COUNTING FINITE SUBSETS OF AN IMMUNE SET

J.C.E. DEKKER

ABSTRACT. Let P be a recursive property of finite sets (of nonnegative integers) and ν an immune set of RET (i.e., recursive equivalence type) N. Consider the question, "How many finite subsets of ν have property P?" We shall answer this question if P has the additional property that $P(\alpha)$ if and only if $P(\beta)$, for every two finite sets α and β of the same cardinality.

1. **Preliminaries.** We use the word *number* for nonnegative integer, set for collection of numbers and class for collection of sets. The set of all numbers and the empty set are denoted by ε and o respectively. V stands for the class of all sets, Q for the class of all finite sets, \subset for inclusion and \subset_+ for proper inclusion. If f is a function, δf and ρf denote its domain and range respectively. Also, f_n means the same as f(n). The cardinality of a collection Γ is denoted by $\operatorname{card}(\Gamma)$ or $\operatorname{card}\Gamma$. The reader is assumed to be familiar with the basic properties of the collection Λ of all isols. For a survey of basic results see §1 of [2]; for a detailed exposition, see [4] or [5]. We write $\alpha \sim \beta$ for α is equivalent to β , i.e., card $\alpha = \operatorname{card} \beta$ and $\alpha \simeq \beta$ for α is recursively equivalent to β , i.e., Req(α) = Req(β). Some properties of combinatorial operators will be used; these are discussed in [1], [4] and [5]. The class Q of all finite sets can be effectively generated without repetitions in an infinite sequence. We shall use a particular sequence of this type, the so-called canonical enumeration $\langle \rho_n \rangle$; see [2, p. 277]. For each finite set σ there is exactly one number i such that $\sigma = \rho_i$; this number is called the canonical index of σ and is denoted by $\operatorname{can}(\sigma)$ or $\operatorname{can} \sigma$. If $S \subset Q$ we write can S for $\{ \operatorname{can} \sigma | \sigma \in S \}$. The function $r_n = \operatorname{card} \rho_n$ is recursive. For $n, k \in \varepsilon$ and $\alpha \in V$,

$$\begin{split} \nu_n &= \{x \in \varepsilon \,|\, x < n\}, \qquad 2^\alpha = \{x \in \varepsilon \,|\, \rho_x \subset \alpha\}, \\ [\alpha;k] &= \{x \in 2^\alpha |\, r_x = k\}, \qquad \int [n;k] = \operatorname{card} \left[\nu_n;k\right]. \end{split}$$

AMS (MOS) Subject Classification (1980). 03D50. Received by the editors on February 16, 1987.

Copyright ©1990 Rocky Mountain Mathematics Consortium

In displayed formulas [n;k] will also be written in the usual vertical way. Henceforth "property P" will only be used if P is a property of finite sets. We call a property P recursive, if the property T_P of numbers such that $T_P(x) \iff P(\rho_x)$ is recursive. For a property P and a set ν ,

- (1) $S_P(\nu) = \{ \rho_x \in Q \mid \rho_x \subset \nu \text{ and } P(\rho_x) \},$
- (2) $\Phi_P(\nu) = \{x \in \varepsilon \mid \rho_x \subset \nu \text{ and } P(\rho_x)\}, \text{ i.e., } \Phi_P(\nu) = \operatorname{can} S_P(\nu),$
- (3) RET $S_P(\nu) = \text{Req } \Phi_P(\nu)$.

For a finite set ν with n elements, RET $S_P(\nu)$ is the number of (finite) subsets of ν with property P. If the property P is recursive and the set ν isolated, we wish to count the finite subsets of ν with property P, i.e., to express RET $S_P(\nu)$ in terms of $N = \text{Req } \nu$. We mention two examples. Let $a_1, \ldots, a_p, b_1, \ldots, b_q$ be p+q distinct elements of an isolated set ν with RET N. Let a finite set have property P_0 , if it contains each of a_1, \ldots, a_p , but none of b_1, \ldots, b_q . How many finite subsets of ν have property P_0 ? Since a subset ρ_x of ν has property P_0 if and only if $\rho_x = (a_1, \dots, a_p) \cup \rho_y$, where $\rho_y \subset \nu - (a_1, \dots, a_p, b_1, \dots, b_q)$, the answer is $2^{N-(p+q)}$. Note that whether ρ_x has property P_0 does not only depend on r_x . Suppose a finite set ρ_x has property E if r_x is even, while ρ_x has property O if r_x is odd. Thus E and O depend only on $r_x = \operatorname{card} \rho_x$. For a nonempty isolated set ν with RET N we have RET $S_E(\nu) = \operatorname{RET} S_0(\nu) = 2^{N-1}$. This can be proved as follows. Let $p \in \nu$; from now on we keep p fixed. Define the function h by $\delta h = 2^{\nu}, h(x) = x - 2^{p} \text{ if } p \in \rho_{x} \text{ and } h(x) = x + 2^{p} \text{ if } p \notin \rho_{x}.$ Then h maps can $S_E(\nu)$ onto can $S_0(\nu)$ and h has a partial recursive one-toone extension. Thus the sets can $S_E(\nu)$ and can $S_0(\nu)$ are recursively equivalent. Since they are also separable and their union is 2^{ν} , we see that

RET
$$S_E(\nu) = \text{RET } S_0(\nu) = \frac{1}{2} \cdot 2^N = 2^{N-1}.$$

DEFINITION. A property P is ODC (only dependent on cardinality), if $r_x = r_y$ implies $P(\rho_x) \iff P(\rho_y)$, for $x, y \in \varepsilon$, or, equivalently, if there is a property H of numbers such that $P(\rho_x) \iff H(r_x)$, for $x \in \varepsilon$.

If P is an ODC property, we denote the property H of numbers mentioned above by P^* . Clearly, P is recursive if and only if P^* is recursive.

2. Three propositions. For a property P we define

$$\Phi_P^{\varepsilon} = \bigcup \{ \Phi_P(\alpha) \mid \alpha \in V \},$$

$$\Phi_P^{\sigma}(\alpha) = \{ x \in \varepsilon \mid \rho_x = \alpha \text{ and } P(\rho_x) \}, \text{ for } \alpha \in Q.$$

PROPOSITION P1. The following conditions are mutually equivalent:

- (a) the operator Φ_P from V into V is combinatorial,
- (b) the operator Φ_P^o from Q into Q is dispersive,
- (c) property P is ODC.

PROOF. Both Φ_P and Φ_P^o map finite sets onto finite sets. Also,

$$x \in \Phi_P(\alpha) \iff \rho_x \subset \alpha, \quad \text{for } x \in \Phi_P^{\varepsilon}, \ \alpha \in V,$$

$$\alpha \neq \beta \Rightarrow \Phi_P^{\sigma}(\alpha) \cap \Phi_P^{\sigma}(\beta) = o, \quad \text{for } \alpha, \beta \in Q.$$

Using the definitions and basic properties of combinatorial and dispersive operators [1, pp. 7–12] we see that, for $\alpha, \beta \in Q$,

(a)
$$\iff (\forall \alpha)(\forall \beta)[\alpha \sim \beta \Rightarrow \{\Phi_P(\alpha) \sim \Phi_P(\beta)\}]$$

 $\iff (\forall \alpha)(\forall \beta)[\alpha \sim \beta \Rightarrow \{\Phi_P^{\alpha}(\alpha) \sim \Phi_P^{\alpha}(\beta)\}] \iff (b).$

For $\alpha \in Q$ we have card $\Phi_P^o(\alpha) \in (0,1)$, so that, for $\alpha, \beta \in Q$,

$$(\forall \alpha)(\forall \beta)[\alpha \sim \beta \Rightarrow \{\Phi_P^o(\alpha) \sim \Phi_P^o(\beta)\}] \iff (\forall \alpha)(\forall \beta)[\alpha \sim \beta \Rightarrow \{P(\alpha) \iff P(\beta)\}] \iff (c).$$

For a property P and a combinatorial or dispersive operator Φ we define

$$f_{\Phi}(n) = \operatorname{card} \Phi(\nu_n), \quad f_P(n) = \operatorname{card} \Phi_P(\nu_n), \quad \text{for } n \in \varepsilon.$$

The functions f_{Φ} and f_{P} are the functions induced by Φ and P respectively. The combinatorial or dispersive operators Φ and Ψ are equivalent (written Φ eq Ψ) if $f_{\Phi} = f_{\Psi}$. With every function f from ε into ε there is associated a unique sequence $\langle c_i \rangle$ of integers such

that $f(n) = \sum_{i=0}^{n} c_i[n; i]$; it is called the sequence of *combinatorial* coefficients of f.

PROPOSITION P2. Let Φ be a combinatorial operator, $f = f_{\Phi}$, and $\langle c_i \rangle$ the sequence of combinatorial coefficients of f (hence $0 \leq c_i$, for $i \in \varepsilon$). Then the following conditions are mutually equivalent:

- (a) $\Phi \operatorname{eq} \Phi_P$, for some ODC property P,
- (b) $f = f_P$, for some ODC property P,
- (c) $0 \le c_i \le 1$, for $i \in \varepsilon$.

PROOF. (a) \iff (b) is true since Φ eq Φ_P means the same as $f = f_P$. Now assume (b). Then the operator

$$\Phi_P^o(\alpha) = \{ x \in \varepsilon \mid \rho_x = \alpha \text{ and } P(\rho_x) \}
= \{ x \in \varepsilon \mid \rho_x = \alpha \text{ and } P^*(r_x) \}, \quad \text{ for } \alpha \in Q,$$

is dispersive by Proposition P1 and induces c_i by [1; P14, P18], so that

$$c_i = \operatorname{card} \Phi_P^o(\nu_i) = \begin{cases} 1, & \text{if } P^*(i) \text{ is true,} \\ 0, & \text{if } P^*(i) \text{ is false.} \end{cases}$$

This implies (c). Now assume (c). Define a property P by $P(\rho_x) \iff [c_{r(x)} = 1]$; then P is ODC and

$$\begin{split} &\Phi_P(\alpha) = \{x \in \varepsilon | \rho_x \subset \alpha \text{ and } P(\rho_x)\} = \{x \in \varepsilon | \rho_x \subset \alpha \text{ and } c_{r(x)} = 1\}, \\ &f_P(n) = \operatorname{card} \Phi_P(\nu) = \sum_{i=0}^n c_i \binom{n}{i} = f(n). \end{split}$$

Hence (b) is true. □

REMARK. Assume the hypothesis of Proposition P2. Then the combinatorial operator Φ is not uniquely determined by f; see [1, P16]. On the other hand, it follows from our proof of (b) \iff (c) that if $f = f_P$ (or equivalently Φ eq Φ_P) for some ODC property P, then

$$P(\rho_x) \iff P^*(r_x) \iff [c_{r(x)} = 1], \text{ for } x \in \varepsilon,$$

so that P is uniquely determined by c_i , hence also by f (and Φ).

Let f be a combinatorial function and $\langle c_i \rangle$ the sequence of its combinatorial coefficients. Then we define

(4)
$$\Psi(\alpha) = \{j(x,y) \in \varepsilon | \rho_x \subset \alpha \text{ and } y < c_{r(x)} \}, \text{ for } \alpha \in V.$$

We are only interested in the case where the following mutually equivalent conditions are satisfied: f is a recursive function, c_i is a recursive function, Ψ is a recursive combinatorial operator. It follows by [1, Remark on p. 51] that, for every recursive combinatorial operator Φ which induces f, we have, for $\alpha, \beta \in V$,

(5)
$$\Phi(\alpha) \simeq \Psi(\alpha), \qquad \alpha \simeq \beta \iff \Phi(\alpha) \simeq \Phi(\beta),$$
$$\alpha \text{ isolated } \Rightarrow \Phi(\alpha) \text{ isolated.}$$

We can now define

(6)
$$f_{\Lambda}(N) = \operatorname{Req} \Phi(\nu), \text{ for } \nu \in N, N \in \Lambda.$$

This is Myhill's canonical extension of the function f from ε into ε to a function from Λ into Λ .

DEFINITION. For a recursive ODC property P,

(7)
$$F_P(N) = \operatorname{Req} \Phi_P(\nu), \text{ for } \nu \in N, N \in \Lambda.$$

If we count finite subsets of an isolated set ν with RET N using isols rather than cardinals $\leq \aleph_0$ we obtain that there are $F_P(N)$ finite subsets of ν with the recursive ODC property P.

PROPOSITION P3. Let P be a recursive ODC property and $f = f_P$. Then $F_P(N) = f_{\Lambda}(N)$ for $N \in \Lambda$.

PROOF. Under the hypothesis, Φ_P is a recursive combinatorial operator. The desired relation now follows from (6) and (7).

COROLLARY. Let P be a recursive ODC property. Then $F_P(N) \leq 2^N$, for $N \in \Lambda$.

PROOF. Let $\nu \in N$ and $N \in \Lambda$. Then the sets $\Phi_P(\nu)$ and $2^{\nu} - \Phi_P(\nu)$ are separable, hence $\operatorname{Req} \Phi_P(\nu) \leq \operatorname{Req} 2^{\nu}$, i.e., $F_P(N) \leq 2^N$.

3. Miscellaneous remarks.

(A) Proposition P3 can be generalized to k-ary relations. The case k=2 is as follows. Call a relation R between finite sets recursive if the relation $T_R(x,y)$ between numbers such that $R(\rho_x,\rho_y) \iff T_R(x,y)$ is recursive. Relation R is ODC, if

$$[r_x = r_u \text{ and } r_y = r_v] \Rightarrow [R(\rho_x, \rho_y) \iff R(\rho_u, \rho_v)], \text{ for } x, y, u, v \in \varepsilon.$$

Define Φ_R, f_R and F_R by

$$\Phi_R(\mu,\nu) = \{j(x,y) \in \varepsilon \mid \rho_x \subset \mu \text{ and } \rho_y \subset \nu \text{ and } R(\rho_x,\rho_y)\}, \mu,\nu \in V,
f_R(m,n) = \operatorname{card} \Phi_R(\nu_m,\nu_n),
F_R(M,N) = \operatorname{Req} \Phi_R(\mu,\nu), \text{ for } \mu \in M, \nu \in N,$$

If the ODC relation R is recursive and $f=f_R$, we have $F_R(M,N)=f_\Lambda(M,N)$, for $M,N\in\Lambda$. The proof will be deleted since it is similar to that for k=1. Here is a simple example. How many ordered pairs $\langle \rho_x,\rho_y\rangle$ of finite sets are there with $\rho_x\subset\mu$, $\rho_y\subset\nu$, $r_x=r_y$, $\mu\in M$, $\nu\in N$ and $M,N\in\Lambda$? In this case

$$f(m,n) = \operatorname{card} \Phi_R(\nu_m, \nu_n) = \sum_{i=0}^m \sum_{k=0}^n c_{ik} \binom{m}{i} \binom{n}{k}.$$

We know from combinatorics that, for $s = \min(m, n)$,

$$\binom{m}{o}\binom{n}{o} + \dots + \binom{m}{s}\binom{n}{s} = \frac{(m+n)!}{m! \, n!}.$$

Since the function c_{ik} is uniquely determined by f, we see that c_{ik} is Kronecker's delta function. Hence the "number" of ordered pairs satisfying the requirements is

$$F_R(M,N) = \frac{(M+N)!}{M! \, N!}, \text{ for } M,N \in \Lambda.$$

The analogue of the corollary of P3 is for every recursive ODC relation R we have

$$F_R(M, N) \le 2^{M+N}$$
, for $M, N \in \Lambda$.

(B) The following question deals with a recursive relation between finite sets which is not ODC. Let ν be an isolated set with RET N. How many ordered pairs are there of disjoint finite subsets of ν ? We refer to $[\mathbf{2}, \mathbf{p}, 292]$ for the definition of the recursive function $r_n(x) = r(n, x)$ and the sets $\delta_e r_n$ and $\rho_e r_n$. For RET 's A and B with A > 0, A^B can be defined as $\text{Req } \alpha^{\beta}$, where

$$\alpha^{\beta} = \{ n \in \varepsilon \mid \delta_e r_n \subset \beta \text{ and } \rho_e r_n \subset \alpha \}, \text{ for } 0 \in \alpha, \alpha \in A, \beta \in B.$$

Let $\gamma = (0,1,2)^{\nu}$. Then $\gamma \simeq \{j(x,y)|\rho_x, \rho_y \subset \nu \text{ and } \rho_x \rho_y = o\}$. Hence the desired RET is Req $\gamma = 3^N$.

(C) Let us take ordered k-tuples $\langle \alpha_1, \ldots, \alpha_k \rangle$ with $k \geq 2$ of finite subsets of an isolated set ν with RET N, instead of ordered pairs. Then the question discussed in (B) can be generalized in (at least) two ways: (a) by requiring that $\alpha_1, \ldots, \alpha_k$ be mutually disjoint and (b) by requiring that the intersection of all k sets $\alpha_1, \ldots, \alpha_k$ be empty. Case (a) can be dealt with as its special case k = 2. The answer is $(k+1)^N$. Now consider case (b). Then the answer is $(2^k-1)^N$. To prove this we generalize Stanley's proof of the case where ν is a finite set of cardinality n; see [6; Example 1.1.16, p. 12]. Let $T_{k\nu}$ denote the family of all functions r_m from ν into the class of all proper subsets of $(1,\ldots,k)$ and $S_{k\nu}$ the family of all ordered k-tuples $\langle \alpha_1,\ldots,\alpha_k \rangle$ of finite subsets of ν with $\alpha_1\ldots\alpha_k=o$. Define

$$\alpha = \{ x \in \varepsilon \, | \, \rho_x \subset_+ (1, \dots, k) \}, \qquad \tau_{k\nu} = \alpha^{\nu},$$

$$\sigma_{k\nu} = \{j_k \langle a_1, \dots, a_k \rangle \in \varepsilon \mid a_1, \dots, a_k \in 2^{\nu} \text{ and } \rho_{a(1)} \dots \rho_{a(k)} = 0\},$$

where j_k is a one-to-one recursive from ε^k onto ε . We use $\tau_{k\nu}$ and $\sigma_{k\nu}$ as the sets of G-numbers of the members of the families $T_{k\nu}$ and $S_{k\nu}$ respectively. Since $0 \in \alpha$ and $\operatorname{card} \alpha = 2^k - 1$, we have $\operatorname{Req} \tau_{k\nu} = (2^k - 1)^N$. Define the mapping ψ by $\delta \psi = \tau_{k\nu}$; if $m \in \delta \psi$, then $\psi(m) = j_k \langle y_1, \ldots, y_k \rangle$, where

$$i \in \rho_{y(j)} \iff j \in \rho_{r(m,i)}, \text{ for } i \in \nu, \ 1 \leq j \leq k.$$

It can now be proved that ψ maps $\tau_{k\nu}$ one-to-one onto $\sigma_{k\nu}$ and that both ψ and ψ^{-1} have partial recursive extensions. Thus $\tau_{k\nu} \simeq \sigma_{k\nu}$ and Req $\sigma_{k\nu} = (2^k - 1)^N$.

(D) Let P_1, \ldots, P_k be recursive properties of finite sets and ν an isolated set of RET N. Assume that the k sets $\{x \in 2^{\nu} \mid P_1(\rho_x)\}, \ldots, \{x \in 2^{\nu} \mid P_k(\rho_x)\}$ are recursively distinct, i.e., that they are distinct and we can, given any number $x \in 2^{\nu}$, find all numbers $i \in (1, \ldots, k)$ such that ρ_x has property P_i . Let $\overline{P_i}$ denote the negation of P_i and define

$$P'(\rho_x) = P_1(\rho_x) \vee \cdots \vee P_k(\rho_x), \quad P''(\rho_x) = \overline{P}_1(\rho_x) \& \cdots \& \overline{P}_k(\rho_x).$$

Let ν be an isolated set with RET N. Write F'(N), F''(N), $F_i(N)$ for $F_{P'}(N)$, $F_{P''}(N)$, $F_{P(i)}(N)$ respectively. Using the inclusion-exclusion principle [3] we can express F'(N) and F''(N) in terms of $F_1(N), \ldots, F_k(N)$:

$$F'(N) = \sum_{i=1}^{k} F_i(N) - \sum_{1 \le i < j \le k} F_i(N) F_j(N) + \cdots + (-1)^{k-1} F_1(N) \cdots F_k(N),$$

$$F''(N) = 2^N - F'(N).$$

REFERENCES

- 1. J.C.E. Dekker, Les fonctions combinatoires et les isols, Gauthier-Villars, Paris, 1966.
- 2. ——, Regressive isols, in Sets, models and recursion theory, ed. J.N. Crossley, North-Holland Publishing Company, Amsterdam, 1967, 272–296.
- 3. ——, The inclusion-exclusion principle for finitely many isolated sets, J. of Symbolic Logic, **51** (1986), 435–447.
- 4. T.G. McLaughlin, Regressive sets and the theory of isols, Marcel Dekker, New York, 1982.
 - 5. A Nerode, Extensions to isols, Ann. of Math. 73 (1961), 362-403.
- 6. R.P. Stanley, *Enumerative combinatorics*, vol. 1, Wadsworth & Brooks, Monterey, CA, 1986.

Department of Mathematics, Rutgers University, New Brunswick, NJ 08903