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COHOMOLOGICAL PROPERTIES
OF MULTIPLE COVERINGS

OF SMOOTH PROJECTIVE CURVES

E. BALLICO

ABSTRACT. Let X, respectively C, be a smooth projective
curve of genus g, respectively q, and f : X → C a degree k
finite morphism. Set E := f∗(OX)/OC . Hence E is a rank
k − 1 vector bundle on C with deg(E) = kq − k + 1− g. Here
we study the cohomological properties of E and in particular
the integers h0(C,E(tP )), P ∈ C and t ∈ N. We use these
integers to define the notion of f -Weierstrass points.

1. Introduction. Let X, respectively C, be a smooth connected
projective curve of genus g, respectively q, defined over an algebraically
closed base field K and f : X → C a degree k covering. Set
E := f∗(OX)/OC . The sheaf E is a rank k − 1 vector bundle on
C. We will say that E is the bundle associated to f . Many geometrical
properties of X are detected by the cohomological properties of E.
If q = 0, then E is a direct sum of line bundles and the degrees of
the rank 1 summands of E uniquely determine the so-called scrollar
invariants of the pencil f (see [12, Section 2]). In this paper we will
consider the case q > 0. If either char (K) = 0 or char (K) > k, the
trace map induces a splitting f∗(OX) ∼= OC ⊕E; since X is connected,
in this case we have h0(C,E) = 0. For any P ∈ C and any integer t,
set n(f, P, t) := h0(C,E(tP )) and N(f, P, t) := h0(C, f∗(OX)(tP )) =
h0(X, (f−1(P ))⊗t) (projection formula). The sequence n(f, P ) :=
{n(f, P, t)}t≥0, respectively N(F, P ) := {N(f, P, t)}t≥0, will be called
the numerical sequence, respectively the total numerical sequence, of f
at P . Set n(f, t) := n(f, P, t) and N(f, t) := N(f, P, t) for general
P ∈ C. The sequence n(f) := {n(f, t)}t≥0, respectively N(f) :=
{N(f, t)}t≥0, will be called the numerical sequence, respectively the
total numerical sequence, of f . If P ∈ C and n(f, P, t) �= f(f, t) for
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some t, i.e., if the numerical sequence of f at P is not the numerical
sequence of f at P is not the numerical sequence of f , then P is called
a Weierstrass point of f or an f -Weierstrass point. In the same way we
define the total Weierstrass points of f . If f∗(OX) ∼= OC ⊕ E, every
Weierstrass point of C is a total Weierstrass point of f . If q = 0, then
there is no f -Weierstrass point (see Remark 4.1), and the knowledge
of the numerical sequence of f is equivalent to the knowledge of the
scrollar invariants of the pencil f .

Remark 1.1. Since f is finite, we have h0(C, f∗(OX)) = h0(X,OX) =
1 and h1(C, f∗(OX)) = h1(X,OX) = g. Hence χ(E) = χ(f∗(OX)) −
χ(OC) = 1 − g + q − 1 = q − g. Thus, by Riemann-Roch we have
deg (E) = χ(E) + (k − 1)(q − 1) = kq − k − g + 1. For any P ∈ C
and any integer t we have deg (E(tP )) = kq − k − g + 1 + t(k − 1).
Hence by Riemann-Roch for any P ∈ C and any integer t we have
h0(C,E(tP )) ≥ max{0, q−g+t(k−1)} and h1(C,E(tP )) ≥ max{0, (k−
1)(q − 1)− kq + k + g − 1− t(k − 1)} = max{0, g − q − t(k − 1)}.

Motivated by Remark 1.1, we introduce the following definition

Definition 1.2. The covering f is called cohomologically balanced if,
for a general P ∈ C, we have h0(C,E(tP )) = max{0, q−k+t(k−1)−g},
or equivalently, h1(C,E(tP )) = max{0, g−q−t(k−1)}, for every integer
t > 0.

The covering f is cohomologically balanced if and only if, for a general
P ∈ C and every integer t, or just every positive integer, we have
h0(C,E(tP )) · h1(C,E(tP )) = 0.

Example 1.3. If q = 0, then E is the direct sum of k − 1 line
bundles, say of degree a1, . . . , ak−1 with a1 ≥ · · · ≥ ak−1. The pencil
f is cohomologically balanced if and only if a1 ≤ ak−1 + 1, i.e., if and
only if the vector bundle E is rigid. By [2] for a general k-gonal curve
of genus g ≥ 2k− 1, the unique associated degree k pencil f : X → P1

is cohomologically balanced.

In Section 2 we will prove the following result.
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Theorem 1.4. Fix integers k, γ, b with k ≥ 2, b ≥ 2, γ ≥
2k, γ − k + 1 ≡ 0 (mod k − 1), a smooth projective curve C with
pa(C) = q and a degree b morphism β : C → P1. Then there
exists a degree k covering f : X → C with X smooth curve of genus
k(q−1)+1+b(γ−k+1) such that the bundle associated to f is the direct
sum of k− 1 isomorphic line bundles of degree b(γ − k+ 1)/(k− 1). If
either char (K) = 0 or char (K) > b(γ+k−1), then f is cohomologically
balanced.

Remark 1.5. Let C be a smooth projective curve of genus q. The
condition g − k(q − 1) − 1 ≡ 0 (mod k − 1) is a necessary condition
for the existence of a degree k covering f : X → C with X of genus
g, C of genus q and such that the associated bundle is the direct sum
of k − 1 line bundles of the same degree. For every integer b ≥ q + 1
there are many nonspecial degree b pencils β : C → P1; if b > q + 1,
the associated linear system is not complete, but this does not matter
from the point of view of Theorem 1.4. Hence we see that g ≥ 4q + 1;
then the numerical assumptions of Theorem 1.4 are necessary for the
existence of a degree k covering X → C with X of genus g and such
that the associated bundle is a direct sum of line bundles with the same
degree.

Now we will extend the definition of associated bundle to the case of
coverings f : X → C in whichX is a singular curve (see Remark 1.6). In
this more general set-up, we are able to give a very strong generalization
of Theorem 1.4 (see Theorem 1.7).

Remark 1.6. Let X be an integral projective curve, C a smooth
projective curve and f : X → C a finite morphism. Set k :=
deg (f). Since f is finite, C smooth and X locally Cohen-Macaulay, the
morphism f is flat and the coherent sheaf is locally free. Furthermore,
E := f∗(OX)/OX is a rank k − 1 vector bundle on C. We will call
E the associated bundle of f . Set g := pa(X) and q := pa(C). As in
Remark 1.1 we obtain deg (E) = kq − k − g + 1 + t(k − 1). We extend
the definition of cohomologically balanced to this set-up. Since C is
smooth, every Q ∈ C is a Cartier divisor of C. Hence, for every Q ∈ C,
the scheme theoretic fiber f−1(Q) is a Cartier divisor of X. We will
say that Q ∈ C is f -Weierstrass if there is an integer t ≥ 1 such that
h0(C,E(tQ)) > h0(C,E(tP )) for a general P ∈ C.
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Theorem 1.7. Fix integers k, γ, b, g with k ≥ 2, b ≥ 2, γ ≥ 2k,
γ − k + 1 ≡ 0 (mod k − 1) and k(q − 1) + 1 + b(γ + k − 1) ≤
g ≤ k(q − 1) + k − 1 + b(γ + k − 1). Assume either char (K) = 0
or char (K) > b(γ + k − 1). Fix a smooth projective curve C with
pa(C) = q and a degree b morphism β : C → P1. Then there
exist an integral projective nodal curve Z with pa(Z) = g and exactly
g−k(q−1)−1−b(γ+k−1) ordinary nodes as only singularities and a
degree k covering f : X → C such that, calling F the associated bundle
of f and π : Z → X the normalization map, the degree k covering
f ◦ π : Z → C has as associated vector bundle the direct sum, E,
of k − 1 isomorphic line bundles; and, for a general P ∈ C and every
t ≤ b(γ−k+1)/(k−1)+q−1 we have h0(C,F (tP )) = h0(C,E(tP )) = 0.

In Section 3 we obtain several degree k coverings f : X → C with
good cohomological properties taking asX the normalization of a nodal
curve Y ⊂ C×P1 and as f the morphism induced by the projection of
C×P1 onto its first factor (see 3.1). If q := pa(C) = 1, then we obtain
a cohomologically balanced covering, see 3.3. In Section 4 we prove
that if g ≡ 1 (mod k − 1) and q > 0, then every degree k covering has
a Weierstrass point. In Section 5 we show that if q ≥ 4 a sufficiently
general stable bundle does not occur as associated bundle (see 5.12
and 5.13). In the same section we prove other results concerning
the existence or nonexistence of coverings with certain bundles as
associated bundle if k = 3 or q = 1.

2. Examples and proofs of 1.4 and 1.7.

Remark 2.1. Assume q = 0 and use the notation of Example 1.3. In
arbitrary characteristic we have f∗(OX) ∼= OC ⊕ E for the following
reason. Since X is connected, we have h0(C, f∗(OX)) = h0(X,OX) =
1. Since h1(C,OC) = q = 0, we obtain h0(P1, E) = 0. Hence ai < 0
for every i. Since any extension of a degree ai < 0 line bundle on P1

by the trivial line bundle splits, we obtain f∗(OX) ∼= OC ⊕ E.

Example 2.2. Here we assume k = 2 and char (K) �= 2. Hence
E ∈ Pic (C) and f∗(OX) ∼= OC ⊕ E. Set N := E∗. The double
covering f is uniquely determined by C,N and the choice of an effective
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reduced divisor B ∈ |N⊗2|. Vice versa, any such triple (C,N,B)
gives a unique double covering f : X → C with X smooth; the
curve X is connected if and only if N �= OC . By the Riemann-
Hurwitz formula we have deg (N) = g − 2q + 1. A point p ∈ C
is a Weierstrass point of f if and only if it is a Weierstrass point
in the sense of [6] for the complete linear system on C associated
to ωC ⊗ N . Hence in this way we may associate weights to any
Weierstrass point. The double covering f is cohomologically balanced
if and only if the complete linear system on C associated to ωC ⊗ N
has classical generic Hermite invariants, i.e., for every integer t with
1 ≤ t ≤ h0(C, ωC⊗N)−2 the generic t-dimensional osculating subspace
of the image curve has order of contact t + 1 at the osculating point.
Since N is nontrivial, by [6, Theorem 15], this is always the case if
either char (K) = 0 or char (K) > deg (ωC ⊗ N), but it may fail
for low char (K) if q > 0. By the Brill-Segre formula [6, Theorem
9 and Theorem 15], if either char (K) = 0 or char (K) > deg (ωC ⊗N)
the total number of f -Weierstrass points (counting multiplicities) is
h0(C, ωC ⊗N)(h0(C, ωC ⊗N)−1)(q−1)+h0(C, ωC ⊗N)deg (ωC ⊗N).

Remark 2.3. Assume char (K) = 0. Let f : X → C be a degree
k covering whose associated bundle is a direct sum of k − 1 line
bundles L1, . . . , Lk−1 with 0 ≥ deg (L1) ≥ . . . ≥ deg (Lk−1). As in
2.1 or 1.3 we see that f is cohomologically balanced if and only if
deg (L1) ≤ deg (Lk−1) + 1. Set b := deg (L1) − deg (Lk−1). As in 2.2,
by [6, Theorem 15], for a general P ∈ C we have h0(C,E(tP )) = 0 if
and only if t + deg (L1) ≤ q − 1 and h1(C,E(tP )) = 0 if and only if
t+deg (Lk−1) ≥ q−1. Hence if b ≥ 2 there are exactly b−1 integers t,
all consecutive, such that h0(C,E(tP )) ·h1(C,E(tP )) �= 0 for a general
P ∈ C.

Example 2.4. Here we assume that f : X → C is a simple degree k
cyclic covering in the sense of [4, Example 1.1]. We assume either
char (K) = 0 or char (K) > k. hence there is an N ∈ Pic (C) and a
reduced divisor B ∈ |N⊗k| such that E∗ ∼= ⊕1≤i<kN

⊗i and B is the
branch locus of f . Hence deg (E) = −k(k − 1)deg (N)/2. Vice versa,
any such pair (N,B) gives a degree k simple cyclic covering f : X → C
with X smooth. X is connected, i.e., X is not the disjoint union of k
copies of C, each of them mapped isomorphically onto C by f , if and



1210 E. BALLICO

only if N �= OC . By the Riemann-Hurwitz formula or Remark a1 we
have g = kq − k + 1 + k(k − 1)deg (N)/2. The set of all f -Weierstrass
points is the union of the sets of all Weierstrass points in the sense of [6]
of the complete linear systems associated to ωC ⊗N⊗i, 1 ≤ i ≤ k − 1.

Remark 2.5. Assume char (K) = 0. We saw in Example 2.1 that if
k ≥ 3 a simple degree k cyclic covering is cohomologically balanced
if and only if it is étale. A similar proof works for a tower of cyclic
extensions, none of them étale or of degree 2.

Example 2.6. Fix integers k, γ, b with k ≥ 2, b ≥ 2, γ ≥ 2k,
γ−k+1 ≡ 0 (mod k−1), a smooth projective curve C with pa(C) = q,
a degree b morphism β : C → P1 and a degree k covering τ : Y →
P1 such that Y is a smooth curve of genus γ and the pencil τ is
cohomologically balanced. By Remark 2.1 we have γ∗(OY ) ∼= OP1 ⊕F
with F isomorphic to a direct sum of line bundles of degree a1, . . . , ak−1

with 0 > a1 ≥ · · · ≥ ak−1; for instance, by [2] as pair (Y, τ) we may
take a general k-gonal curve of genus γ with its associated pencil. Since
τ is cohomologically balanced, we have a1 ≤ ak−1 + 1, Example 1.3.
Since a1 + · · · + ak−1 = −γ + k − 1, Remark 1.1, and γ − k + 1 ≡ 0
(mod k−1), we have aj = a1 for every j, i.e., F is a direct sum of k−1
isomorphic line bundles. Assume that the branch loci of τ and of β are
disjoint and that the ramification of τ is ordinary and over 2γ+2k− 2
distinct points of P1. Take the fiber product of the morphisms τ and
β and call f : X → C the associated degree covering. X is a smooth
curve by the universal property of the normalization. The curve X has
genus k(q− 1)+1+ b(γ+ k− 1) by the Riemann-Hurwitz formula. We
have f∗(OX) = OC ⊕ E with E ∼= τ∗(F ). Hence E is the direct sum
of k − 1 isomorphic line bundles. Hence, as in Example b1, if either
char (K) = 0 or char (K) is large, then f is cohomologically balanced.
Furthermore, we see that if in this case each f -Weierstrass point must
be counted with weight at least k − 1.

Proof of Theorem 1.4. As in Example 2.6 take as f a fiber product
of β with a degree k covering u: Y → P1 with Y general smooth k-
gonal curve of genus γ. Since γ − k + 1 ≡ 0 (mod k − 1), the bundle
associated to u is the direct sum of isomorphic line bundles [2]. For
a general choice of the pair (Y, u) we obtain the connectedness of X.
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The last assertion follows from the discussion in Example 2.2.

Proof of Theorem 1.7. By Theorem 1.4 there exist a smooth curve X
of genus k(q− 1) + 1+ b(γ + k− 1) and a degree k covering h : Z → C
such that the associated vector bundle E is the direct sum of k − 1
copies of a line bundle of degree b(γ−k+1)/(k−1). Hence for general
P ∈ C we have h0(C,E(tP )) = 0 if t ≤ b(γ − k + 1)/(k − 1) + q − 1.
Take as X any nodal curve obtained from X by pinching together
g − k(q − 1) − 1 − b(γ + k − 1) pairs of points of X, say {Pi, Qi},
1 ≤ i ≤ g − k(q − 1) − 1 − b(γ + k − 1) such that h(Pi) = h(Qi)
for every i and h(Pi) �= h(Pj) for i �= j. By construction Z is
the normalization of C and the covering h : Z → C descends to a
covering f : X → C. Call F the bundle associated to f . Since
OX is a subsheaf of π∗(OZ), F is a subsheaf of E. Hence for a
general P ∈ C we have h0(C,F (tP )) ≤ h0(C,E(tP )) = 0 for every
t ≤ b(γ − k + 1)/(k − 1) + q − 1.

3. Nodal curves in a ruled surface. In this section we will
use the following notation. Let C be a smooth projective curve of
genus q. Set M := C × P1. We have Pic (M) ∼= Pic (C) × Z and we
will write (L, b) for the element of Pic (M) induced by L ∈ Pic (C)
and the degree b line bundle on P1. If deg (L) = a we will say
that (L, b) has numerical type (a, b). Similarly we will say that an
effective Cartier divisor on M is of type (L, b) if Y ∈ |(L, b)| and (a, b),
a := deg (L), will be called the numerical type of Y . The canonical
sheaf ωM of M is (OC ,−2). Hence by Künneth formula we have
h0(M,ωM ) = 0 and h1(M,ωM ) = q. Fix an integer k ≥ 2. Let
Y ⊂ M be an integral projective curve with numerical type (a, k) for
some k and π : X → Y its normalization. The composition of π with
the projection onto C induces a degree k covering f : X → C. By
the adjunction formula we have ωY

∼= ωM (Y ) | Y . Thus 2pa(Y )− 2 =
(a + 2q − 2)k + (k − 2)a. Since h0(M,ωM ) = 0 and h1(M,ωM ) = q,
the restriction map ρ : H0(M,ωM (Y )) → H0(Y, ωY ) is injective and
diam (Coker (ρ)) = q. Now assume that Y has only ordinary nodes
as singularities and set S := Sing (Y ) and z := Card (S). Since the
conductor of OY in OX is just IS,Y , we see that pa(X) = pa(Y ) − z
and that H0(M, IS ⊗ωM (Y )) is naturally isomorphic to a subspace, V ,
of H0(X,ωX). Furthermore, if S imposes z independent conditions to
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H0(M,ωM (Y )), i.e., if h0(M, IS ⊗ ωM (Y )) = h0(M,ωM (Y ))− z, then
V has codimension q in H0(X,ωX). For any N ∈ Pic (C), t ∈ Z and
any finite subset S of M , set W (S,N, t) := P(H0(M, IS ⊗ (N, t))) and
V (S,N, t) := P(H0(M, (IS)2 ⊗ (N, t))).

Theorem 3.1. Assume char (K) = 0. Fix integers a, k, z with k ≥ 2,
a ≥ 4q + 2 and 0 ≤ z ≤ k − 1, N ∈ Pic a(C) with deg (N) = a and a
general subset S of M with card (S) = z. There exists an irreducible
nodal curve Y ⊂ M of type (N,K) with Sing (Y ) = S. Fix any such
curve Y and call X the normalization of Y and f : X → C the degree k
morphism induced by the projection M → C. Let E be the bundle
associated to f . Hence pa(X) = (a + k − 2)a/2 + (q − 1)k + 1 and
deg (E) = q−pa(X) = −(a+k−2)a/2−(q−2)k−1. For a general P ∈ c
we have h0(C,E(tP )) = 0 and h1(C,E(tP )) = h1(C,E)− t(k − 1) =
(k−1)pa(X)−deg (E)−t(k−1) = k(a+k−2)a/2+(q−1)k2+k−q−t(k−
1) for every integer t with 0 ≤ t(k−1) ≤ k(a+k−2)a/2+(q−1)k2+k−q.

Proof. We first prove the existence of the nodal curve Y .

First claim. Fix integers a, k, z with k ≥ 2, a ≥ 4q + 2 and
0 ≤ z ≤ k − 1, N ∈ Pic a(C) with deg (N) = a and a general
subset S of M with card (S) = z. We have h0(M, (IS)2 ⊗ (N, k)) =
(k + 1)(a + 1 − q) − 3z and h1(M, (IS)2 ⊗ (N, k)) = 0. We have
diam (V (S,N, k)) = (k+1)(a+1−q)−3z > 0 and a general Y ∈ V (S)
is an irreducible nodal curve with S = Sing (Y ).

Proof of the first claim. Since a ≥ 4q + 2, there are very ample line
bundles A,B on C with N ∼= A⊗B, deg (A) ≥ 2q+1, deg (B) ≥ 2q+1
and hence with h1(C,A) = h1(C,B) = 0. By the generality of S we
have diam (W (S,A, [k/2])) = (deg (A) + 1 − q)([(k/2] + 1) − z and
diam (W (S,B, [(k + 1)/2])) = (deg (B) + 1 − q)([(k + 1)/2])Z. It is
easy to see that the linear systems W (S,A, [k/2]) and W (S,B, [(k +
1)/2]) have S as scheme-theoretic base locus and that they induce
a local embedding of M \ S. Hence by a characteristic free form of
Bertini’s theorem the general E ∈ W (S,A, [k/2]) and the general F ∈
W (S,B, [(k+1)/2]) are smooth. Since the linear systemsW (S,A, [k/2])
andW (S,B, [(k+1)/2]) have S as scheme-theoretic base locus and they
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induce a local embedding of M \ S, the general E ∈ W (S,A, [k/2])
and the general F ∈W (S,B, [(k+ 1)/2]) are transverse, i.e., the curve
E∪F ∈ V (S,N, k) is nodal and Sing (E∪F ) = S. In this way we easily
obtain h1(M, (IS)2 ⊗ (N, k)) = 0 and hence h0(M, (IS)2 ⊗ (N, k)) =
(a + 1 − q)(k + 1) − 3z. To prove the first claim it is sufficient to
show that a general Y ∈ W (S,N, k) is not of the form E ∪ F with
E ∈W (S,A, [k/2]) and F ∈W (S,B, [(k+ 1)/2]). This is true because
(a+1−q)(k+1)−3z−1 > (deg (A)+1−q)([k/2]+1)−z+(deg (B)+
1− q)([(k + 1)/2] + 1)− z since z ≤ k − 1 and deg (A) + deg (B) = a.

Fix any nodal and irreducible Y ∈ V (S, a, k) and call X and E
the associated objects. The numerical invariants of X and E were
computed before the statement of 3.1. Since char (K) = 0, the complete
linear system of the line bundle ωC ⊗N has classical Hermite invariants
at a general P ∈ C, i.e., for a general P ∈ C and every integer
t ≥ 0 we have h0(C, ωC ⊗ N(−tP )) = max{0, h0(C, ωC ⊗ N) − t) =
max{a + q − 1, t} [6, Theorem 15]. Hence the result follows from the
injectivity of the map ρ : H0(M,ωM (Y )) → H0(Y, ωY ), the equality
dim (Coker (ρ)) = q and the corresponding result for X proved before
the statement of 3.1.

Remark 3.2. Assume char (K) > 0. We may obtain verbatim
Theorem 3.1 if we assume that the complete linear systems ωC and
ωC ⊗N have classical invariants at the generic point of C. For instance
it is sufficient to assume char (K) > 2q − 2 + a.

Theorem 3.3. Fix integers g, k with k ≥ 2, g ≥ 3k + 13 and g ≡ 2
(mod k − 1). Assume either char (K) = 0 or char (K) > k. Let C be
an elliptic curve. Then there exists a cohomologically balanced degree
k covering f : X → C with X a smooth curve of genus g.

Proof. Apply Theorem 3.1 to the curve C and let f : X → C be
the corresponding covering. Call E the bundle associated to f . We
have deg (E) = 1 − g. By Theorem 3.1 for a general P ∈ C and
every integer t ≤ (g − 2)/(k − 1), we have h0(C,E(tP )) = 0, i.e.,
h1(C,E(tP )) = h1(C,E)−t(k−1). Hence h1(C,E((g−2)/(k−1))) = 1.
Since P is general we obtain h1(C,E(1 + (g − 2)/(k − 1))) = 0. Thus
h1(C,E(y)) = 0 for every y ≥ 1 + (g − 2)/(k − 1). Hence f is
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cohomologically balanced.

4. Existence of f-Weierstrass points.

Remark 4.1. Take f,X,C,E, k, g and q as usual. If q = 0, then there
is no f -Weierstrass point because P1 is homogeneous, every vector
bundle on P1 is a direct sum of line bundles and every line bundle on
P1 is homogeneous.

Theorem 4.2. Assume char (K) = 0. Let C be a smooth projective
curve of genus q ≥ 1, X a smooth projective curve of genus g and
f : X → C a cohomologically balanced degree k covering. Assume
g − 1 ≡ 0 (mod k − 1). Then there exist f-Weierstrass points.

Proof. Let E be the bundle associated to f . By Remark 1.1 we have
deg (E) = kq− q+1− g. Hence the condition g− 1 ≡ 0 (mod k− 1) is
equivalent to the conditions that the slope µ(E) := deg (E)/rank (E)
of E is an integer. Set x := µ(E)+1− q. Set W (E) := {L ∈ Pic x(C) :
h0(C,E ⊗ L∗) > 0}. Since µ(E) is an integer, x is an integer and
hence W (E) is well defined. By [11, Remark 1.6 and Lemma 2.2], the
condition µ(E) ∈ Z implies that W (E) is either Pic x(C) or a divisor
of Pic x(C) whose cohomology class is a nonzero multiple of the Θ-
divisor of Pic x(C). For this computation we do not need the stability
of E. Since f is cohomologically balanced,W (E) �= Pic x(C). Since the
Θ-divisor of Pic x(C) is ample and C is embedded in Pic x(C) as the
curve j(C) := {OC(xQ)}Q ∈ C, we have j(C)∩W (E) �= ∅. The points
Q ∈ C such that OC(xQ) ∈ j(C)∩W (E) are exactly the f -Weierstrass
points.

Remark 4.3. Under the assumptions of Theorem 4.2, we even ob-
tained an enumerative formula for the set of all f -Weierstrass points:
set p = 0, g = q, r = k − 1 and δ = q − 1 in the formula in the
statement of [11, Lemma 2.2] and obtain W (E) = (k − 1)Θ. The
discussion in [11, Remark 1.6] shows that to be sure of the existence
of f -Weierstrass points we need to assume g − 1 ≡ 0 (mod k − 1): if
µ(E) /∈ Z the expected codimension of W (E) is at least two and hence
even when f -Weierstrass points do exist, no enumerative formula for
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their weighted number exists (at least from this point of view).

5. Stable associated bundle. For any vector bundle F on a
smooth projective curve, set µ(F ) := deg (F )/rank (F ). Let f : X → C
be a covering with X,C smooth projective curves. We will say that f
is composite if there is a smooth projective curve Y and coverings
a : X → Y , b : Y → C, with deg (a) ≥ 2, deg (b) ≥ 2 and f = b ◦ a.
Hence, if deg (f) is prime, then f is not composite. Take a factorization
f = b ◦ a of the covering f . The sheaf b∗(OY ) is a locally free
subsheaf of f ∗ (OX) with rank (b∗(OY )) = deg (b). The sheaf b∗(OY )
is an OC -subalgebra of f∗(OX) with unity, i.e., containing OC . If
either char (K) = 0 or char (K) > deg (f), then b∗(OY ) is a direct
summand of f∗(OX). Vice versa, let B be a locally free subsheaf
of f∗(OX) containing OC and closed under the algebra product of
f∗(OX). Since any finite OC -algebra induces a finite covering of
C, the algebra B induces a factorization of f as f = α ◦ β with
β : D → C and deg (β) = rank (B). In general D may be singular,
but since C and X are smooth, there is a factorization f = a ◦ b
of f with b : Y → C, Y normalization of D and b composition of
β with the normalization map Y → D. The OC -algebra b∗(OY ) is
the saturation of B in f∗(OX), i.e., the only subsheaf of f∗(OX) with
B ⊆ b∗(OY ), rank (b∗(OY )) = rank (B) and f∗(OX)/b∗(OY ) torsion-
free (i.e., locally free because C is a smooth curve).

Lemma 5.1. Let C be a smooth projective curve of genus q, P ∈ C
and A,B vector bundles on C with 0 > µ(A) > 1+ 1/rank (A)+ µ(B).
Then there exists an integer t > 0 such that h0(C,A(tP )) �= 0 and
h1(C,B(tP )) �= 0.

Proof. For any vector bundle F on C and any integer x we have
µ(F (xP )) = µ(F ) + x. Hence there is an integer t > 0 such that
q+1/rank (A) ≥ µ(A(tP )) > q−1 and µ(B(tP )) < q−1. By Riemann-
Roch we have h0(C,A(tP )) �= 0 and h1(C,B(tP )) �= 0.

Proposition 5.2. Let C,X,Z be smooth projective curves and
f : X → C, h : Z → X finite coverings with deg (f) ≥ 2 and
deg (h) ≥ 2. Set G := pa(Z), g := pa(X), q := pa(C), k := deg (f) and
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x := deg (h). Assume that G > g(x+1)+kx−k and either char (K) = 0
or char (K) > max{k, x}. Then the covering h ◦ f : Z → C is not
cohomologically balanced.

Proof. Let F , respectivelyH, respectivelyE, be the bundle associated
to f , respectively h, respectively f ◦ h. We have E ∼= F ⊕ f∗(H). By
Remark 1.1 we have deg (F ) = kq − q − g + 1 and deg (f∗(H)) =
deg (H) − deg (F ) = kxq − kq + g − G. Hence µ(F ) − µ(f∗(H)) =
(1−g)/(k−1)− (g−G)/(kx−k) > 1+1/rank (F ). Hence we conclude
by Lemma 5.1.

Several examples of towers of the étale double coverings discussed
in Example 2.2 show that in the statement of Proposition 5.2 we
need to assume some conditions on G, g and q, i.e., we need enough
ramification.

Now we will study the numerical sequence of a covering.

Remark 5.3. Let A0, A1, . . . , Ax, 1 ≤ x ≤ k, be the Harder-
Narasimhan filtration of the vector bundle f∗(OX); for the reader’s
sake we recall the meaning of this filtration (see, e.g., [8, Section 1]);
A0 = {0}; Ax = f∗(OX); x = 1 if and only if f∗(OX) is semistable; A1

is a semistable subsheaf of f∗(OX) with maximal slope and among the
subsheaves of f∗(OX) with this property A1 is only one with maximal
rank and contains all other ones; for every integer i with 1 ≤ i < x
the vector bundle Ai is a proper saturated subbundle of Ai+1 and the
vector bundles Ai+1/Ai, 1 ≤ i < x, are semistable; if 1 ≤ i < x,
then µ(Ai+1/Ai) < µ(Ai/Ai−1). Let y be the maximal integer i with
1 ≤ i ≤ x and such that µ(Ai/Ai−1) ≥ 0. By the very definition of y we
have OC ⊆ Ay. Now assume either char (K) = 0 or q = 1. Under one
of these assumptions, if A,B are semistable, then A⊗ B is semistable
(if char (K) > 0 and q = 1 one has to use Atiyah’s classification of all
vector bundles on an elliptic curve [1]; if char (K) = 0, this is due to
Maruyama [8, Theorem 2.5]). For any two semistable vector bundles
A,B on C with µ(A) > µ(B), we have h0(C,Hom(A,B)) = 0. Hence
we see that the multiplication map Ay ⊗ f∗(OX) → f∗(OX) has an
image contained in Ay. Thus Ay is a proper saturated subalgebra of
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f∗(OX). Thus Ay corresponds to a finite covering b : Y → C such that
f factors through b. We have Ay = OC if and only if b is the identity.
By Remark 1.1, we have deg (Ay) ≤ 0. Hence deg (Ay) = 0 and b is
étale.

5.4. Here we consider the case q = 1 because only for q = 1 are
we allowed to use Remark 5.3 in arbitrary characteristic. We use the
notation of Remark 5.3 and set Bi := Ai/Ai−1, 1 ≤ i ≤ y. Since
C is an elliptic curve, we have h1(C,OC(tQ)) = 0 for every Q ∈ C
and every t > 0. Hence N(f,Q, t) = n(f,Q, t) + t for every Q ∈ C
and every t > 0. Let A be a semistable vector bundle on C. For
a general P ∈ C we have h0(C,A(tP )) = deg (A) + t(rank (A)) and
h1(C,A(tP )) = 0 if deg (A) + t(rank (A)) ≥ 0 and h1(C,A(tP )) =
−deg (A)− t(rank (A)) and h0(C,A(tP )) = 0 if deg (A)+ t(rank (A)) ≤
0. We have rank (A1) = N(f, 1). More generally, the knowledge of
all pairs of integers (rank (Ai), deg (Ai)), 1 ≤ i ≤ y, is equivalent
to the knowledge of the numerical sequence n(f) of f . Fix any
semistable vector bundle A on C, any t ∈ Z and any P,Q ∈ C;
we have h0(C,A(tP )) = deg (A) + t(rank (A)) = h0(C,A(tQ)) if
deg (A) + t(rank (A))deg (A) + t(rank (A)) > 0, while h0(C,A(tP )) =
0 = h0(C,A(tQ)) if deg (A) + t(rank (A)) < 0 [1, Lemma 15]; now
fix P0 ∈ C; if deg (A) + t(rank (A)) = 0 for a general P ′ ∈ C
we have h0(C,A(tP ′)) = 0 but there exists a unique Q′ ∈ C with
h0(C,A(tQ′)) �= 0 (and indeed h0(C,A(tQ′)) = 1) [1, Theorem 5].
Hence there are f -Weierstrass points if and only if some bundle Bi,
1 ≤ i ≤ x, has integer slope µ(Bi) = deg (Bi)/rank (Bi). Using
Atiyah’s classification of vector bundles on elliptic curves, we may
restate the result we just proved in the following way.

Proposition 5.5. Let f : X → C be a covering with C elliptic
curve and E the bundle associated to f . There is no f-Weierstrass
point if and only if every semistable graded subquotient of the Harder-
Narasimhan of E has rank at least two and it is stable.

In particular if k = 2 or k = 3 and g is even, every degree k covering
has an f -Weierstrass point, while if k = 3 and g is odd a covering f has
an f -Weierstrass point if and only if its associated bundle is the direct
sum of two line bundles. Notice that for any rank 2 indecomposable
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vector bundle, E, on C with deg (E) odd and deg (E) ≤ −3, we have
h0(C,Hom(S3(E), det (E))) �= 0 because S3(E)∗ is semistable and with
slope −3µ(E), while det (E) has slope −2µ(E). Hence by [9, Theorem
3], if g is odd we may find a degree 3 covering f : X → C with X of
genus g and stable associated bundle; we need to check the smoothness
of X; here we need to use [9, 5.1 and 5.2], and that the semistable sheaf
Hom (S3(E), det (E)) is spanned by its global sections. For every g it
is easy using [9, Section 6] to find triple coverings of the elliptic curve
C with a decomposable rank 2 vector bundle as associated bundle and
with total space smooth and of genus g.

Remark 5.6. Using the quoted result [1, Theorem 5], we see that the
knowledge of the numerical sequences n(f,Q) for all Q ∈ C also gives
for all integers u the number of the indecomposable factors of E with
slope u.

5.7 Here we consider the case k = 3, q ≥ 1. We assume either
char (K) = 0 or char (K) ≥ 5. We will heavily use the description of
triple coverings made in [9]. Let E be the bundle associated to the
triple coverings f : X → C. By Remark 1.1 or [9, (9.1)], we have
deg (E) = 3q − 2− g. First assume E decomposable, say E ∼= L∗ ⊕R∗

with L ∈ Pic (C), R ∈ Pic (C) and deg (L) ≤ deg (M). By [9, Section
6], both L⊗2 ⊗M∗ and M⊗2 ⊗ L∗ are effective. In particular we have
deg (M) ≤ 2(deg (L)). It is well known that in the case q = 0 (i.e., in
the case of trigonal pencils) these inequalities are sharp and that for
all pairs of integers a, b with −a ≥ −b ≥ −2b > 0 there is a degree 3
pencil f : X → P1 with X smooth and irreducible and such that the
associated bundle is the direct sum of a line bundle of degree a and
a line bundle of degree b [9, Section 9]. Here we study the general
case for q > 0 allowing the case in which the associated bundle is
indecomposable.

5.8 Let C be a smooth curve of genus q and E is a rank 2 vector
bundle on C. The case of étale triple coverings of C (i.e., the case
g = 3q − 2) is classical. Hence we will study only coverings which are
not étale. Since 3 is prime, by Remark 5.3 the Harder-Narasimhan
filtration of the associated bundle has all slopes < 0. Hence, since
every rank two vector bundle on C is an extension of two line bundles,
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without losing any generality we may assume that E fits in an exact
sequence

(1) 0 −→ A −→ E −→ B −→ 0

with deg (A) < 0. Set a := deg (A) and b := deg (B). Hence
deg (E) = a + b. We will always assume that a is maximal among
all the degrees of the rank 1 subbundles of E. Hence if a > b, then (1)
is the Harder-Narasimhan filtration of E and A is uniquely determined
by E, while if a ≤ b, then A may not be uniquely determined by E,
but E fits at most in a one-dimensional family of extensions (1) with
invariants a and B except in the case E ∼= A ⊕ A ([7, Corollary 4.6]
and a similar analysis in the case a = b in which E is semistable but
not stable). The multiplication of map f∗(OX) ⊗ f∗(OX) → f∗(OX)
induces two maps α : A⊗A→ E and β : A⊗A→ OC . Composing α
with the surjection E → B given by (1) we obtain a map γ : A⊗A→ B.
If γ = 0, then α induces a map δ : A⊗A→ A and α = 0 if and only if
γ = δ = 0.

(a) Here we assume γ = δ = 0, i.e., α = 0. Hence β �= 0.
Thus h0(C, (A∗)⊗2) �= 0 and the map β is uniquely determined,
up to a multiplicative constant, by the choice of an effective divisor
D ∈ |(A∗)⊗2|. The multiplication map f∗(OX) ⊗ f∗(OX) → f∗(OX)
sends the saturated subsheaf OC ⊕ A of f∗(OX) into OC and in
particular into OC ⊕ A. Thus (OC ⊕ A,D) gives a double covering
of C and the triple covering f factors through this double covering (see
the beginning of this section). Hence this case cannot occur.

(b) Here we assume γ = 0 and δ �= 0. Hence h0(C,A∗) �= 0. The
multiplication map f∗(OX) ⊗ f∗(OX) → f∗(OX) sends the saturated
subsheaf OC ⊕ A of f∗(OX) into OC and in particular into OC ⊕ A.
Hence, as in case (b), this case cannot occur.

(c) By the analysis of cases (a) and (b) we may assume γ �= 0.
Hence h0(C,B ⊗ (A∗)⊗2) > 0. In particular we have −2a ≥ −b and
−2a = −b if and only if B ∼= A⊗2. If −2a ≥ −b + q, then for any
A,B we have h0(C,B ⊗ (A∗)⊗2) > 0. If 2a ≤ −b+ 1− q for any fixed
B ∈ Pic b(C), respectively A ∈ Pic a(C), we have h0(C,B⊗(A∗)⊗2) = 0
for a general A ∈ Pic a(C), respectively B ∈ Pic a(C), while we
have h0(C,B ⊗ (A∗)⊗2) > 0 for some A ∈ Pic a(C), respectively
B ∈ Pic a(C). Hence we see that when q > 0 not only there are
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restrictions on the possible numerical data (a, b) but for certain pairs
(a, b) there are restrictions on the possible pairs of line bundles (A,B)
with (a, b) as degrees and such that an associated bundle E for some
triple covering fits in (1). As remarked before, by [9, Section 6], we
have h0(C,A ⊗ (B∗)⊗2) > 0 and hence −2b ≥ −a if (1) splits. Since
b ≤ 0 (and even b < 0 by our assumption f not étale) the inequality
−2b ≥ −a is satisfied if a ≥ b, i.e., if E is not stable. Now assume E
stable, i.e., a < b. By a theorem of Segre and Nagata we have b ≤ a+q
(see, e.g., the introduction of [7]). Since a + b = 3q − 2 − g, we have
2a ≥ 2q−2−g. Hence if g ≥ 6q−2 the inequality −2b ≥ −a is satisfied
for the associated bundle of any triple covering.

Proposition 5.9. Assume char (K) = 0, q ≥ 1 and n(f, 1) > 0.
Then q = 1 and f factors through an étale covering b : Y → C with
deg (b) ≥ n(f, 1) + 1.

Proof. Since char (K) = 0, we have h0(C,E) = 0. For a general
P ∈ C we have h0(C,E(p)) = n(f, 1) > 0.

Now we will show that if q ≥ 3 and if g + q − kq − 1 is small, there
are strong restrictions for a vector bundle E of rank k − 1 and degree
kq − q − g + 1 to be the bundle associated to a covering f : X → C
with invariants k, g and q (see Theorem 5.12). We recall that, for
any smooth curve C of genus q ≥ 2 and all integers r, d with r > 0,
the moduli scheme M(C;u, v) of all stable vector bundles, F , on C
with rank (F ) = r and deg (F ) = d is a smooth irreducible variety of
dimension (r2 − 1)(q − 1) + 1. To prove Theorem 5.12 we need the
following two results which are variations on the theme played in [3].
As far as we know, Proposition 5.11 could be deducted from [3], but
not Proposition 5.10, except for r = 2.

Proposition 5.10. Let C be a smooth projective curve of genus
q ≥ 3. Fix integers r, d with r > 0 and d ≤ (2−q)r. Then for a general
A ∈M(C; r, d) we have h0(C,Hom(A⊗A,A)) = 0.

Proof. Just to fix the notation we assume d < 0; indeed, the case
d ≥ 0 is obviously true for every A ∈M(C; r, d), except the case r = 1,
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d = 0 and A = OC . Set d = ar+b with 0 ≤ b < r. Take r−b general line
bundles L1, . . . , Lr−b on C with deg (Li) = a for every i and b general
line bundles Lr−b+1, . . . , Lr−b+1 of degree a+1. By assumption we have
a ≤ q−2 and a ≤ q−3 if b > 0. Set F := ⊕1≤i≤rLi. Hence rank (F ) = r
and deg (F ) = d. The vector bundle Hom (F ⊗ F, F ) is a direct sum
of line bundles, all of degree at most a + 2 (case b > 0) or degree a
(case b = 0). Each indecomposable factor, M , of Hom (F ⊗ F, F ) may
be considered as a general element of its component of Pic (C) because
M ∼= Lk ⊗ L∗

i ⊗ L∗
j for some i, j, k. Hence h0(C,M) = 0 because

deg (M) ≤ q − 1. Hence h0(C,Hom(F ⊗ F, F )). Now we use the semi-
continuity theorem for cohomology and the fact that F is a flat limit
of a family of stable vector bundles (see [10, Proposition 2.6] or, for an
easy proof in arbitrary characteristic, [5, Corollary 2.2]).

The same proof gives the following result.

Proposition 5.11. Let C be a smooth projective curve of genus
q ≥ 3. Fix integers r, d with r > 0 and d ≤ (2−q)r. Then for a general
A ∈M(C; r, d) we have h0(C,Hom(A⊗A,OC)) = 0.

Theorem 5.12. Fix integers k, g and q with q ≥ 3, k ≥ 2 and
g ≤ (2q− 2)(k− 1)+ 1. Let C be a smooth projective curve of genus q.
Then the general A ∈M(C; k − 1, kq − q + 1− g) is not the associated
bundle of a degree k covering f : X → C with X smooth curve of
genus g.

Proof. Assume the existence of such covering f : X → C with A
as associated bundle. The multiplication map f∗(OX) ⊗ f∗(OX) →
f∗(OX) induces two maps α : A⊗A→ A and β : A⊗A→ OC and at
least one of them cannot be identically zero, contradicting Propositions
5.10 and 5.11.

Remark 5.12. If d/r ∈ Z, then the proofs of d6 and d7 work verbatim
with the weaker assumption d ≤ r(1− q). Hence when g−1 is divisible
by k−1 the thesis of Theorem d8, just assuming g ≤ (2q−1)(k−1)+1.
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