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ISOLS AND GENERALIZED BOOLEAN ALGEBRAS

J.C.E. DEKKER

ABSTRACT. Let Γ = 〈C, +, ·〉 be a finite, hence atomic
Boolean algebra. Then Γ is isomorphic to 〈Q,∪,∩〉, where Q
is the family of all (finite) subsets of a (finite) set ν, namely
the set of all atoms of Γ. Moreover, if ν has cardinality n,
the Boolean algebra Γ is determined up to isomorphism by
its order, i.e., 2n, or equivalently by the number n. We shall
extend this theorem to atomic generalized Boolean algebras
Γ = 〈C, +, ·〉 in which the set C is isolated rather than finite.
We have to impose some recursivity conditions on Γ which
hold trivially, if Γ is finite. If these conditions are satisfied, Γ is
effectively isomorphic to 〈Q,∪,∩〉, where Q is the family of all
finite subsets of an isolated set ν, namely the set of all atoms
of Γ. Moreover, if ν has RET (recursive equivalence type) N ,
the system Γ is determined up to effective isomorphism by its
order, i.e., 2N , or equivalently by the RET N . This result is of
some interest, since the role played in ordinary arithmetic by
the family of all (finite) subsets of some finite set ν is played
in isolic arithmetic by the family of all finite subsets of some
isolated set ν.

1. Algebraic preliminaries. Let Δ = 〈D,+, ·〉 be a distributive
lattice. For u, v ∈ D we often abbreviate “u · v” to “uv.” The
distributive lattice Δ has a zero-element if there is an element 0 ∈ D
such that x + 0 = x for all x ∈ D. Similarly, Δ has a one-element if
there is an element 1 ∈ D such that x · 1 = x for all x ∈ D. If p, q ∈ D
we define p ≤ q as pq = p or equivalently as p+ q = q. For a, b ∈ D we
write [a, b] for {x ∈ D | a ≤ x ≤ b}. A subset S of D is an interval of
Δ if there are elements a, b ∈ D such that a ≤ b and S = [a, b]. Note
that, for a, b, p, q ∈ D,

(a ≤ p ≤ b and a ≤ q ≤ b) ⇒ (a ≤ p+ q ≤ b and a ≤ pq ≤ b),

i.e., that [a, b] is closed under + and · . Thus, by restricting the
operations + and · of Δ to the interval [a, b] we obtain a distributive
lattice with a as zero-element and b as one-element. This is called the
lattice induced by Δ in [a, b].
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The system Γ = 〈C,+, ·〉 is a Boolean algebra (abbreviated B.A. ) if
(a) Γ is a distributive lattice with a zero-element 0 and a one-element
1 and (b) for every c ∈ C the simultaneous equations cx = 0 and
c + x = 1 have at least (hence exactly) one solution; this solution is
denoted by c′. In a B.A. Γ we have, for every interval [a, b],

(1) c ∈ [a, b] ⇒
{

the simultaneous equations cx = a,
c+ x = b have exactly one solution.

For, assume a ≤ c ≤ b, Put x0 = a+ bc′; then

cx0 = c(a+ bc′) = ca+ 0 = ca = a,

c+ x0 = c+ (a+ bc′) = (c+ a) + bc′ = c+ bc′,
= (c+ b)(c+ c′) = (c+ b) · 1 = c+ b = b,

since a ≤ c,

since a ≤ c,

since c ≤ b.

We now prove the uniqueness of x0. Assume cx1 = a, c+x1 = b. Then

x1 = 1 · x1 = (c+ c′)x1 = cx1 + c′x1 = a+ c′x1;(2)
c+ x1 = b⇒ c′(c+ x1) = c′b⇒ c′c+ c′x1 = bc′ ⇒ c′x1 = bc′;(3)

so that (2) and (3) imply x1 = a+ bc′ = x0.

Condition (1) can also be phrased as follows. The lattice induced
by Γ in any interval [a, b] is a B.A. with a as zero-element and b as
one-element. A lattice Γ is called relatively complemented if (1) holds
in each interval [a, b] of Γ.

Definition. A system Γ = 〈C,+, ·〉 is a generalized B.A. if it is a
relatively complemented, distributive lattice with a zero-element.

Henceforth we use the word “algebra” instead of the words “gener-
alized B.A. ” We proved above that every B.A. is an algebra. The
converse is false. For, let Pfin (ν) be the family of all finite subsets of
a set ν. Then 〈Pfin (ν),∪,∩〉 is an algebra, but a B.A. if and only if
the set ν is finite. Note that Pfin (ν) has a zero-element for every set
ν (namely the empty set), but a one-element (namely ν itself) if and
only if ν is finite. In fact, an algebra is a B.A. if and only if it has a
one-element. For an algebra Γ = 〈C,+, ·〉 we define

q − p = the solution of px = 0, p+ x = q, for p ≤ q.
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Since ab ≤ b in every lattice, we can define b − a in every algebra,
namely as b− ab. If Γ is a B.A. we can also define b− a as ba′.

2. Notations and terminology. A nonnegative integer is called a
number, a collection of numbers a set and a collection of sets a class.
We write o for the empty set and ε for the set of all numbers. If f is a
function from a subset of εn into ε, we denote its domain and its range
by δf and ρf respectively. Since we are only concerned with countable
algebras, the word “algebra” will from now on refer to an algebra of the
type Γ = 〈γ,+, ·〉, where γ ⊂ ε. We also assume that the zero-element
of an algebra is the ordinary number 0 and that if the algebra has a
one-element, this is the ordinary number 1. The finite sets, i.e., the
members of Pfin (ε), can be effectively generated without repetitions in
an infinite sequence. We shall use a particular sequence of this type,
the so-called canonical enumeration 〈ρn〉; see [1, p. 277]. We define rn
as card ρn; it is a recursive function of n. For each finite set τ there is
exactly one number i with τ = ρi; this number is called the canonical
index of τ and denoted by can(τ ) or canτ .

With an algebra Γ = 〈γ,+, ·〉 we associate the three functions f, g, h
where

δf = δg = γ2, f(a, b) = a+ b, g(a, b) = ab,

(4) δh = {〈a, c, b〉 ∈ γ3 | a ≤ c ≤ b},

h(a, c, b) = the solution of cx = a and c+ x = b.

Definition. An algebra Γ = 〈γ,+, ·〉 is an ω-algebra, if the three
functions f, g and h have partial recursive extensions.

It follows that, in an ω-algebra Γ, the function b − a = b − ab =
h(0, ab, b) also has a partial recursive extension. Thus, in the special
case that Γ is a B.A. , the function x′ = 1 − x has a partial recursive
extension. We write γ0 for γ − (0).

Let Γ = 〈γ,+, ·〉 be an algebra and p, q ∈ γ. We call p a predecessor
of q, if p ≤ q; p is a strict predecessor of q (written p < q) if p ≤ q and
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p 
= q. The element p is an atom (or is atomic) if p is nonzero and 0 is
its only strict predecessor. The algebra Γ is atomic if each of its nonzero
elements has an atomic predecessor. We say that Γ = 〈γ,+, ·〉 is isolic,
if the underlying set γ is isolated (i.e., has no infinite r.e. subset). At(p)
denotes the set of all atomic predecessors of p, while At(Γ) stands for
the set of all atoms of Γ. Thus At(Γ) = At(1), in case Γ is a B.A. We
abbreviate “At(Γ)” to “At”, if Γ is known from the context. A function
c is a special function of Γ if

δc = γ0, c(x) = x if x ∈ At, 0 < c(x) < x if x 
∈ At.

The algebra Γ = 〈γ,+, ·〉 is ω-atomic if there is an effective procedure
which, when applied to any x ∈ γ0, yields x if x is atomic, but an
atomic predecessor of x if x is not atomic. We claim

(5)
an isolic ω-algebra is ω-atomic if and only if it has a
special function with a partial recursive extension.

For, let Γ = 〈γ,+, ·〉 be an isolic ω-algebra and c a special function of
Γ with a partial recursive extension. Then we can, given any element
x ∈ γ0, compute x, c(x), c2(x), . . . . Thus (x, c(x), c2(x), . . . ) is a r.e.,
hence finite, subset of the isolated set γ0. We can therefore also compute
the numbers

m = min{y ∈ ε | cy+1(x) = cy(x)} and cm(x).

Then cm(x) is an atomic predecessor of x; moreover, x is an atom if
and only if m = 0, i.e., if and only if c(x) = x. Hence Γ is ω-atomic.
The converse is trivial.

For a set ν we denote the class of all finite subsets of ν by Pfin (ν).
We write Πfin (ν) for 〈2ν , s, t〉, where

(6)
2ν = {x ∈ ε | ρx ⊂ ν}, δs = δt = 2ν × 2ν ,

s(x, y) = can(ρx ∪ ρy), t(x, y) = can(ρxρy).

Πfin (ν) is an ω-atomic ω-algebra which is isomorphic to 〈Pfin (ν),∪,∩〉.
Its set of atoms is {x ∈ 2ν |rx = 1}. It is finite (infinite, r.e., isolic, im-
mune) if and only if the set ν is finite (infinite, r.e., isolated, immune).
We call Πfin (ν) the standard ω-algebra over the set ν.
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DEFINITIONS. Let Γ1 = 〈γ1,+, ·〉 and Γ2 = 〈γ2,+, ·〉 be ω-algebras.
An isomorphism from Γ1 onto Γ2 is a one-to-one mapping from γ1 onto
γ2 which preserves + and · (hence −). An isomorphism from Γ1 onto Γ2

is an ω-isomorphism if it has a partial recursive one-to-one extension.
We say that Γ1 is isomorphic to Γ2 (written Γ1

∼= Γ2) if there is at
least one isomorphism from Γ1 onto Γ2. Similarly, Γ1 is ω-isomorphic
to Γ2 (written Γ1

∼=ω Γ2) if there is at least one ω-isomorphism from
Γ1 onto Γ2.

Let Γ1 = 〈γ1,+, ·〉 and Γ2 = 〈γ2,+, ·〉 be algebras and ϕ an isomor-
phism from Γ1 onto Γ2. Then ϕ(0) = 0 and, in case Γ1 and Γ2 have
one-elements (i.e., are B.A. ’s), ϕ(1) = 1 and ϕ(x′) = [ϕ(x)]′ for x ∈ γ1.
The order o(Γ) of an ω-algebra Γ = 〈γ,+, ·〉 is defined as Req γ, i.e., the
RET of γ. Thus o(Γ) has the usual meaning if and only if Γ is finite.
Note that two finite algebras are ω-isomorphic if and only if they are
isomorphic. Thus ∼=ω is a generalization of the relation ∼=.

3. Some propositions. The proof of our main result, namely, the
representation theorem for isolic ω-algebras, is a modification of the
standard proof of the representation theorem for finite B.A. ’s. See, e.g.,
[2, pp. 28 30], [4, pp. 136 137] or [5, pp. 18 20]. Relations (7) (15)
can be proved as in the finite case. Every algebra Γ = 〈γ,+, ·〉 has the
following four properties:

a atomic ⇒ [a ≤ b or ab = 0], for a, b ∈ γ,(7)
a, b atomic ⇒ [a = b or ab = 0], for a, b ∈ γ,(8)
x ∈ At(b) ⇐⇒ x ≤ b⇐⇒ xb 
= 0, for x ∈ At, b ∈ γ,(9)
a ∈ At ⇐⇒ At(a) = (a), for a ∈ γ.(10)

In every atomic algebra Γ = 〈γ,+, ·〉 the mapping x → At(x), for
x ∈ γ, has the following five properties:

At(ab) = At(a) ∩ At(b), for a, b ∈ γ,(11)
ab = 0 ⇐⇒ At(a) ∩ At(b) = o, for a, b ∈ γ,(12)
At(a+ b) = At(a) ∪ At(b), for a, b ∈ γ,(13)
a ≤ b⇒ At(b− a) = At(b) − At(a), for a, b ∈ γ,(14)
At(b− a) = At(b) − At(a), for a, b ∈ γ.(15)
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PROPOSITION P1. Let Γ = 〈γ,+, ·〉 be an isolic, ω-atomic ω-algebra.
Then, for a ∈ γ0,

(a) the set At(a) is nonempty and finite,

(b) given a, we can compute the (canonical index of the) set At(a),

(c) a is the sum of all its atomic predecessors.

PROOF. Let a ∈ γ0. From a we can compute an element a1 ∈ At(a).
If a1 = a we are done, for then At(a) = (a1). If a1 
= a we have
a1 < a and a− a1 ∈ γ0. From a and a1 we can compute a− a1, hence
an element a2 ∈ At(a − a1). If a2 = a − a1 we are done, for then
At(a) = (a1, a2) and a = a1 + a2. If a2 < a − a1 we can compute the
element (a−a1)−a2 = a−(a1+a2) and an element a3 ∈ At[a−(a1+a2)]
etc., etc. This procedure must terminate, since (a1, a2, . . . ) is a r.e.
subset of At(a), hence of γ0. Thus there is an atom an such that
an = a − (a1 + · · · + an−1), and this atom can be computed from a.
Since a1, . . . , an can be computed from a, so can the (canonical index
of the) finite set At(a) = (a1, . . . , an).

PROPOSITION P2. Let Γ = 〈γ,+, ·〉 be an isolic, ω-atomic ω-algebra
and ν = At. Then the mapping ϕ : x → At(x), for x ∈ γ, is an
isomorphism from Γ onto 〈Pfin (ν),∪,∩〉.

PROOF. The mapping ϕ maps γ into Pfin (ν) by P1. Let a, b ∈ γ
and a 
= b. First consider the case where exactly one of the two
elements a and b is zero. Then exactly one of the two sets At(a),At(b)
is empty, hence At(a) 
= At(b). Now assume that a, b ∈ γ0. Then
At(a) and At(b) are nonempty finite sets, say At(a) = (a1, . . . , ap) and
At(b) = (b1, . . . , bq). Also, a = a1 + · · · + ap and b = b1 + · · · + bq,
so that At(a) = At(b) implies a = b. We proved that ϕ is one-to-
one. Let δ ∈ Pfin (ν). If δ = o we have δ = ϕ(0). Now assume
δ 
= o, say δ = (d1, . . . , dn), where d1, . . . , dn are distinct atoms, and
put d = d1 + · · · + dn. Then

ϕ(d) = At(d1 + · · · + dn) = (d1) ∪ · · · ∪ (dn) = δ

by (10) and (13). We proved that ϕ(γ) = Pfin (ν). Finally, ϕ is an
isomorphism by (11) and (13).
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4. The main result.

PROPOSITION P3. (a) Every isolic, ω-atomic ω-algebra is ω-
isomorphic to the standard ω-algebra over the set of its atoms.

(b) An isolic, ω-atomic ω-algebra is up to ω-isomorphism character-
ized by its order.

PROOF. (a). Let Γ = 〈γ,+, ·〉 be an isolic, ω-atomic ω-algebra, ν
the set of its atoms, δϕ = γ and ϕ(x) = At(x). Define δψ = γ
and ψ(x) = can[At(x)]. Since ϕ is an isomorphism from Γ onto
〈Pfin (ν),∪,∩〉, ψ is an isomorphism from Γ onto Πfin (ν) = 〈2ν , s, t〉,
where 2ν , s and t are defined as in (6). The mapping ψ has a partial
recursive extension by P1(b). Also, for x ∈ 2ν ,

ψ−1(x) =
{

0, if x = 0, i.e., ρx = o,
a1 + · · · + an, if x 
= 0 and ρx = (a1, . . . , an)

so that ψ−1 also has a partial recursive extension. We conclude that the
isomorphism ψ from Γ onto Πfin (ν) has a partial recursive one-to-one
extension. Thus ψ is an ω-isomorphism and Γ ∼=ω Πfin (ν).

(b). Let Γ and Γ∗ be isolic, ω-atomic ω-algebras with ν and ν∗ as
their respective sets of atoms. Let � denote recursive equivalence. In
view of (a) we only need to show

Πfin (ν) ∼=ω Πfin (ν∗) ⇐⇒ 2ν � 2ν∗
.

The conditional from the left to the right is trivial. Now assume
2ν � 2ν∗

. Then ν � ν∗, since the function 2N from the collection Λ of
all isols into itself is one-to-one. Let p be a partial recursive one-to-one
function with ν ⊂ δp and p(ν) = ν∗. Define the functions q, s, t, s∗, t∗

as follows:

δq = 2δp, ρq(x) = p(ρx), i.e., q(x) = can[p(ρx)],

δs = δt = 2ν × 2ν , s(x, y) = can(ρx ∪ ρy), t(x, y) = can(ρxρy),

δs∗ = δt∗ = 2ν∗×2ν∗
, s∗(x, y) = can(ρx∪ρy), t∗(x, y) = can(ρx, ρy).

Then
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qs(x, y) = q can(ρx ∪ ρy) = can[p(ρx ∪ ρy)] = can[p(ρx) ∪ p(ρy)]
= can[ρq(x) ∪ ρq(y)] = s∗[q(x), q(y)]

and similarly qt(x, y) = t∗[q(x), q(y)].

Hence q is a partial recursive one-to-one extension of an isomorphism
from Πfin (ν) = 〈2ν , s, t〉 onto Πfin (ν∗) = 〈2ν∗

, s∗, t∗〉. Thus we have
proved that Πfin (ν) ∼=ω Πfin (ν∗).

COROLLARY 1. Let Γ = 〈γ,+, ·〉 be an isolic, ω-atomic ω-algebra
with ν = At(Γ) and N = Req ν. Then o(Γ) = 2N .

COROLLARY 2. An isolic, ω-atomic ω-algebra is a B.A. if and only
if it is finite.

The first corollary is immediate. The second one follows from the
fact that 〈Pfin (ν),∪,∩〉 is B.A. if and only if it has a one-element, i.e.,
if and only if ν ∈ Pfin (ν), i.e., if and only if ν is finite.

REMARK. Let c denote the cardinality of the continuum. Consider
an isolic, ω-atomic ω-algebra Γ = 〈γ,+, ·〉, where γ ⊂ ε. We can choose
the set γ in c ways, since there are c isolated sets ν and we can take
γ = 2ν . It follows that, up to recursive equivalence, γ can be chosen
in c ways. Thus, up to ω-isomorphism, there are c isolic, ω-atomic
ω-algebras 〈γ,+, ·〉 of which only denumerably many are finite. Since
every finite B.A. is an isolic, ω-atomic ω-algebra, we conclude that
P3 is a proper generalization of the representation theorem for finite
B.A. s.
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