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Dedicated to Mari Mercer, in loving memory

ABSTRACT. We obtain refinements of the arithmetic, geo-
metric, and harmonic mean inequalities. A main ingredient is
Hadamard’s inequality. In an application, we obtain a refined
version of Ky Fan’s inequality.

1. Preliminaries. For n ≥ 2, let x1, x2, . . . , xn be positive numbers,
and let w1, w2, . . . , wn be positive weights:

∑
wj = 1. We denote by

A =
n∑

j=1

wjxj , G =
n∏

j=1

x
wj

j , H =
( n∑

j=1

wj

xj

)−1

,

the (weighted) arithmetic, geometric, and harmonic means of the xj ’s.

It is well known that
H ≤ G ≤ A,

with the inequalities being strict unless all xj ’s are equal.

In this paper we obtain various refinements, including upper and
lower bounds for A−G, A−H, A/G and G/H. An important ingredient
in our approach is the following.

Hadamard’s inequality. Let f be a concave function on [a, b].
Then

f(a) + f(b)
2

≤ 1
b − a

∫ b

a

f(t) dt ≤ f

(
a + b

2

)
.
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2. Results.

Proposition 1. The following estimates hold, with equality occurring
if and only if all xj’s are equal.

n∑
j=1

wj(xj − G)2

xj + max(xj , G)
≤ A − G ≤

n∑
j=1

wj(xj − G)2

xj + min(xj , G)
.

Proof. For x > 0, we have

x − 1 − log(x) =
∫ x

1

t − 1
t

dt.

The integrand is concave and so Hadamard’s inequality yields

(x − 1)2

2x
≤ x − 1 − log(x) ≤ (x − 1)2

x + 1
for x > 1,

and

(x − 1)2

x + 1
≤ x − 1 − log(x) ≤ (x − 1)2

2x
for 0 < x ≤ 1.

Equalities occur only for x = 1.

Substituting xj/G for x, multiplying by wj and summing, we obtain

1
G

∑
xj>G

wj(xj−G)2

2xj
≤

∑
xj>G

wj

(
xj

G
−1−log

(xj

G

))
≤ 1

G

∑
xj>G

wj(xj−G)2

xj + G

and

1
G

∑
xj≤G

wj(xj−G)2

xj + G
≤

∑
xj≤G

wj

(
xj

G
−1−log

(xj

G

))
≤ 1

G

∑
xj≤G

wj(xj−G)2

2xj

respectively.
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Taken together, these inequalities read

1
G

n∑
j=1

wj(xj − G)2

xj + max(xj , G)
≤ A

G
− 1 ≤ 1

G

n∑
j=1

wj(xj − G)2

xj + min(xj , G)
,

as desired.

Remarks 1.1. Observing only that the integral is nonnegative leads
to a proof of the arithmetic-geometric mean inequality 0 ≤ A − G, cf.,
[6, Section 6.7]. Also, Proposition 1 improves

1
2 max(xj)

n∑
j=1

wj(xj − G)2 ≤ A − G ≤ 1
2 min(xj)

n∑
j=1

wj(xj − G)2,

which is proved in [7]. The lefthand inequality above is due to Alzer
[3].

Applying the same technique, but instead substituting xj/A and
H/xj for x respectively, we obtain the following two results.

Proposition 2. We have

1
A

n∑
j=1

wj(xj − A)2

xj + max(xj , A)
≤ log(A) − log(G) ≤ 1

A

n∑
j=1

wj(xj − A)2

xj + min(xj , A)
,

with equality occurring if and only if all xj’s are equal.

Proposition 3. We have

n∑
j=1

wj

xj

(xj − H)2

H + max(xj , H)
≤ log(G) − log(H) ≤

n∑
j=1

wj

xj

(xj − H)2

H + min(xj , H)
,

with equality occurring if and only if all xj’s are equal.

Again, using an argument similar to the proof of Proposition 1, but
beginning with a different function, we obtain the following.
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Proposition 4. The following estimates hold, with equality occurring
if and only if all xj’s are equal.

n∑
j=1

wj(xj − H)2
xj + 2H + max(xj , H)

(xj + max(xj , H))2
≤ A − H

≤
n∑

j=1

wj(xj − H)2
xj + 2H + min(xj , H)

(xj + min(xj , H))2
.

Proof. For x > 0 we have

x − 2 +
1
x

=
∫ x

1

t2 − 1
t2

dt.

The integrand is concave, and Hadamard’s inequality yields

(x − 1)2
x + 1
2x2

≤ x − 2 +
1
x
≤ (x − 1)2

x + 3
(x + 1)2

for x > 1,

and

(x − 1)2
x + 3

(x + 1)2
≤ x − 2 +

1
x
≤ (x − 1)2

x + 1
2x2

for 0 < x ≤ 1.

Equalities occur only for x = 1.

Now we proceed as before. Substitute xj/H, or H/xj , for x, multiply
by wj , and sum.

Remark 4.1. These estimates improve

1
2 max(xj)

n∑
j=1

wj(xj − H)2 ≤ A − H,

which is obtained in [7].

3. An application. Here we further restrict the xj ’s to be ≤ 1/2,
and let yj = 1− xj . We denote by A′ (= 1−A) and G′ the (weighted)
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arithmetic and geometric means of the yj ’s. The following result is well
known, e.g., [4, 9], and Proposition 5 below is a refinement.

Ky Fan’s inequality. We have

A′

G′ ≤
A

G
,

with equality occurring if and only if all of the xj’s are equal.

Proposition 5. If not all of the xj’s are equal, then we have

A′

G′ <

(
A

G

)q

,

where q < 1 is given by

q =
A

1 − A

∑n
j=1 wj(xj − A)2/(2 − xj − max(xj , A))∑n

j=1 wj(xj − A)2/(xj + max(xj , A))
.

Proof. Applying the righthand inequality of Proposition 2 to the yj ’s
and the lefthand inequality to the xj ’s, we obtain

log(A′/G′) ≤ 1
A′

( ∑
yj≤A′

wj(yj − A′)2

2yj
+

∑
yj>A′

wj(yj − A′)2

yj + A′

)
,

and

1
A

( ∑
xj>A

wj(xj − A)2

2xj
+

∑
xj≤A

wj(xj − A)2

xj + A

)
≤ log(A/G).

Taking the quotient of these estimates together with some manipula-
tions yields

log(A′/G′)
log(A/G)

≤ q,

as desired.
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That q < 1 follows from A/(1 − A) < 1, together with xj +
max(xj , A) ≤ 2−xj−max(xj , A), (with at least one of these inequalities
being strict).

Remarks 5.1. The argument above clearly implies the weaker refine-
ment (

A′

G′

)A′

<

(
A

G

)A

.

Also, using Proposition 3, one can obtain bounds for (G′/H ′)/(G/H)
in a similar way and, using Propositions 1 and 4, one can obtain bounds
for (A′−G′)/(A−G) and (A′−H ′)/(A−H), respectively. The interested
reader may consult [1, 2, 8, 9] as well.

Acknowledgment. The author is grateful to Rex Mercer for
valuable suggestions and encouragement.
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