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COUNTING FINITE SUBSETS OF AN IMMUNE SET
J.C.E. DEKKER

ABSTRACT. Let P be a recursive property of finite sets
(of nonnegative integers) and v an immune set of RET (i.e.,
recursive equivalence type) N. Consider the question, “How
many finite subsets of v have property P?” We shall answer
this question if P has the additional property that P(c) if
and only if P(3), for every two finite sets o and 3 of the same
cardinality.

1. Preliminaries. We use the word number for nonnegative integer,
set for collection of numbers and class for collection of sets. The set of
all numbers and the empty set are denoted by ¢ and o respectively. V'
stands for the class of all sets, ) for the class of all finite sets, C for
inclusion and C, for proper inclusion. If f is a function, §f and pf
denote its domain and range respectively. Also, f,, means the same as
f(n). The cardinality of a collection I is denoted by card(T") or cardT".
The reader is assumed to be familiar with the basic properties of the
collection A of all isols. For a survey of basic results see §1 of [2]; for a
detailed exposition, see [4] or [5]. We write o ~ § for « is equivalent
to B, i.e., carda = card 8 and « ~ (3 for « is recursively equivalent to
B, i.e., Req(a) = Req(B). Some properties of combinatorial operators
will be used; these are discussed in [1], [4] and [5]. The class Q of all
finite sets can be effectively generated without repetitions in an infinite
sequence. We shall use a particular sequence of this type, the so-called
canonical enumeration (p,); see [2, p. 277]. For each finite set o there
is exactly one number ¢ such that ¢ = p;; this number is called the
canonical indezx of o and is denoted by can(c) or cano. If S C Q we
write can S for {cano|o € S}. The function r, = card p,, is recursive.
Forn,k€ccand a eV,

v, ={xz €e|x <n}, 2°={z €e|ps Ca},

[a; k] = {z € 2%|r, =k}, /[n, k] = card [v,,; k].
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In displayed formulas [n; k] will also be written in the usual vertical
way. Henceforth “property P” will only be used if P is a property
of finite sets. We call a property P recursive, if the property Tp of
numbers such that Tp(z) <= P(p,) is recursive. For a property P
and a set v,

(l) SP(V) = {pz € Q|pm Cvand P(Pz)},
(2) ®p(v) ={z €| p, C v and P(p,)}, i.e., Pp(v) = can Sp(v),
(3) RET Sp(v) = Req®p(v).

For a finite set v with n elements, RET Sp(v) is the number of (finite)
subsets of v with property P. If the property P is recursive and the
set v isolated, we wish to count the finite subsets of v with property
P, ie., to express RET Sp(v) in terms of N = Reqv. We mention
two examples. Let aq,...,ap, b1,...,b; be p+ ¢ distinct elements of
an isolated set v with RET N. Let a finite set have property Py, if
it contains each of ay,...,ap, but none of b,...,b;. How many finite
subsets of v have property Py? Since a subset p, of v has property Py if
and only if p; = (ay,...,a,)Upy, where p, C v—(ay,...,ap,b1,...,bq),
the answer is 2V~ (P+9)_ Note that whether p, has property Py does
not only depend on 7,. Suppose a finite set p, has property E if r,
is even, while p, has property O if r, is odd. Thus £ and O depend
only on r, = card p,. For a nonempty isolated set ¥ with RET N we
have RET Sg(v) = RET Sp(v) = 2V 1. This can be proved as follows.
Let p € v; from now on we keep p fixed. Define the function h by
0h =2", h(x) =z —2P if p € p, and h(z) = x4+ 2P if p & p,. Then
h maps can Sg(v) onto can Sp(v) and h has a partial recursive one-to-
one extension. Thus the sets can Sg(v) and can Sy(v) are recursively
equivalent. Since they are also separable and their union is 2, we see
that

RET Sg(v) = RET Sy(v) = % 2N = oM=L

DEFINITION. A property P is ODC (only dependent on cardinality),
if r, = r, implies P(p,) <= P(py), for z,y € ¢, or, equivalently, if
there is a property H of numbers such that P(p,) <= H(r,), for x € ¢.

If P is an ODC property, we denote the property H of numbers men-
tioned above by P*. Clearly, P is recursive if and only if P* is recursive.
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2. Three propositions. For a property P we define
% = U{Pp(a)|a eV},
% (o) ={x €¢e|p, = and P(p;)}, foraecQ.
PROPOSITION P1. The following conditions are mutually equivalent:
(a) the operator ®p from V into V is combinatorial,

(b) the operator ®% from Q into Q is dispersive,
(c) property P is ODC.

PROOF. Both ®p and ®% map finite sets onto finite sets. Also,
z €®Pp(a) <= p, Ca, forzedp, acV,

a#p=d%(a)N®L(B) =0, fora,BeqQ.

Using the definitions and basic properties of combinatorial and disper-
sive operators [1, pp. 7-12] we see that, for o, 8 € Q,

(a) = (Va)(VB)la ~ B = {®p(x) ~ 2p(B)}]
> (Va)(VB)la ~ B = {®p(a) ~ H(B)}] = (b).

For a € @ we have card % (a) € (0,1), so that, for o, 8 € Q,

(Va)(VB)la ~ B = {®p(a) ~ @(8)}] <
(Va)(vB)la ~ B = {P(a) < P(B)}] < (¢

For a property P and a combinatorial or dispersive operator ® we
define

fo(n) = card ®(v,,), fp(n)=card®p(v,), forn cec.

The functions f and fp are the functions induced by ® and P
respectively. The combinatorial or dispersive operators ® and ¥ are
equivalent (written ® eq W) if fo = fy. With every function f from
€ into € there is associated a unique sequence (c;) of integers such
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that f(n) = Yo ,c[n;i; it is called the sequence of combinatorial
coefficients of f.

PROPOSITION P2. Let ® be a combinatorial operator, f = fo, and
(ci) the sequence of combinatorial coefficients of f (hence 0 < ¢;, for
i € €). Then the following conditions are mutually equivalent:

(a) @ eq®p, for some ODC property P,
(b) f = fp, for some ODC property P,
(c)0<¢; <1, fori€e.

PROOF. (a) <= (b) is true since ® eq ®p means the same as f = fp.
Now assume (b). Then the operator

Pp(a) ={z €e|ps = a and P(p,)}
={x €e|p, =aand P*(ry)}, foraecQ,

is dispersive by Proposition P1 and induces ¢; by [1; P14, P18], so that

1, if P*(3) is true,

4 fr d@o 7 = . . .
¢; = card ®p(v;) {0, if P*(7) is false.

This implies (c). Now assume (c). Define a property P by P(p,) <
[cr(z) = 1]; then P is ODC and

Pp(a) ={z €¢lp, Caand P(p,)} = {z € €|p. C a and c,(z) = 1},

n

fr(n) = card @p(v) = 3 ¢ <’Z> = f(n).

=0

Hence (b) is true. O

REMARK. Assume the hypothesis of Proposition P2. Then the
combinatorial operator ® is not uniquely determined by f; see [1, P16].
On the other hand, it follows from our proof of (b) <= (c) that if
f = fp (or equivalently ® eq ®p) for some ODC property P, then

P(pz) <= P*(rz) < [cp@) =1], forze€e,
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so that P is uniquely determined by ¢;, hence also by f (and ®).
Let f be a combinatorial function and (c;) the sequence of its
combinatorial coefficients. Then we define

(4) V(o) = {j(z,y) €€lps Caand y < cy(p)}, foraecV.

We are only interested in the case where the following mutually equiv-
alent conditions are satisfied: f is a recursive function, ¢; is a recursive
function, ¥ is a recursive combinatorial operator. It follows by [1, Re-
mark on p. 51] that, for every recursive combinatorial operator ® which
induces f, we have, for a,8 € V,

5) D) ~ ¥(w), a~f = P(a)~P(p),

a isolated = ®(«) isolated.

We can now define

(6) fa(N) =Req®(v), for v € N, N € A.

This is Myhill’s canonical extension of the function f from e into € to
a function from A into A.

DEFINITION. For a recursive ODC property P,

(7) Fp(N) =Req®p(v), for v €N, N € A.

If we count finite subsets of an isolated set v with RET N using
isols rather than cardinals < Ry we obtain that there are Fp (V) finite
subsets of v with the recursive ODC property P.

PROPOSITION P3. Let P be a recursive ODC property and f = fp.
Then Fp(N) = fo(N) for N € A.

PROOF. Under the hypothesis, ®p is a recursive combinatorial oper-
ator. The desired relation now follows from (6) and (7).

COROLLARY. Let P be a recursive ODC property. Then Fp(N) < 2V,
for N € A.
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PROOF. Let v € N and N € A. Then the sets ®p(v) and 2¥ — ®p(v)
are separable, hence Req ®p(v) < Req2”, i.e., Fp(N) <2V,

3. Miscellaneous remarks.

(A) Proposition P3 can be generalized to k-ary relations. The case
k = 2 is as follows. Call a relation R between finite sets recursive if the
relation Tg(xz,y) between numbers such that R(ps, py) <= Tr(z,y)
is recursive. Relation R is ODC, if

[ry =ry and 7y = 1r,] = [R(py, py) <= R(pu,pov)], for z,y,u,vece.
Define ®g, fr and Fg by

Pr(u,v) ={j(z,y) €clps Cpand py, Cvand R(ps,py)}t, v €V,
fr(m,n) = card ®g (v, vp),
Fr(M,N) = Req ®g(u,v), for p € M,v € N,

If the ODC relation R is recursive and f = fg, we have Fr(M,N) =
fa(M,N), for M, N € A. The proof will be deleted since it is similar
to that for £ = 1. Here is a simple example. How many ordered pairs
(pu, py) of finite sets are there with p, C p, py C v, ry = ry, p €
M, v e N and M,N € A? In this case

F(m,n) = card g (vm, vy) = ii”(?) <Z>

i=0 k=0

We know from combinatorics that, for s = min(m, n),

() () -

Since the function c¢;; is uniquely determined by f, we see that c
is Kronecker’s delta function. Hence the “number” of ordered pairs
satisfying the requirements is

(M + N)!

Fr(M,N) = =30

, for M,N € A.
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The analogue of the corollary of P3 is for every recursive ODC relation
R we have
Fr(M,N) < 2M*N " for M,N € A.

(B) The following question deals with a recursive relation between
finite sets which is not ODC. Let v be an isolated set with RET N. How
many ordered pairs are there of disjoint finite subsets of v? We refer
to [2, p. 292] for the definition of the recursive function r,(z) = r(n, z)
and the sets 0.7, and p.r,. For RET’s A and B with A > 0, AP can
be defined as Reqa®, where

o ={ne€e|br, Cpand p.r, Ca}, for0€ca,acA,pcB.

Let v = (0,1,2)”. Then v ~ {j(z,y)|psz, py C v and pzp, = o}. Hence
the desired RET is Reqy = 3%.

(C) Let us take ordered k-tuples (a,...,ax) with k& > 2 of finite
subsets of an isolated set v with RET N, instead of ordered pairs.
Then the question discussed in (B) can be generalized in (at least)
two ways: (a) by requiring that ai,...,ar be mutually disjoint and
(b) by requiring that the intersection of all k sets oy, ..., ax be empty.
Case (a) can be dealt with as its special case k = 2. The answer is
(k +1)N. Now consider case (b). Then the answer is (28 — 1)V. To
prove this we generalize Stanley’s proof of the case where v is a finite
set of cardinality n; see [6; Example 1.1.16, p. 12]. Let T}, denote the
family of all functions 7, from v into the class of all proper subsets
of (1,...,k) and Sk, the family of all ordered k-tuples (aq,...,ax) of
finite subsets of v with o ...a, = 0. Define

v

a={zece|p: C+ (L,...,k)}, Try = &,

Ok = {Jrfa,...,ax) €€lay,...,ar €2Y and pyq)...pPak) = 0},

where j;, is a one-to-one recursive from £ onto . We use 73, and
ok, as the sets of G-numbers of the members of the families T},
and Sy, respectively. Since 0 € o and carda = 2F — 1, we have
Req 7k, = (2% — 1)V, Define the mapping 1 by §¢ = 73,; if m € 51,
then ¥(m) = jr(y1,-..,Yr), where

L € py(j) <= JE Primyi), fori€v, 1 <5<k
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It can now be proved that ¥ maps 7, one-to-one onto o, and that
both v and ! have partial recursive extensions. Thus 7%, =~ o, and
Reqoy, = (28 — 1)V

(D) Let Py, ..., Py be recursive properties of finite sets and v an iso-
lated set of RET N. Assume that the k sets {x € 2 | Py(p:)},...,{z €
2V | Py(ps)} are recursively distinct, i.e., that they are distinct and we
can, given any number z € 2¥, find all numbers i € (1,..., k) such that
pe has property P;. Let P; denote the negation of P; and define

P'(pe) = Pi(pz) V-~V Prlpe),  P"(pe) = P1(pa)& - - - &Pr(pz)-

Let v be an isolated set with RET N. Write F'(N), F"(N), F;(N) for
Fp:/(N), Fpr(N), Fp;) (V) respectively. Using the inclusion-exclusion
principle [3] we can express F'(N) and F”'(N) in terms of Fy(N), ..., F(N):

i=1 1<i<j<k
+ (DM UR(N) - Fi(N),
F'"(N)=2N — F'(N).

REFERENCES
1. J.C.E. Dekker, Les fonctions combinatoires et les isols, Gauthier-Villars,
Paris, 1966.
2. ———, Regressive isols, in Sets, models and recursion theory, ed. J.N.

Crossley, North-Holland Publishing Company, Amsterdam, 1967, 272-296.

3. , The inclusion-exclusion principle for finitely many isolated sets, J.
of Symbolic Loglc 51 (1986), 435-447.

4. T.G. McLaughlin, Regressive sets and the theory of isols, Marcel Dekker, New
York, 1982.

5. A Nerode, Eztensions to isols, Ann. of Math. 73 (1961), 362-403.

6. R.P. Stanley, Enumerative combinatorics, vol. 1, Wadsworth & Brooks,
Monterey, CA, 1986.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NJ
08903



