}>A^{\prime}} \frac{w_{j}\left(y_{j}-A^{\prime}\right)^{2}}{y_{j}+A^{\prime}}\right)
$$

and

$$
\frac{1}{A}\left(\sum_{x_{j}>A} \frac{w_{j}\left(x_{j}-A\right)^{2}}{2 x_{j}}+\sum_{x_{j} \leq A} \frac{w_{j}\left(x_{j}-A\right)^{2}}{x_{j}+A}\right) \leq \log (A / G)
$$

Taking the quotient of these estimates together with some manipulations yields

$$
\frac{\log \left(A^{\prime} / G^{\prime}\right)}{\log (A / G)} \leq q
$$

as desired.

That $q<1$ follows from $A /(1-A)<1$, together with $x_{j}+$ $\max \left(x_{j}, A\right) \leq 2-x_{j}-\max \left(x_{j}, A\right)$, (with at least one of these inequalities being strict).

Remarks 5.1. The argument above clearly implies the weaker refinement

$$
\left(\frac{A^{\prime}}{G^{\prime}}\right)^{A^{\prime}}<\left(\frac{A}{G}\right)^{A}
$$

Also, using Proposition 3, one can obtain bounds for $\left(G^{\prime} / H^{\prime}\right) /(G / H)$ in a similar way and, using Propositions 1 and 4 , one can obtain bounds for $\left(A^{\prime}-G^{\prime}\right) /(A-G)$ and $\left(A^{\prime}-H^{\prime}\right) /(A-H)$, respectively. The interested reader may consult $[\mathbf{1}, \mathbf{2}, \mathbf{8}, \mathbf{9}]$ as well.

Acknowledgment. The author is grateful to Rex Mercer for valuable suggestions and encouragement.

REFERENCES

1. H. Alzer, An inequality of W.L. Wang and P.F. Wang, Internat. J. Math. Math. Sci. 13 (1990), 295-298.
2. - On an additive analogue of Ky Fan's inequality, Indag. Math. N.S. 8 (1997), 1-6.
3. -, A new refinement of the arithmetic-geometric mean inequality, Rocky Mountain J. Math. 27 (1997), 663-667.
4. E.F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1961.
5. D.I. Cartwright and M.J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc. 71 (1978), 36-38.
6. G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, 2nd ed., Cambridge University Press, 1966.
7. A.M. Mercer, Bounds for $A-G, A-H, G-H$, and a family of inequalities of Ky-Fan's type, using a general method, J. Math. Anal. Appl. 243 (2000), 162-173.
8. P.R. Mercer, A note on Alzer's refinement of an additive Ky Fan inequality, Math. Inequalities Appl. 3 (2000), 147-148.
9. D.S. Mitrinovic, J.E. Pecaric and A.M. Fink, Classical and new inequalities in analysis, Kluwer Acad. Press, Dordrecht, 1995.
[^1]
[^0]: Received by the editors on July 25, 2000, and in revised form on August 15,

[^1]: Department of Mathematics, SUNY College at Buffalo, New York 14222
 E-mail address: mercerpr@math.buffalostate.edu

