ON PERTURBATIONS OF REFLEXIVE ALGEBRAS

HARI BERCOVICI AND FLORIN POP

We denote by \mathcal{H} , \mathcal{L} (\mathcal{H}), and \mathcal{K} a complex Hilbert space, the algebra of bounded linear operators on \mathcal{H} , and the ideal of compact operators on \mathcal{H} , respectively. We recall that a subalgebra $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ is said to be *reflexive* if it contains every operator T such that $T\mathcal{M} \subset \mathcal{M}$ whenever \mathcal{M} is closed invariant subspace for \mathcal{A} .

In this paper we provide elementary examples that answer in the negative the following two questions.

PROBLEM 1. Suppose that $A \subset \mathcal{L}(\mathcal{H})$ is a reflexive algebra. Is then $A + \mathcal{K}$ norm-closed?

PROBLEM 2. Suppose that \mathcal{A}_n , $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ are similar reflexive algebras, $n \geq 0$, and $\lim_{n \to \infty} \operatorname{dist}(\mathcal{A}_n, \mathcal{A}) = 0$. Can we choose invertible operators X_n such that $X_n^{-1}\mathcal{A}X_n = \mathcal{A}_n$ and $\lim_{n \to \infty} ||X_n - I|| = 0$?

The distance mentioned in Problem 2 is, of course, the Pompeiu-Hausdorff distance between the unit balls of \mathcal{A}_n and \mathcal{A} .

We note that Problem 1 has an affirmative answer if the invariant subspaces of \mathcal{A} are totally ordered by inclusion (i.e., \mathcal{A} is a nest algebra); see [6]. The answer to Problem 1 is negative for algebras with commutative invariant subspace lattice (CSL-algebras); see [7]. See also [1] and [11] for more details about such algebras.

The answer to Problem 2 is positive if \mathcal{A}_n and \mathcal{A} are nest algebras. Problem 2 has a negative answer is \mathcal{A} is a CSL-algebra (see [5]), but it is open for algebras acting on finite-dimensional spaces. See [2, 3, 4, 10 and 12] for more information about this problem.

Received by the editors on October 19, 1987.

The research of the first author was supported in part by a grant from the National Science Foundation.

We begin with our example concerning Problem 1; this example is related to that given in [4]. Let \mathcal{H} be a Hilbert space with orthonormal basis $\{e_j : 0 \leq j < \infty\}$, and define operators $T, P_0, S \in \mathcal{L}(\mathcal{H})$ such that

$$P_0 x = (x, e_0)e_0, \qquad x \in \mathcal{H},$$

$$Se_j = e_{j+1}, \qquad j \ge 0,$$

$$T = S + P_0.$$

Next, denote by A the weakly closed unital algebra generated by T.

PROPOSITION 3. The algebra A is reflexive and A + K is not closed in the norm topology.

This result will be proved in several steps. Let us set $\Lambda = \{\lambda \in \mathbf{C} : |\lambda| < 1\} \cup \{1\}$.

LEMMA 4. The function $f: \Lambda \to \mathcal{H}$ defined by $f(\lambda) = e_0 + \sum_{k=1}^{\infty} \lambda^{k-1} (\lambda - 1) e_k$ is analytic on $\operatorname{int}(\Lambda)$. $\lim_{r \uparrow 1} f(r) = f(1)$, and $T^* f(\lambda) = \lambda f(\lambda), \lambda \in \Lambda$.

PROOF. The analyticity of f is immediate, and so is the relation $||f(r)-f(1)||=(1-r)(1-r^2)^{-1/2}, r\in (0,1)$. Since $T^*=S^*+P_0$, we have $T^*e_0=e_0$ and $T^*e_j=e_{j-1}, j\geq 1$. Thus

$$T^* f(\lambda) = e_0 + \sum_{k=1}^{\infty} \lambda^{k-1} (\lambda - 1) e_{k-1}$$

= $e_0 + (\lambda - 1) e_0 + \lambda \sum_{j=1}^{\infty} \lambda^{j-1} (\lambda - 1) e_j = \lambda f(\lambda),$

as claimed.

Recall that Alg Lat $\mathcal{A} = \text{Alg Lat } T$ is the algebra of all operators $A \in \mathcal{L}(\mathcal{H})$ such that $A\mathcal{M} \subset \mathcal{M}$ for every invariant subspace \mathcal{M} of T.

LEMMA 5. Fix $A \in \text{Alg Lat } \mathcal{A}$, and define $u : \Lambda \to \mathbf{C}$ by $u(\lambda) = (Ae_0, f(\overline{\lambda})), \lambda \in \Lambda$. Then U is analytic and bounded on $\text{int}(\Lambda)$, and $\lim_{r \uparrow 1} u(r) = u(1)$. Moreover, if $u(\lambda) = \sum_{n=0}^{\infty} u_n \lambda^n$ is the power series expansion of u, then

$$(Ae_i, e_j) = 0,$$
 if $j < i$,
 $= u_{j-1},$ if $j \ge i \ge 1$,
 $= u(1) - \sum_{k=0}^{j-1} u_k,$ if $j \ge i = 0$.

PROOF. The analyticity of u and the relation $\lim_{r\uparrow 1} u(r) = u(1)$ follow immediately from Lemma 4. To show that u is bounded, we verify that $u(\overline{\lambda})$ is an eigenvalue of A^* with eigenvector $f(\lambda)$. Indeed, since $A^* \in \operatorname{Alg} \operatorname{Lat} T^*$, each $f(\lambda)$ is an eigenvector of A^* , and the formula for the corresponding eigenvalue follows because $(f(\lambda), e_0) = 1$. In order to determine the matrix entries of A we use now the relations

$$A^*e_0 = A^*f(1) = \overline{u(1)}e_0,$$

and $A^*f(\lambda) = \overline{u(\overline{\lambda})}f(\lambda)$, $|\lambda| < 1$. The latter equation can be rewritten as

$$\sum_{k=0}^{\infty} \lambda^k (A^* e_k - A^* e_{k+1})$$

$$= \left(\sum_{k=0}^{\infty} \overline{u}_k \lambda^k\right) \left(\sum_{k=0}^{\infty} \lambda^k (e_k - e_{k+1})\right), \quad |\lambda| < 1.$$

or, equivalently,

$$A^*e_k - A^*e_{k+1} = \sum_{j=0}^k \overline{u_j}(e_{k-j} - e_{k-j+1}).$$

These equations now yield

$$A^* e_k = A^* e_0 - \sum_{p=0}^{k-1} (A^* e_p - A^* e_{p+1})$$

$$= \overline{u(1)} e_0 - \sum_{p=0}^{k-1} \sum_{j=0}^p \overline{u_j} (e_{p-j} - e_{p-j+1})$$

$$= \overline{u(1)} e_0 - \sum_{j=0}^{k-1} \overline{u_j} \sum_{p=j}^{k-1} (e_{p-j} - e_{p-j+1})$$

$$= \overline{u(1)} e_0 - \sum_{j=0}^{k-1} \overline{u_j} (e_0 - e_{k-j})$$

$$= \left(\overline{u(1)} - \sum_{j=0}^{k-1} \overline{u_j}\right) e_0 + \sum_{j=1}^k \overline{u_{k-j}} e_j.$$

These relations immediately imply the formulas for (Ae_i, e_j) . \square

COROLLARY 6. Let A and u be as in Lemma 5.

(i) If A is compact then A = 0.

(ii)
$$||A|| \le \sup\{|u(\lambda)| : |\lambda| < 1\} + \left(\sum_{i=0}^{\infty} |u(1) - \sum_{k=0}^{i-1} u_k|^2\right)^{1/2}$$
.

PROOF. (i). If A is compact then we must have $u_k = \lim_{n \to \infty} (Ae_n, e_{n+k}) = 0$ for every k. We conclude that u = 0, and hence all the entries in the matrix of A are zero.

(ii) We have

$$||A|| \le ||AP_0|| + ||A(I - P_0)||$$

= $||AP_0|| + ||ASS^*||$
 $\le ||AP_0|| + ||AS||$.

Clearly, AS is a Toeplitz operator with symbol $\lambda u(\lambda)$, so that

$$||AS|| = \sup\{|\lambda u(\lambda)| : |\lambda| < 1\} = \sup\{|u(\lambda)| : |\lambda| < 1\},\$$

while AP_0 is a rank-one operator with norm $\left(\sum_{i=0}^{\infty}|u(1)-\sum_{k=0}^{i-1}u_k|^2\right)^{1/2}$. The corollary follows. \square

LEMMA 7. Every operator in Alg Lat T is the weak limit of a sequence of operators of the form p(T), with p a polynomial. In particular, A is a reflexive algebra.

PROOF. Let A and u be as in Lemma 5 and consider the polynomials.

$$u_n(\lambda) = \sum_{k=0}^{n} \left(1 - \frac{k}{n}\right) u_k \lambda^k,$$

and the operators $A_n = u_n(T), n \geq 0$. Clearly

$$(A_n e_i, e_j) = 0,$$
 if $j < i,$
= u_{j-i}^n if $j \ge i \ge 1.$
= $u_n(1) - \sum_{k=0}^{j-1} u_k^n$, if $j \ge i = 0$.

where $u_k^n=(1-k/n)u_k$ if $k\leq n$, and $u_k^n=0$ if k>n. We have $\lim_{n\to\infty}u_k^n=u_k, k\geq 0$. Moreover, since $\sum_{i=0}^\infty |u(1)-\sum_{k=0}^{i-1}u_k|^2<\infty$, it follows that $u(1)=\sum_{k=0}^\infty u_k$. Consequently, the Cesàro sums $u_n(1)$ converge to u(1) as $n\to\infty$. Thus we conclude that $\lim_{n\to\infty}(A_ne_i,e_j)=(Ae_i,e_j)$ for all i and j. The lemma will follow once we prove that $\sup_n||A_n||<\infty$. First, it is a well-known consequence of the positivity of the Féjer kernel that

$$\sup\{|u_n(\lambda)| : n \ge 0, \ |\lambda| < 1\} \le \sup\{|u(\lambda)| : |\lambda| < 1\}.$$

Thus, by virtue of Corollary 6(ii), it suffices to show that

$$\sup \left\{ \left(\sum_{i=0}^{\infty} \left| u_n(1) - \sum_{k=0}^{i-1} u_k^n \right|^2 \right)^{1/2} : n \ge 0 \right\} < \infty.$$

 \mathbf{Set}

$$\alpha_i = u(1) - \sum_{k=0}^{i-1} u_k, \quad \alpha_i^n = u_n(1) - \sum_{k=0}^{i-1} u_k^n, \quad i, n \ge 0.$$

Then $\alpha_i^n = 0$ for $i \ge n$, and, for i < n,

$$\alpha_i^n = \sum_{k=i}^n u_k^n = \sum_{k=i}^n \left(1 - \frac{k}{n}\right) (\alpha_k - \alpha_{k+1})$$
$$= \left(1 - \frac{i}{n}\right) \alpha_i - \frac{1}{n} \sum_{k=i+1}^n \alpha_k.$$

A famous result of Hardy (cf. [8]), showing that the Cesàro operator is bounded with norm 2 in ℓ^2 , implies that

$$\left(\sum_{i=0}^{n} \left| \frac{1}{n-i} \sum_{k=i+1}^{n} \alpha_k \right|^2 \right)^{1/2} \le 2 \left(\sum_{k=0}^{n} |\alpha_k|^2 \right)^{1/2}.$$

We deduce that

$$\left(\sum_{i=0}^{\infty} |\alpha_i^n|^2\right)^{1/2} \le \left(\sum_{i=0}^n \left| \left(1 - \frac{i}{n}\right) \alpha_i \right|^2\right)^{1/2} + \left(\sum_{i=0}^{n-1} \left| \frac{1}{n} \sum_{k=i+1}^n \alpha_k \right|^2\right)^{1/2} \\
\le \left(\sum_{i=0}^n |\alpha_i|^2\right)^{1/2} + \left(\sum_{i=0}^{n-1} \left| \frac{1}{n-i} \sum_{k=i+1}^n \alpha_k \right|^2\right)^{1/2} \\
\le 3 \left(\sum_{i=0}^{\infty} |\alpha_i|^2\right)^{1/2},$$

and this concludes the proof of the lemma.

Let $\pi: \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})/\mathcal{K}$ denote the quotient map. The proof of Proposition 3 follows immediately from Lemma 7 and the next observation.

LEMMA 8. The algebra A contains no nonzero compact operators, and $\pi | A$ is not bounded below.

PROOF. That $\mathcal{A} \cap \mathcal{K} = \{0\}$ follows from Corollary 6(i). To see that $\pi | \mathcal{A}$ is not bounded below we note that $||\pi(T^n)|| = ||\pi(S^n)|| = 1$, while $||T^n|| = \sqrt{n+1}$, $n \geq 0$. \square

We note that a somewhat more detailed analysis of \mathcal{A} shows that the weak and ultraweak topologies coincide on this algebra.

We proceed now to our example concerning Problem 2. Let \mathcal{H} be, as before, a Hilbert space with orthonormal basis $\{e_n : 0 \leq n < \infty\}$ and define operators $R, U_n, R_n \in \mathcal{L}(\mathcal{H})$ such that

$$Re_j = 2^{-j}e_j, \qquad j \ge 0,$$
 $U_ne_n = e_{n+1}, \qquad U_ne_{n+1} = e_n, \qquad U_ne_j = e_j, \qquad n \ne j \ne n+1,$

and $R_n = U_n^{-1}RU_n, n \geq 0$. (Note that $U_n^{-1} = U_n$.) Define three-dimensional algebras $\mathcal{A}, \mathcal{A}_n \subset \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ by

$$\mathcal{A} = \left\{ \begin{bmatrix} \lambda I & \gamma R \\ 0 & \mu I \end{bmatrix} : \lambda, \mu, \gamma \in \mathbf{C} \right\},$$

$$\mathcal{A}_n = \left\{ \begin{bmatrix} \lambda I & \gamma R_n \\ 0 & \mu I \end{bmatrix} : \lambda, \mu, \gamma \in \mathbf{C} \right\}, \qquad n \ge 0.$$

Recall that, for two subspaces \mathcal{M} , \mathcal{N} of a normed space \mathcal{X} , we have $\operatorname{dist}(\mathcal{M}, \mathcal{N}) \leq \varepsilon$ if and only if, for every vector x in the open unit ball of \mathcal{M} [respectively, \mathcal{N}], there is a vector y in the open unit ball of \mathcal{N} [respectively, \mathcal{M}] such that $||x-y|| < \varepsilon$.

PROPOSITION 9. The algebras \mathcal{A}_n and \mathcal{A} are similar, reflexive, and $\lim_{n\to\infty} \operatorname{dist}(\mathcal{A}_n,\mathcal{A}) = 0$. However, if $X_n \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ are invertible operators such that $\mathcal{A}_n = X_n^{-1} \mathcal{A} X_n$, then $\lim_{n\to\infty} \inf ||X_n - I|| > 0$.

PROOF. Clearly $\mathcal{A}_n = (U_n \oplus U_n)^{-1} \mathcal{A}(U_n \oplus U_n)$ so that \mathcal{A}_n and \mathcal{A} are indeed similar. The equality $\lim_{n \to \infty} \operatorname{dist}(\mathcal{A}_n, \mathcal{A}) = 0$ is an immediate consequence of the fact that $\lim_{n \to \infty} ||R_n - R|| = 0$. The reflexivity of \mathcal{A} (and \mathcal{A}_n) follows easily from [9], but is also easy to verify directly. Indeed, if $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \operatorname{Alg} \operatorname{Lat} \mathcal{A}$, clearly C = 0 and $A, D \in \operatorname{Alg} \operatorname{Lat}(I)$ so that $A = \lambda I$, $D = \mu I$ for some scalars λ and μ . Thus $\begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix} \in \operatorname{Alg} \operatorname{Lat} \mathcal{A}$. Using invariant subspaces of the forms $\{\alpha Rx \oplus \beta x : \alpha, \beta \in \mathbf{C}\}$, we see that, for each $x \in \mathcal{H}$, there is a $\gamma_x \in \mathbf{C}$ such that $Bx = \gamma_x Rx$. Linearity of B now implies that $\gamma_x = \gamma$ does not depend on x.

We will conclude the proof of the proposition assuming the following result, which we prove later.

LEMMA 10. Assume that $X_n = \begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix}$ is an operator such that $X_n \mathcal{A}_n = \mathcal{A} X_n$ and $D_n \neq 0$. Then there exists a scalar γ_n such that $RD_n = \gamma_n A_n R_n$.

Assume that there exist operators $X_n = \begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix}$ such that $X_n \mathcal{A}_n = \mathcal{A} X_n$ and $\lim_{n \to \infty} \|X_n - I\| = 0$. Clearly then $D_n \neq 0$ eventually, so we can choose γ_n as in Lemma 10. Denote by $[a_{ij}^n]_{i,j=0}^\infty$ and $[d_{ij}^n]_{i,j=0}^\infty$ the matrices of A_n and D_n , respectively, in the basis $\{e_i : i \geq 0\}$. It is immediate that $d_{00}^n = \gamma_n a_{00}^n$ and $2^{-n} d_{nn}^n = 2^{-n-1} \gamma_n a_{nn}^n$. Thus $\gamma_n = d_{00}^n/a_{00}^n = 2d_{nn}^n/a_{nn}^n$, and the last equality implies that

$$1 = \lim_{n \to \infty} \frac{d_{00}^n}{a_{00}^n} = 2 \lim_{n \to \infty} \frac{d_{nn}^n}{a_{nn}^n} = 2,$$

which is simply not true. This contradiction concludes the proof of the proposition. \Box

We conclude the paper with a proof of Lemma 10. The relation $X_n \mathcal{A}_n = \mathcal{A} X_n$ implies the existence of scalars $\lambda_n, \mu_n, \gamma_n$ such that

$$\begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix} \begin{bmatrix} \lambda_n I & \gamma_n R_n \\ 0 & \mu_n I \end{bmatrix} = \begin{bmatrix} 0 & R \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix}.$$

Thus we have $\mu_n D_n = 0$ and $\gamma_n A_n R_n + \mu_n B_n = RD_n$. Since $D_n \neq 0$, we deduce that $\mu_n = 0$, and therefore $RD_n = \gamma_n A_n R_n$, as desired. \square

Let us note that Lemma 10 can also be deduced from a more general result proved in [12].

REFERENCES

1. W. Arveson, Ten lectures on operator algebras, CBMS Regional Conf. Ser. in Math., No. 55, Amer. Math. Soc., Providence, 1984.

- 2. M.D. Choi and K.R. Davidson, Perturbations of finite-dimensional operator algebras, Michigan Math. J. 33 (1986).
- 3. K.R. Davidson, *Perturbations of reflexive operator algebras*, J. Operator Theory 15 (1986), 289–306.
- 4. —— and C.K. Fong, An operator algebra which is not closed in the Calkin algebra, Pacific J. Math. 72 (1977), 57–58.
- 5. K.R. Davidson and S.C. Power, Failure of the distance formula, J. London Math. Soc. (2). 32 (1985), 157–165.
- 6. T. Fall, W. Arveson and P. Muhly, *Perturbations of nest algebras*, J. Operator Theory 1 (1979), 137–150.
- 7. J. Froelich, Compact operators, invariant subspaces and spectral synthesis, Ph.D. Thesis, Univ. of Iowa, 1984.
- 8. G.H. Hardy, J.E. Littlewood and G. Pólya, *Inequalities*, The University Press, Cambridge, 1934.
- 9. J. Kraus and D.R. Larson, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory 13 (1985), 227–236.
- 10. E.C. Lance, Cohomology and perturbations of nest algebras, Proc. London Math. Soc. (3) 43 (1981), 334–356.
- 11. C. Laurie, On density of compact operators in reflexive algebras, Indiana Univ. Math. J. 30 (1981), 1–16.
- 12. F. Pop, A remark on a question of M.D. Choi and K.R. Davidson, INCREST preprint No. 41, 1986.

Department of Mathematics, Indiana University, Bloomington, IN 47405

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BUCHAREST, BUCHAREST, ROMANIA