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ON PERTURBATIONS OF REFLEXIVE ALGEBRAS

HARI BERCOVICI AND FLORIN POP

We denote by H, L (H ), and K a complex Hilbert space, the algebra
of bounded linear operators on H , and the ideal of compact operators
on M, respectively. We recall that a subalgebra A C L (#H) is said
to be reflexive if it contains every operator T such that TM C M
whenever M is closed invariant subspace for A.

In this paper we provide elementary examples that answer in the
negative the following two questions.

PROBLEM 1. Suppose that A C L (H ) is a reflexive algebra. Is then
A + K norm-closed?

PROBLEM 2. Suppose that A,, A C L(H) are similar reflex-
ive algebras, n > 0, and lim,,_,, dist(A,, A) = 0. Can we choose
invertible operators X, such that X,;'AX, = A, and
lim, o || X, — I|| =07

The distance mentioned in Problem 2 is, of course, the Pompeiu-
Hausdorff distance between the unit balls of A, and A.

We note that Problem 1 has an affirmative answer if the invariant
subspaces of A are totally ordered by inclusion (i.e., A is a nest
algebra); see [6]. The answer to Problem 1 is negative for algebras
with commutative invariant subspace lattice (CSL-algebras); see [7].
See also [1] and [11] for more details about such algebras.

The answer to Problem 2 is positive if A, and A are nest algebras.
Problem 2 has a negative answer is A is a CSL -algebra (see [5]), but
it is open for algebras acting on finite-dimensional spaces. See [2, 3,
4, 10 and 12] for more information about this problem.
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We begin with our example concerning Problem 1; this example is
related to that given in [4]. Let H be a Hilbert space with orthonormal
basis {e; : 0 < j < oo}, and define operators T', Py, S € L (# ) such
that

Pyx = (z,e9)eq, T €EH,
Sej = €j+1, _] > 0,
T—5+P,

Next, denote by A the weakly closed unital algebra generated by T'.

PROPOSITION 3. The algebra A is reflexzive and A 4+ KC is not closed
in the norm topology.

This result will be proved in several steps. Let us set A = {\ € C :
A\l <1} U {1}.

LEMMA 4. The function f : A — H defined by f(\) = eg +
Yae  AFTHN — 1)ey is analytic on int(A). lim.1f(r) = f(1), and
T*f(\) = Af(\), A € A.

PROOF. The analyticity of f is immediate, and so is the relation
II£(r) = F(D)|| = (L=r)(1 =772, r € (0,1). Since T* = S* + Py, we
have T*eg = ep and T*e; = e;_1, 7 > 1. Thus

T*f(\) =eo+ > A HA=1)ep
k=1

=ep+ (A—1)eg + ,\iv—l(/\ —1ej = Af(N),

J=1

as claimed. 0O

Recall that AlgLat A = AlgLatT is the algebra of all operators
A € L(H) such that AM C M for every invariant subspace M of T.
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LEMMA 5. Fiz A € AlgLat A, and define u : A — C by u(\) =

(Aeg, f(N), A € A. Then U is analytic and bounded on int(A), and
lim,+1 u(r) = u(1). Moreover, if u(X) =Y o>, un A" is the power series
expansion of u, then

(Ae,-,e]-) =0, if j <1,
= Uj-1, lf]ZlZ]-a

j—1
=u(l) =Y w, ifj>i=0.
k=0

PROOF. The analyticity of v and the relation lim,+1 u(r) = u(1) follow
immediately from Lemma 4. To show that w is bounded, we verify

that u()) is an eigenvalue of A* with eigenvector f()). Indeed, since
A* € AlgLat T*, each f()) is an eigenvector of A*, and the formula for
the corresponding eigenvalue follows because (f(A),e9) = 1. In order
to determine the matrix entries of A we use now the relations

A*eg = A*f(1) = u(1)eo,

and A*f(A) = u(A)f()), |A| < 1. The latter equation can be rewritten
as

o0

Z)\k (A%er, — A%ept1)
k=0

= <Zﬂk,/\k> <Z)\k(€k — €k+1)>, |)\| < 1.
k=0 k=0

or, equivalently,

k
A¥ey, — A*€k+1 = Zu_j(ek,_j — ek_j+1).
Jj=0
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These equations now yield

k—1
A*ek = A*eg — Z(A*ep — A*6p+1)
p=0
k—1 p
= u(1)eo — Zu_](ep—] €p—j+1)
p=0 j=0
k—1 k-1
=u(l)eg — ZU_J (ep—j — €p—jt1)
Jj=0  p=j
k—1
= u(l)eg — Zu_J(eO —exj)
j=0
k—1 k
= <u 1) — u_j>eo+2uk_Je]
=0 =1

These relations immediately imply the formulas for (Ae;,e;). O

COROLLARY 6. Let A and u be as in Lemma 5.
(i) If A is compact then A = 0.

. 1/2
(i) [[A]] < sup{lu(N)] : [Al < 1} + (Zi’fo [u(1) = Xhzo uk|2> :

PROOF. (i). If A is compact then we must have uy = lim, o (Aey,,
éntk) = 0 for every k. We conclude that u = 0, and hence all the
entries in the matrix of A are zero.

(if) We have
1Al < [lAPo][ + [JA(I = Fo)]

= |[APR|| +[|ASS™]|
< ||AR|| + [|AS]].
Clearly, AS is a Toeplitz operator with symbol Au()), so that
|AS|| = sup{|Au(A)[ : [A] <1} = sup{|u(A)] : [A] <1},

while AP, is a rank-one operator with norm (3 ; |u(1)— 2;10 ug|?)H2.
The corollary follows. O
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LEMMA 7. Every operator in Alg Lat T is the weak limit of a sequence
of operators of the form p(T'), with p a polynomial. In particular, A is
a reflexive algebra.

PROOF. Let A and u be as in Lemma 5 and consider the polynomials.

n

un(\) =Y (1 — S)WA’“,

k=0
and the operators A,, = u,(T"),n > 0. Clearly

(Aneiaej) =0, lfj <1,

=l ifj>i>1.

j—1
=un(1) =) uf, ifj>i=0.
k=0

where u} = (1 — k/n)ug if & < n, and u} = 0 if k& > n. We have
lim, oo uff = ug,k > 0. Moreover, since > .- |u(l) — 2—210 ug)?
< oo, it follows that u(l) = > .- ux. Consequently, the Cesaro
sums u,(1) converge to u(l) as n — oo. Thus we conclude that
lim,, o (Anei,e;) = (Ae;,e;) for all ¢ and j. The lemma will follow
once we prove that sup,, ||A,|| < co. First, it is a well-known conse-
quence of the positivity of the Féjer kernel that

sup{|un,(A)] : n >0, || < 1} <sup{|u(N)]: |A| < 1}

Thus, by virtue of Corollary 6(ii), it suffices to show that

o0 i—1 |2\ 1/2
sup{(z un(l)—Zuz ) :n20}<oo.
i=0 k=0

Set
i1 i1

ai:u(l)—Zuk, a?:un(l)—Zuz, i,n > 0.

k=0 k=0
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Then o =0 for ¢ > n, and, for ¢ < n,

n

a?ZZuZ:Z(1—§>(ak—ak+1)
k=i k=i
:(l%)ail Z .

n -
k=i+1

A famous result of Hardy (cf. [8]), showing that the Cesaro operator is
bounded with norm 2 in ¢2, implies that

Bt g ()

n

nl—z Z Ak

k=i+1

=0

We deduce that

[eS) 1/2 n
=0 =0
n 1/2 n—1
=0 =0 n
0o 1/2
S 3(Z|az|2> )

and this concludes the proof of the lemma. a

1_2'20”“

k=i+1

Let # : L(H) — L(H)/K denote the quotient map. The proof
of Proposition 3 follows immediately from Lemma 7 and the next
observation.

LEMMA 8. The algebra A contains no nonzero compact operators,
and w|A is not bounded below.

PROOF. That A NK = {0} follows from Corollary 6(i). To see that
7|A is not bounded below we note that ||7(T™)|| = ||7(S™)|| = 1, while

IT"|| = vn+1, n>0.0
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We note that a somewhat more detailed analysis of A shows that the
weak and ultraweak topologies coincide on this algebra.

We proceed now to our example concerning Problem 2. Let H be, as
before, a Hilbert space with orthonormal basis {e,, : 0 < n < oo} and
define operators R, U, R, € L (H ) such that

Rej =27 J¢;, j>0,
Unen = €n+1, Unen+1 = €n, Unej = €5, n 7é .7 7é n+1,

and R, = U;'RU,,n > 0. (Note that U,;! = U,.) Define three-
dimensional algebras A, A,, C L(H & H) by

_J|M R

_J | M Ra |
An—{[o lﬂ].)\,p,'yEC}, n > 0.

Recall that, for two subspaces M , N of a normed space X , we have
dist(M ,N') < ¢ if and only if, for every vector z in the open unit ball
of M [respectively, '], there is a vector y in the open unit ball of N
[respectively, M ] such that ||z —y|| < e.

PROPOSITION 9. The algebras A, and A are similar, reflezive, and
lim,,, o dist(A,, A) = 0. However, if X, € L(H ®H) are invertible
operators such that A, = X' AX,, then lim,_, ., inf||X,, — I|| > 0.

PROOF. Clearly A, = (U, ® U,)"'A(U, @ U,) so that A, and
A are indeed similar. The equality lim, . dist(A,, A) = 0 is an
immediate consequence of the fact that lim, . ||R, — R| = 0. The
reflexivity of A (and A,,) follows easily from [9], but is also easy to

verify directly. Indeed, if [gg} € AlgLat A, clearly C = 0 and

A,D € AlgLat (I) so that A = A, D = I for some scalars A and

w. Thus [8 g} € AlgLat. A. Using invariant subspaces of the forms

{aRz® Bz : a,B € C}, we see that, for each z € H , thereisa v, € C
such that Bz = y,Rx. Linearity of B now implies that v, = 7 does
not depend on z.
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We will conclude the proof of the proposition assuming the following
result, which we prove later.

LEMMA 10. Assume that X, = [é” g"} is an operator such that

XnApn = AX,, and D, # 0. Then there exists a scalar 7, such that
RD,, = v, AnR,.

Assume that there exist operators X,, = {é” g"} such that X, A, =

A X, and lim,, || X, — I|| = 0. Clearly then D,, # 0 eventually, so
we can choose 7, as in Lemma 10. Denote by [a}}]75_o and [d}}]75_
the matrices of A,, and D,,, respectively, in the basis {e; : ¢ > 0}.
It is immediate that df, = y,al, and 27"d", = 27" '4,a", . Thus
Yo = dip/aly = 2d,,/ar,. , and the last equality implies that

n mn

d
1= lim %:2 lim 2% =2,
n—00 Qg n— oo aZn

which is simply not true. This contradiction concludes the proof of the
proposition. O

We conclude the paper with a proof of Lemma 10. The relation
X, A, = AX, implies the existence of scalars A, ft,,, V. such that

An Bo][AI vR.] [0 R][A. Ba
Co Dp|l| 0 pI| |0 0||C. Dol

Thus we have pu, D, =0 and v, A,R,, + u,B, = RD,,. Since D,, # 0,
we deduce that p,, = 0, and therefore RD,, = v, A, R, as desired. O

Let us note that Lemma 10 can also be deduced from a more general
result proved in [12].
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