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THE AUTOMORPHISM GROUPS
OF THE HYPERELLIPTIC SURFACES

CURTIS BENNETT AND RICK MIRANDA

1. Introduction. In this paper we will compute the automorphism
groups of the so-called hyperelliptic surfaces. These compact complex
surfaces are characterized by having invariants pg = 0, q = 1, and
12K = 0. References for the elementary properties of these surfaces
may be found in [2] (where they are called “bielliptic surfaces”) or in
[1]. They may all be constructed as the quotient X = (E×F )/G, where
E and F are elliptic curves, and G is a finite group of translations of
E acting also on F not only as a group of translations; the action on
E × F is the diagonal action.

There are seven non-isomorphic groups G which can act on E×F as
above, two of which act on any E×F , the other five requiring F to be
a specific elliptic curve. In the following table the reader will find a list
of the seven groups G, together with the elliptic curves E and F , and
the action of G on E × F .

Write E = C/(Z + Zτ1) and F = C/(Z + Zτ2). Throughout this
article we will use the notation i =

√−1, ω = e2πi/3, and ζ = eπi/3;
note that ω = ζ2.

In the last three cases it is technically more convenient to consider
X = (E × F )/G as the quotient of Y = (E × F )/〈ψ〉 by a cyclic
group of order r(= 2, 3, 4, or 6), generated by the automorphism φ
induced by φ. Since ψ is a translation of E × F, Y is also a complex
torus of dimension two. For uniformity of notation we will define
Y = E × F and ψ = identity in the first four cases, so that in
each case X = Y/〈φ〉. Note that r is the order of the canonical
class KX in Pic (X) and Y is the etale cyclic cover of X defined by
KX : Y = Spec (⊕r−1

i=0ϕX(iKX)), with the multiplication in ϕY defined
by a chosen isomorphism θ : ϕX → ϕX(rKX). The formation of Y
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from X is functorial: if p : T → X is a scheme over X, a morphism
from T to Y over X corresponds to an ϕT -map α : p∗KX → ϕT such

that the composition ϕT
p∗θ−→ϕT (rp∗KX)α⊗r−→ϕ⊗r

T
mult−→ϕT is the identity.

This description allows us to readily conclude the lemma,

TABLE 1.1.

The seven groups G used to construct the hyperelliptic surfaces.

In all cases τ1 is arbitrary.

action of the generators

τ2 G of G on E × F

arbitrary Z/2 = 〈φ〉 φ
(

e
f

)
=

(e+1/2
−f

)

ζ Z/3 = 〈φ〉 φ
(

e
f

)
=

(e+1/3
ωf

)

i Z/4 = 〈φ〉 φ
(

e
f

)
=

(e+1/4
if

)

ζ Z/6 = 〈φ〉 φ
(

e
f

)
=

(e+1/6
ζf

)

arbitrary Z/2 × Z/2 = 〈φ, ψ〉 φ
(

e
f

)
=

(e+1/2
−f

)
;ψ

(
e
f

)
=

(e+τ1/2
f+1/2

)

ζ Z/3 × Z/3 = 〈φ, ψ〉 φ
(

e
f

)
=

(e+1/3
ωf

)
;ψ

(
e
f

)
=

( e+τ1/3
f+(1+ζ)/3

)

i Z/4 × Z/2 = 〈φ, ψ〉 φ
(

e
f

)
=

(e+1/4
if

)
;ψ

(
e
f

)
=

( e+τ1/2
f+(1+i)/2

)

LEMMA 1.2. Every automorphism of X lifts to Y .

PROOF. Let π : Y → X be the quotient map and assume σ is an
automorphism of X. Let p : Y → X be the composition p = σ ◦ π. We
require a lifting, f : Y → Y such that π ◦ f = p = σ ◦ π. Since σ is an
automorphism of X,σ∗KX

∼= KX ; since π is unramified, π∗KX
∼= KY .

Moreover since Y is an abelian surface, KY
∼= ϕY ; hence p∗KX

∼= ϕY .
We may then choose an isomorphism α : p∗KX → ϕY so that the
composition mult ◦ α⊗r ◦ p∗θ is the identity; in fact there are r choices
for α, differing from each other by a factor which is an rth root of unity.
Each of these choices for α provide a lift to Y of the automorphism σ.
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Since every automorphism of X lifts to Y , the standard theory of
covering spaces [3] implies that Aut(X) ∼= N/〈φ〉, where N is the
normalizer of 〈φ〉 in Aut(Y ). It is this group we will calculate in the
first four cases where Y = E × F ; in the last three we can in fact lift
automorphisms to E × F also, and make the analysis there.

There does not seem to be any standard notation for the hyperelliptic
surfaces. We will use Xr(τ2) for the first four surfaces in Table 1.1,
for which Y is the product E × F , and X̄r(τ2) for the last three;
if r 	= 2 then we will drop the τ2, which is determined. Hence the
hyperelliptic surfaces are X2(τ2), X3, X4, X6, X̄2(τ2), X̄3, and X̄4 in the
order in which they appear in Table 1.1. Note that they all of course
depend on τ1 also, which we omit from the notation.

2. The lifting to E × F. Since Y is an abelian surface, Aut(Y ) is
an extension of Aut0(Y ) (the subgroup of automorphisms fixing 0) by
the translation subgroup. Aut0(Y ) has a natural representation into
GL(2,C), inducing a homomorphism from Aut(Y ) to GL(2,C); we
will denote the image of an automorphism α of Y by α∗ ∈ GL(2,C).
By composing with the determinant we have a homomorphism det :
Aut(Y ) → C∗. These same constructions apply to E × F as well, and
we will use the same notation for them.

LEMMA 2.1. Let N be the normalizer of 〈φ〉 in Aut(Y ). Then α ∈ N
if and only if α is induced from an element of Aut(E)× Aut(F ) which
normalizes G.

PROOF. Let α ∈ N . Then αφα−1 = φ
k
, and applying det to both

sides forces k = 1, showing that α and φ must in fact commute.
Therefore α∗ commutes with φ∗ =

(
1 0

0 ε

)
, where ε = e2πi/r. Therefore

α∗ must be diagonal, since ε 	= 1; but this is equivalent to α lifting to an
element of Aut(E)×Aut(F ), which must normalizeG, since it descends
to α, which descends to X. Conversely, if β is in Aut(E) × Aut(F )
and normalizes G, then βψβ−1 = φiψj , and applying det to both sides
forces i = 0, so β normalizes 〈ψ〉 and descends to some α ∈ Aut(Y ).
Since β normalizes G = 〈φ, ψ〉, α will normalize 〈φ〉.
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The elements of Aut(E) × Aut(F ) can be conveniently represented
by 4-tuples [p, q; a, d], which will denote the map sending (e, f) to
(ae + p, df + q); here p ∈ E, q ∈ F, a ∈ Aut0(E), and d ∈ Aut0(F ).
Note that, in this notation, φ = [1/r, 0; 1, e2πi/r] and ψ = [u, v; 1, 1] for
appropriate u, v. It is easy to verify the following formulas:

(2.1) [p1, q1; a1, d1][p2, q2; a2, d2] = [p1 + a1p2, q1 + d1q2; a1a2, d1d2],

(2.2) [p, q; a, d]−1 = [−a−1p,−d−1q; a−1, d−1],

(2.3) [p, q; a, d][u, v; 1, 1][p, q; a, d]−1 = [au, dv; 1, 1],

(2.4) [p, q; a, d]φ[p, q; a, d]−1φ−1 = [(a− 1)/r, (1 − e2πi/r)q; 1, 1].

These allow us to prove the following refinement of Lemma (2.1):

LEMMA 2.6. Any element of Aut(E) × Aut(F ) which normalizes G
in fact centralizes G, i.e., commutes with φ and ψ.

PROOF. Let β ∈ Aut(E) × Aut(F ) normalize G. Then βψβ−1 =
φiψj , and applying det to both sides forces i = 0, so βψβ−1 = ψj .
Similarly βφβ−1 = φiψk, and applying det forces i = 1, so that
βφβ−1φ−1 = ψk for some k. We want to show that k = 0 and j = 1.
In the first four cases when Y is a product, ψ is the identity and there
is nothing to show; hence we must analyze only the last three cases. In
these cases ψ = [u, v; 1, 1], where u = nτ1/r; here n = 1 if r = 2 or 3
and n = 2 if r = 4. Write β = [p, q; a, d] and assume βψβ−1 = ψj and
βφβ−1φ−1 = ψk. Then, from (2.3) and (2.4), we must have

(2.5) (a− 1)/r = knτ1/r and anτ1/r = jnτ1/r

by only considering the first coordinate in the two equalities. Recalling
that a ∈ Aut0(E) and 0 ≤ j, k < r/n, one checks easily that the
only solutions to (2.5) are a = j = 1, k = 0, r = 2, 3, 4 and
a = −1, j = 1, k = 0, r = 2. In all cases k = 0 and j = 1,
proving the lemma.
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3. The computation of AutX). LetM denote the centralizer ofG
in Aut(E)× Aut(F ). By the above lemma, Aut(X) ∼= N/〈φ〉 ∼= M/G.
It is a simple matter to calculate M using formulas (2.1) (2.4); we
present the results below

PROPOSITION 3.1.

(a) M(X2(τ2)) = {[p, q; a, d]|a = ±1, d ∈ Aut(F ), and 2q = 0, i.e.,
q = 0, 1/2, τ2/2, or (1 + τ2)/2 mod Λ2},

(b) M(X3) = {[p, q; a, d]|a = 1, d ∈ Aut(F ), and (ω − 1)q = 0, i.e.,
q = 0, (1 + ζ)/3, or 2(1 + ζ)/3 mod Λ2},

(c) M(X4) = {[p, q; a, d]|a = 1, d ∈ Aut(F ), and (i − 1)q = 0, i.e.,
q = 0 or (1 + i)/2 mod Λ2},

(d) M(X6) = {[p, q; a, d]|a = 1, d ∈ Aut(F ), and q = 0},
(e) M(X2(τ2)) = {[p, q; a, d]|a = ±1, d = ±1, and 2q = 0, i.e.,

q = 0, 1/2, τ2/2, or (1 + τ2)/2 mod Λ2},
(f) M(X3) = {[p, q; a, d]|a = 1, d = 1, ω, or ω2, and (ω− 1)q = 0, i.e.,

q = 0, (1 + ζ)/3, or 2(1 + ζ)/3 mod Λ2},
(g) M(X4) = M(X4).

It is evident from the above proposition that in every case M is gen-
erated by its E-translations, its F -translations, its E-automorphisms
(elements of Aut0(E)), and its F -automorphisms. It may be conve-
nient to the reader to present these generators for M , which we do in
Table 3.1.

Note that, in every case, p ∈ E is arbitrary, so that E ⊆ M as the
subgroup {[p, 0; 1, 1]}; moreover E ∩ G = {id}. Hence E also embeds
in the quotient M/G ∼= Aut(X) as a normal subgroup and we will
consider our task complete if we identify the quotient of M/G by E
which is a finite group. We will also give generators for Aut(X)/E,
lifted to M . We present this information in Table 3.2.
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TABLE 3.1.

Generators for M

X trans- translations auto- automorphisms

lations of F morphisms of F

of E of E

X2(i) E {0, 1/2, i/2, (1 + i)/2} {±1} {1, i,−1,−i}
X2(ζ) E {0, 1/2, ζ/2, (1 + ζ)/2} {±1} {1, ζ, ζ2,−1,−ζ,−ζ2}
X2(τ2) E {0, 1/2, τ2/2, 1 + τ2/2} {±1} {±1}

(for τ2 general, i.e., Λ2 is neither square nor hexagonal)

X3 E {0, (1 + ζ)/3, (2 + 2ζ)/3} {1} {1, ζ, ζ2,−1,−ζ,−ζ2}
X4 E {0, (1 + i)/2} {1} {1, i,−1,−i}
Xσ E {0} {1} {1, ζ, ζ2,−1,−ζ,−ζ2}

X2(τ2) E {0, 1/2, τ2/2, (1 + τ2)/2} {±1} {±1}
X3 E {0, (1 + ζ)/3, (2 + 2ζ)/3} {1} {1, ω, ω2}
X4 E {0, (1 + i)/2} {1} {1, i,−1,−i}

TABLE 3.2.

X |Aut (X)/E| Aut (X)/E generators for Aut (X)/E in M

X2(i) 16 Z/2 × D8 [0, 0;−1, 1] generates the Z/2

(D8 is the dihedral [0, 1/2; 1, i] has order 4 in D8

group of order 8 [0, 0; 1, i] has order 2 in D8

X2(ζ) 24 Z/2 × A4 [0, 0;−1, 1] generates the Z/2

(A4 is the [0, 0; 1, ζ] has order 3 in A4

alternating group [0, 1/2; 1, 1] and [0, ζ/2; 1, 1]

of order 12) generate the 2-part of A4

X2(τ2) 8 (Z/2)3 [0, 0;−1, 1], [0, 1/2; 1, 1], and

(τ2 general) [0, τ2/2; 1, 1] generate (Z/2)3

X3 6 S3 [0, (1 + ζ)/3; 1, 1] has order 3

(the symmetric group) [0, 0; 1, ζ] has order 2

X4 2 Z/2 [0, (1 + i)/2; 1, 1] generates

Xσ 1 {1}
X2(τ2) 4 Z/2 × Z/2 [0, 0;−1, 1] and [0, τ2/2; 1, 1]

generate the Z/2 × Z/2

X3 1 {1}
X4 1 {1}
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With this table we consider our description of Aut(X) complete. We
note the following interesting corollary:

Every automorphism of Xr(τ2) lifts to Xr(τ2).

Indeed, we have proven that every automorphism of Xr(τ2) lifts to
E × F , in fact to an automorphism which commutes with φ. Hence
that lifting descends to Xr(τ2).
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