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LOCAL SEMIGROUPS IN LIE GROUPS AND
LOCALLY REACHABLE SETS

KARL H. HOFMANN AND JIMMIE D. LAWSON *

ABSTRACT. In this paper the relationship between locally
reachable sets for a fixed set of controls in the Lie algebra
of a Lie group and the local semigroups generated by the
corresponding one-parameter semigroup is considered. It is
convenient to carry out the investigation in the Lie algebra
itself, and the appropriate machinery for doing this is first
developed. It is shown that local semigroups contain locally
reachable sets. A general criterion (rerouting) is developed
for the converse inclusion, and it is shown that if the set of
controls is contained in a proper cone or is a Lie wedge (i.e.,
the tangent of a local semigroup), then it is the case that
locally reachable sets contain local semigroups.

S. Lie’s Fundamental Theorem states that there is a bijection between
the subalgebras of a given finite dimensional real Lie algebra L and local
subgroups of a fixed local group having L as Lie algebra. In recent years
there has been considerable interest in studying (local) subsemigroups
of (local) Lie groups [3, 4, 6, 7-9, 10, 11], partly because of their
relevance in geometric control theory, partly because of their occurrence
in the theory of symmetric spaces and “causal” semigroups, and partly
in order to complete S. Lie’s original program.

For the local study of subsemigroups of a Lie group it is convenient to
stay inside the given Lie algebra L and to fix a convex symmetric open
neighborhood on which the Campbell-Hausdorff-Baker multiplication
(x, y) → x∗y = x+y+[x, y]/2+ · · · is defined as a function B×B → L
through the absolute convergence of the Campbell-Hausdorff-Baker
series. Such a neighborhood we will call a CHB-neighborhood (short
for Campbell-Hausdorff-Baker-neighborhood). (This approach is no
restriction in considering local theory since the exponential mapping
is a local analytic isomorphism from B with the CHB-multiplication
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to a neighborhood of the identity in the group. It also covers the case
of infinite-dimensional Dynkin algebras, for which there may be no
corresponding global group.)

A local semigroup S of L with respect to B is then simply a subset
S ⊂ B containing 0 with S∗S∩B ⊂ S. Its tangent object L(S) is the set
of all x for which there is a sequence xn ∈ S such that x = limnxn (cf.
[7]). This tangent object is a convex closed wedge W ⊂ L (i.e., a closed
subset stable under non-negative scalar multiplication and addition)
whose edge H = W ∩ −W satisfies the condition ead xW ⊂ W for
all x ∈ H. In particular this implies that H is a subalgebra. That,
conversely, all such wedges are tangent sets for the local Lie semigroup
they generate was announced in [11] and independently proved in [8,
9] for the class of wedges W which have a vector space complement V
of H in L with [H, V ] ⊂ V , and in general in [5].

Whenever one actually constructs a local semigroup from a given set
of tangent vectors, it is of great importance to have explicit methods to
exhibit the local semigroup in terms of the given set of vectors. In [7,
8] this was done in the spirit of topological algebra. The first section
presents an approach via differential equations inside the Lie algebra
itself. This is parallel, although not identical, to the usual method of
constructing local semigroups of matrices by solving equations of the
form

Ẋ(t) = X(t)U(t), X(0) = En

for suitable functions U(t) ranging through the set of generating tan-
gent vectors, or more generally to finding solution curves beginning at
the identity to a time varying system of left invariant vector fields on
a Lie group (see, e.g., [3, 6].)

The differential equation which will play an analogous role for the
CHB multiplication in L is

X ′(t) = g(ad X(t))U(t), X(0) = 0,

where g is an analytic function given once and for all through a fixed
power series g(T ) = 1 + T/2 +

∑∞
n=1(b2n/(2n)!)T 2n with the Bernoulli

numbers b2n, and where U(t) is a suitable function ranging through
the set of generating vectors. (See Theorem 1.3 below.) The reason
that the function g appears is that the translation function λy : B → L
sending x to y ∗ x has, as derivative at 0, dλy(0) = g(ad y) : L → L.
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Thus the vector fields given by Γw : B → L, Γw(y) = g(ad y)(w) are
the left invariant (with respect to ∗) vector fields on B.

The methods we propose here are reminiscent of the ones appearing
in [10].

In the latter sections we use the results of the first section to study
the relationship between local semigroups and locally reachable sets in
dynamical systems on Lie groups. It is shown that local semigroups
always contain locally reachable sets, and the reverse inclusion is
obtained under certain circumstances. These results give important
parallels and contrasts between the rapidly expanding theory of (local)
Lie semigroups and notions of geometric control theory.

1. The basic differential equation. Let L be a Dynkin alge-
bra (i.e., a complete normed Lie algebra with continuous operations)
and let B be a Campbell-Hausdorff-Baker neighborhood of 0. We em-
ploy (ordinary) differential equations to describe the local semigroup
generated by a set Φ of tangent vectors. To this end we give explic-
itly the differential equation satisfied by a curve X : [0, T ] → L with
X(0) = 0 which is defined by the property that, up to small terms
(i.e., terms of order two or more), the point X(t + h) is obtained from
X(t) by Campbell-Hausdorff-Baker multiplication by a vector hU(t),
where U(t) ranges through Φ in a fashion that allows for sufficient-
ly many discontinuities to accommodate sudden changes in direction.
Such sudden changes occur in the context of the algebraic generation
of a local semigroup and in applications in geometric control. A rea-
sonable class of functions with which to operate, therefore, is the class
of regulated functions in the sense of Bourbaki [1] (fonctions réglées)
which may be characterized either as being uniform limits of step func-
tions or else as having limits from the right and the left in all points of
their domain of definition (wherever such limits make sense). This class
includes the piecewise continuous functions, a class frequently used in
geometric control theory.

We turn now to a standard lemma on the Campbell-Hausdorff mul-
tiplication (see, e.g., [2]).

LEMMA 1.1. In the algebra of formal power series in one variable
T (over R ) we define

(A) f(T ) = (1 − e−T )/T =
∑∞

n=0((−1)n/(n + 1)!)Tn,
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(B) g(T ) = 1/f(T ) = 1 + T/2 +
∑∞

n=1(b2n/(2n)!)T 2n,

where the b2n are the Bernoulli numbers. In the power series algebra
of (non-commuting) variables U, V we have that

(a) −U ∗ (U + V ) = (f(ad U))(V ) + R1,

(b) U ∗ V = U + (g(ad U))(V ) + R2,

where R1 and R2 denote the sums of the bihomogeneous terms whose
degree in V is greater than 1.

COROLLARY 1.2. Let L be a Dynkin algebra, and let B be an open
symmetric CHB-neighborhood of 0. Then, for uεB, v ∈ L, and h ∈ R
where hv ∈ B,

(α) −u ∗ (u + hv) = hf(ad u)v + R1(h),

(β) u ∗ (hv) = u + hg(ad u)(v) + R2(h),

where limh→0 ‖Ri(h)‖/h = 0 for i = 1, 2.

Equation (D) in the following theorem gives the basic differential
equation arising in the generation of local semigroups (with respect to
the Campbell-Hausdorff-Baker multiplication). Equation (M) gives a
useful alternate.

THEOREM 1.3. Let L be a Dynkin algebra, and let B be an open
symmetric CHB-neighborhood of 0 in L. Let U : [0, T ] → L be a
regulated function which is continuous on the complement of some
countable set C. Then, for any continuous function X : [0, ε] → B with
0 < ε � T which is differentiable off of C, the following two statements
are equivalent (with x0 ∈ B):

(1) For all t ∈ [0, ε]\C and all h with X(t + h), hU(t) ∈ B, we have

(M) X(t + h) = X(t) ∗ hU(t) + o(t, h), X(0) = x0

with a suitable remainder function o satisfying limh→0 ‖o(t, h)‖/h = 0.

(2) For all t ∈ [0, ε]\C we have

(D) X ′(t) = g(ad X(t))U(t), X(0) = x0

with g the analytic function defined in Lemma 1.1.
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The differential equation (D) is equivalent to the differential equation

(D′) f(ad X(t))X ′(t) = U(t), X(0) = x0,

with f as in Lemma 1.1, and to the integral equation

(I) X(t) = x0 +
∫ t

0

g(ad X(s))U(s)ds.

The function X is uniquely determined on [0, ε] by (D), (D′), or (I).

PROOF. (1) implies (2). By Corollary 1.2, there exists a suitable
remainder function R with limh→0 ‖R(t, h)‖/h = 0 such that, for h �= 0,

(α)
X(t) ∗ hU(t) = X(t) + g(ad X(t))hU(t) + R(t, h)

= X(t) + h(g(ad X(t))U(t) + h−1R(t, h)).

It then follows from (M) in condition (1) that

(X(t + h) − X(t))/h = g(ad X(t))U(t) + h−1(o(t, h) + R(t, h)).

Whenever t /∈ C, we can pass to the limit by letting h approach 0 and
obtain (D) in condition (2).

(2) implies (1). Whenever X is differentiable we have, in view of (D),

X(t + h) = X(t) + hX ′(t) + δ(t, h)
= X(t) + g(ad X(t)hU(t) + δ(t, h),

with a suitable remainder term δ satisfying limh→0 ‖δ(t, h)‖/h = 0.
Then condition (α) above yields

X(t + h) = X(t) ∗ hU(t) + r(t, h)

with o(t, h) = δ(t, h) − R(t, h). This proves (1).

Equation (D′) is a simple transformation of (D) which is equivalent
in light of Lemma 1.1, and (I) follows by straightforward integration.
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The right-hand side of (D) satisfies a local Lipschitz condition on
account of

g(ad X)U(t) − g(ad Y )U(t) =
1
2
[X − Y, U(t)]

+
∑
n≥0

(1/n!)b2n(ad X2n − ad Y 2n)U(t).

Thus the solutions of (D) are uniquely determined by the initial condi-
tion X(0) = x0 (see, e.g., [1, II]).

Remark. For every x0 ∈ B, equation (D) has locally a unique
solution X(t) with initial value X(0) = x0 (see [1, II]). We recall
additionally the dependence of initial values and parameters (see [1,
II]) and record the following property:

PROPOSITION 1.4. If xn is a sequence of vectors in B converging to
x0 in B and if lim Un = U uniformly, then the solutions Xn(t) of

(Dn) X ′
n(t) = g(ad Xn(t))Un(t), Un(0) = xn

will converge uniformly to a solution of (D) (assuming the solutions are
all in B on [0, T ]).

PROPOSITION 1.5. Suppose that X(t) is a solution of (D) and that
y ∈ B. Then t → y ∗ X(t) is a solution of (D) with y ∗ X(0) = y ∗ x0.
(We assume here that y ∗ X([0, ε]) ⊆ B.)

PROOF. We have

y ∗ X(t + h) = y ∗ (X(t) ∗ hU(t) + o(t, h)),

where limh→0 ‖o(t, h)‖/h = 0 from condition (M) of Theorem 1.3. Fix
t and consider the curves α(h) = X(t) ∗ hU(t), β(h) = r(t, h), and
the vector-valued function A(v) = y ∗ v. Let Γ(h) = y ∗ (X(t) ∗
hU(t) + o(t, h)) = A(α(h) + β(h)). By the chain rule, Γ′(0) =
A′(α(0)+β(0))[α′(0)+β′(0)] = A′(α(0))(α′(0)) (since β(0) = 0 = β′(0)
from the conditions o satisfies). Set Λ(h) = y∗(X(t)∗hU(t)) = A(α(h)).
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Then Λ′(0) = A′(α(0))[α′(0)]. Thus Γ and Λ have the same derivative
at 0. It follows that the derivative of Γ−Λ is 0, and hence there exists
a function s(t, h) satisfying limh→0 ‖s(t, h)‖/h = 0 defined by

s(t, h) = Γ(h) − Λ(h)
= y ∗ (X(t) ∗ hU(t) + o(t, h)) − y ∗ X(t) ∗ hU(t)
= y ∗ X(t + h) − y ∗ X(t) ∗ hU(t).

By (M) of Theorem 1.3, the proof is complete.

We note that every function of the form t → tw is a solution of (D)
for the constant function U(t) = w, which is another way of saying
that t → tw is a one parameter semigroup with respect to ∗. After
Proposition 1.5, the function t → v ∗ tw is a solution of (D) with
U(t) = w, too. By induction, from this observation we find

PROPOSITION 1.6. Suppose that w1, . . . , wn are vectors, t1, . . . , tn
are positive real numbers, and t1w1 ∗ · · · ∗ tk−1wk−1 ∗ twk ∈ B, a CHB-
neighborhood, for all k and all t, 0 � t � tk. We define sk = t1+· · ·+tk
and

wk(t) = (t − sk−1)wk for sk−1 � t < sk, k = 1, . . . , n,

and wn(sn) = tnwn.

From these functions we construct a continuous, piecewise differen-
tiable function X: [0, sn] → B defined by

X(t) = t1w1 ∗ · · · ∗ tk−1wk−1 ∗ wk(t) for sk−1 � t < sk

(It is understood that X(t) = w1(t) on [0, t1)!).

Furthermore we let U be the piecewise constant function which is wk

on [sk−1, sk) and U(sn) = wn.

Then X is a solution of (D) for U with X(0) = 0. Moreover, this
solution is contained in the local semigroup S ⊆ B generated by

∪{R+wk ∩ B : k = 1, . . . , n} (with R +the non negative reals).
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(For a thorough discussion of local semigroups with respect to B and
local generation of local semigroups, we refer to [7].)

2. Locally reachable sets. Let B be a CHB-neighborhood
in a Dynkin algebra L, and let Φ ⊆ L. For a regulated function
U: [0, T ] → Φ, we say that U admits a principal solution in B if there
exists X: [0, T ] → B satisfying (D) of Theorem 1.3 with initial condition
X(0) = 0. We denote this principal solution by XU ; note that if it exists
it is unique. For T ≥ 0, we say that x ∈ B is reachable (from 0) at time
T by means of the control function U if U : [0, T ] → Φ is a regulated
function, admits a principal solution XU (t), and XU (T ) = x. The set
of all points reachable at time T by all regulated control functions with
codomain Φ is denoted ReachΦ(T ; B). We also define

ReachΦ(< T ; B) = ∪0�t<T ReachΦ(t; B).

If x ∈ ReachΦ(T ; B), we say x is T -reachable. If Φ is understood, the
subscript is frequently dropped.

There are several important minor variants of the preceding notions.
The class of control functions may be chosen smaller (e.g., piecewise
constant or piecewise continuous functions) or larger (bounded measur-
able functions); slightly different reachable sets may arise for the differ-
ent cases. We denote, for example, the points reachable at time T using
only piecewise constant controls by pc-Reach(T, B). Also it is conve-
nient to consider the closures of these sets. We denote the closure in B
of Reach(T ; B) (Reach(< T ; B)) by wReach(T ; B)(wReach(< T ; B)).
We say x is weakly reachable at time T if x ∈ wReach(T ; B).

PROPOSITION 2.1. The point x ∈ B is T -reachable by means of a
piecewise constant control function U : [0, T ] → Φ if and only if there
exists w1, . . . , wn ∈ Φ and positive real numbers t1, . . . , tn such that
x = t1w1 ∗ · · · ∗ tnwn, T =

∑n
i=1 ti, and t1w1 ∗ · · · ∗ tk−1wk−1 ∗ twk ∈ B

for all k, 0 � t � tk. If y ∈ B is weakly T -reachable then it is a limit
point of such points x.

PROOF. That the second part of the “if and only if” statement
implies the first part follows from Proposition 1.6. Conversely suppose
0 = s0 < s1 · · · < sn = T is a partition of [0, T ] with U(t) = wi on the
interval [si−1, si[. Then, for ti = si − si−1 and X : [0, T ] → B defined
as in Proposition 1.6, X(t) is the (unique) solution of (D) for U with
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initial condition X(0) = 0. Then X(T ) = t1w1 ∗ · · · ∗ tnwn, so the
second part follows.

If y ∈ B is T -reachable by means of some regulated control function
U , then U is a uniform limit of piecewise constant functions Un :
[0, T ] → L whose principal solutions converge uniformly to the solution
for U (Proposition 1.4). Since the Un are piecewise constant and close
to U , they can be altered slightly so that their range is contained in Φ
and they still converge uniformly to U ; we assume this was originally
true. Since the solution for U lies entirely in B and the convergence
is uniform, eventually the solutions for the piecewise constant control
functions lie entirely in B. Hence y is in the closure of the set
pc-Reach(T ; B).

Thus we have shown that Reach(T ; B) is contained in the closure of
pc-Reach(T ; B), and so its closure in B, wReach(T ; B), is also.

There is an alternate notion of controllability which is convenient for
our considerations. A point x ∈ B is reachable at norm cost δ by means
of the control function U if U: [0, T ] → Φ is regulated, admits a principal
solution XU (t) with XU (T ) = x, and δ = c(U) =

∫ T

0
‖U(t)‖dt. Let

NReachΦ(δ; B) denote the set of all points reachable at norm cost δ by
all regulated control functions with codomain Φ. Modifications such as
NReachΦ(< δ; B) are defined in a way analogous to time reachability.
Of course, some fixed norm on L is assumed throughout.

The following proposition compares the two notions.

PROPOSITION 2.2. Suppose ‖x‖ � M for all x ∈ Φ. Then Reach(<
T ; B) ⊆ NReach(< MT ; B). On the other hand, if, for some ε >
0, x ∈ Φ implies x = ry for some y ∈ Φ with ε � ‖y‖, then

wNReach(< δ; B) ⊆ wReach(< ε−1δ; B).

PROOF. Let x be reachable at time s < T by means of the control
function U : [0, s] → Φ. Then c(U) =

∫ s

0
‖U(t)‖dt �

∫ s

0
Mdt = Ms <

MT .

Conversely, let x be reachable at norm cost γ < δ by means of a
piecewise constant control function U : [0, T ] → Φ. There exists a
partition 0 = s0 < s1 < · · · < sn = T such that U(t) = wi ∈ Φ for all
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si−1 < t < si. Then γ = c(U) =
∑n

i=1 ‖wi‖Δsi. For each wi, there
exists vi ∈ Φ, ri > 0, with wi = rivi, and ε � ‖vi‖. From the proof of
Proposition 2.1

x = t1w1 ∗ · · · ∗ tnwn = t1r1v1 ∗ · · · ∗ tnrnvn,

where ti = si−si−1 = Δsi. Let S =
∑n

i=1 tiri and define V : [0, S] → Φ
by V (t) = vi for 0 < t−∑i−1

j=1 tjrj < tiri. Again, by Proposition 2.1, x
is reachable at time S by means of the control function V . Note that
γ =

∑n
i=1 ‖wi‖Δsi =

∑n
i=1 ri‖vi‖ti ≥ ε

∑n
i=1 riti = εS. Thus S �

ε−1γ < ε−1δ. We conclude pc-NReach(< δ; B) ⊆ pc-Reach(ε−1δ; B).

Now suppose x is reachable at norm cost γ < δ by means of a
regulated function U . Then γ = c(U) =

∫ T

0
‖U(t)‖dt. Now U

is the uniform limit of a sequence of piecewise constant functions
Un : [0, T ] → Φ (see the proof of Proposition 2.1). Thus c(Un) → c(U).
Hence c(Un) < δ for large n. Let Xn : [0, T ] → B be the principal
solution for Un and xn = Xn(T ). By the first part, xn is reachable in
time less than ε−1δ for large n. Since xn → x, x ∈ wReach(< ε−1δ; B),
the closure of the points reachable in less than time ε−1δ. Hence
NReach(< δ; B) ⊆ wReach(< ε−1δ; B), and the same containment
holds for the closure wNReach(< δ; B).

The next two results demonstrate the intuitively plausible fact that
if the control is bounded, then one is unable to get very far from the
origin in short amounts of time.

Henceforth we fix a norm compatible with the Lie algebra structure
in the usual sense, i.e., with ‖[x, y]‖ � ‖x‖ ‖y‖, among other things.
The following condition (#) is certainly satisfied for all sufficiently
small r > 0 on account of the explicit form of the power series
g(T ) = 1 + T/2 + · · · .

(#) ‖g(adx)‖ � 1 + ‖x‖ for all x ∈ Br.

LEMMA 2.3. Let Br ⊆ B be an open ball of radius r around 0 which
satisfies the condition (#). If X : [0, ε] → B is the principal solution
for U and δ =

∫ ε

0
‖U(t)‖dt, then ‖X(t)‖ < 2δ, i.e., X(t) ∈ 2Bδ for all

t ∈ [0, ε], provided that 2δ < min{1, r}.
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PROOF. Assume the conclusion is false. Then ‖X(t)‖ = 2δ for
some t ∈ [0, ε], and we may consider the smallest such in view of the
continuity of X. From the equivalent integral condition (I) of Theorem
1.3, we obtain the estimate

‖X(t)‖ �
∫ t

0

‖g(ad X(s))‖ ‖U(s)‖ds

�
∫ t

0

(1 + ‖X(s)‖)‖U(s)‖ds

since‖X(s)‖ � 2δ < r for 0 � s � t

� (1 + 2δ)
∫ ε

0

‖U(s)‖ds

� δ + (2δ)δ < 2δ.

Thus we obtain 2δ = ‖X(t)‖ < 2δ, a contradiction. This establishes
the claim.

PROPOSITION 2.4. Let Φ ⊆ L be bounded (respectively Φ ⊆ L
be arbitrary), let B be CHB-neighborhood, and let B′ be open with
0 ∈ B′ ⊆ B. Then, for all sufficiently small T (respectively δ =∫ T

0
‖U(t)‖dt), if U: [0, T ] → Φ is regulated, then there exists a principal

solution XU : [0, T ] → B; furthermore, X(t) ∈ B′ for 0 � t � T .

PROOF. If we have the proposition for Φ arbitrary, it follows readily
for bounded Φ, for if Φ is bounded in norm by M and T is chosen less
than δ/M , then, for U : [0, T ] → Φ,

∫ T

0
‖U(t)‖dt � MT < δ.

If norm1 is bounded by a scalar multiple of norm2, then the norm1

cost of any regulated function U is bounded by the same scalar multiple
of the norm2 cost of U . Hence, if the proposition is true for some
norm, it is true for any equivalent norm. So, as in Lemma 2.3, we
assume a norm with ‖g(ad x)‖ � 1 + ‖x‖ for ‖x‖ < r. Pick δ with
2δ < min{1, r}, 3Bδ ⊆ B′. Let U : [0, T ] → Φ be a regulated function
with

∫ T

0
‖U(t)‖dt = δ. Then U is the uniform limit of piecewise limit

of piecewise constant Un : [0, T ] → Φ. If δn =
∫ T

0
‖Un(t)‖dt, then

δn → δ. So, for large n, 2δn < min{1, r} and 2Bδn
⊆ B′. Proposition

1.6 shows how to construct a solution Xn of (D) for Un, and Lemma
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2.3 guarantees Xn(t) ∈ 2Bδ for all t, 0 � t � T . By Proposition 1.4
these solutions converge uniformly to a solution X of (D) for U , and it
follows that X(t) ∈ 2Bδ ⊆ 3Bδ ⊆ B′ for 0 � t � T .

The definition of the sets Reach(<T ; B) and NReach(< |!δ; B) depend
on a previous choice of an open ball B of reference and might, even
for very small T (respectively δ), change if B is varied even slightly.
Proposition 2.4 says that in fact this is not the case and thus allows us
to make the following definition.

Definition 2.5. We define Reach(< T ) in case Φ is bounded to be
Reach(< T ; B), provided that there is a CHB-neighborhood B such
that the principal solution XU : [0, T ] → B exists for every regulated
U : [0, T ] → Φ. We note by Proposition 2.4 that Reach(<T ) is well-
defined for all small enough T . Similar definitions and remarks apply to
NReach(<!, δ) for Φ arbitrary, and for wReach(<T ) and wNReach(<T ).

We come now to one of the main results announced in the introduc-
tion.

THEOREM 2.6. Let L be a Dynkin algebra, B a CHB-neighborhood,
Φ⊆L, and W = R +Φ. Let S denote the local semigroup with respect
to B generated by W ∩ B, and let S∗ be its closure in B. Then
pc NReach(< δ) ⊆ S and wNReach(< δ) ⊆ S∗ for all δ sufficiently
small. Similarly if Φ is bounded, pc − Reach(<T ) ⊆ S and wReach(<
T ) ⊆ S∗ for all T sufficiently small.

PROOF. By Proposition 2.4 the principal solution exists and lies
in B for any piecewise constant U : [0, T ] → Φ such that c(U) =∫ T

0
‖U(t)‖dt is sufficiently small. It then follows from Proposition 1.6

that pc-NReach(< δ) ⊆ S for all δ sufficiently small. The argument
in Proposition 2.4 shows that any element of NReach(< δ) is a limit
point of members of pc-NReach(< δ), and hence in S∗. It follows from
regularity that wNReach(< δ) ⊆ S∗ for all δ sufficiently small.

An analogous argument establishes the version of the theorem for
Φ bounded; alternatively the first part of Proposition 2.2 may be
employed.
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3. Rerouting. In §2 we have shown that, for Φ ⊆ L, the
closed local semigroup S∗ generated by R+Φ ∩ B (where B is a
CHB-neighborhood) contains wNReach(< δ) for small δ. We consider
now the converse problem of whether wNReach(< δ) contains a local
semigroup generated by R +Φ ∩ B for some CHB-neighborhood B of
0. In general this is not the case, and the problem of determining
precisely when it is appears quite difficult. In the remainder of the
paper we employ results of [8] and [5] to obtain affirmative solutions
in certain special cases.

Definition 3.1. Let Φ ⊆ L. The set Φ admits rerouting locally if
there exists a Dynkin algebra norm ‖ · ‖ on L such that, given r > 0,
there exists 0 < δ � r and a CHB-neighborhood B of 0 of diameter less
than r satisfying NReach(< 2δ) ∩ B ⊆ NReach(< δ).

PROPOSITION 3.2. Let Φ be a subset of L which admits rerouting
locally. Then given r > 0, there exists δ, 0 < δ � r such that, for all
sufficiently small convex neighborhoods C of 0, the set

AC(δ) = wNReach(< δ) ∩ C

is a local semigroup with respect to C which contains R +Φ ∩ C and is
closed in C.

PROOF. Let r > 0. Choose δ, 0 < δ � r, and B satisfying the
conditions of Definition 3.1 for r. Let C be any convex neighborhood
of 0 such that C ⊆ B. (We also assume wNReach(< 2δ) is well-defined
and in B; see Definition 2.5.)

Suppose x1, x2 ∈ AC(δ) and x1 ∗ x2 ∈ C. Let ε < 0. Let V1 and V2

be neighborhoods of x1 and x2 respectively such that V1 ∗ V2 ⊆ B and
every point of V1 ∗ V2 is within distance of ε of x1 ∗ x2. Since xi is in
wNReach(< δ), there exists a regulated function Ui : [0, Ti] → Φ such
that

∫ Ti

0
‖Ui(t)‖dt < δ and such that the principal solution Xi(t) for

Ui satisfies Xi(Ti) ∈ Vi, i = 1, 2.

Define U : [0, T1 + T2] → W by U(t) = U1(t) if 0 � t � T1, U(t) =
U2(t−T1) for T1 < t � T1 +T2. Then the function X : [0, T1 +T2] → L,
defined by X(t) = X1(t) if 0 � t � T1 and X(t) = X1(T1)∗X2(t−T1) for
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T1 � t � T1 + T2, is a solution of (D) for U with initial value X(0) = 0
(see Proposition 1.5). Since X(T1 + T2) = X1(T1) ∗X2(T2) ∈ V1 ∗V2 ⊆
B, since

∫ T1+T2

0
‖U(t)‖dt =

∫ T1

0
‖U1(t)‖dt +

∫ T2

0
‖U2(t)‖dt < 2δ and

since Φ admits rerouting locally, we conclude X1(T1) ∗ X2(T2) ∈
NReach(< δ). Since ε was arbitrary, x1 ∗ x2 ∈ wNReach(< δ) ∩ C =
AC(δ). Thus AC(δ) is a closed local semigroup with respect to C.

Let x ∈ Φ. Define X : [0, T ] → L by X(t) = tx. Then X ′(t) = x ∈ Φ.
Hence there exists 0 < ε � T such that tx ∈ AC(T ) for 0 � t � ε.
Since AC(T ) is a local semigroup with respect to C, we conclude
R +x∩C ⊆ AC(T ) (since R +x∩C is the local semigroup with respect
to C generated by [0, ε] · x). This completes the proof.

COROLLARY 3.3. Let Φ be a subset of L which admits rerouting
locally. Let W = R+ · Φ. Given a CHB-neighborhood B, let (SB)∗

denote the smallest local semigroup closed in B containing W ∩ B.
Then there exists δ > 0 and a basis of convex neighborhoods C of 0
contained in B such that

(SC)∗ ⊆ wNReach(< δ) ⊆ (SB)∗.

PROOF. The first assertion is just Theorem 2.5. The second assertion
follows from Proposition 3.2 by choosing C sufficiently small. Then
(SC)∗ ⊆ AC since the latter is a closed local semigroup containing
C ∩ W , and AC(T ) ⊆ wNReach(< δ).

Thus, loosely speaking, we have in this setting that local semigroups
contain locally reachable sets and vice-versa.

4. Achieving local rerouting. Let L be a Dynkin algebra,
Φ ⊆ L. We can make L into an abelian Lie algebra by making the
Lie multiplication trivial. In this case g(ad x) is just the identity, and
the integral equation (I) in Theorem 1.3 simplifies to

ZU (t) =
∫ t

0

U(s)ds,

where ZU (t) is the solution of (D) (for the abelian case) with initial
condition ZU (0) = 0 for the control function U . The Campbell-
Hausdorff-Baker multiplication for this case is just addition.
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Since g(T ) = 1 + T/2 + · · · , it follows (as in Lemma 2.3) that, for
some open ball Br of small enough radius r,

(##) ‖g(ad x)(y) − y‖ � ‖x‖ ‖y‖ for x ∈ Br

for some equivalent norm ‖ · ‖.
Suppose now that U : [0, T ] → Φ is a bounded regulated function

that admits a principal solution XU : [0, T ] → B. Suppose further that
δ = c(U) =

∫ T

0
‖U(t)‖dt satisfies 2δ < min{1, r}, where r is chosen as

in the preceding paragraph. Then we have, for 0 < t � T ,

‖XU (T ) − ZU (U)‖ =
∥∥∥

∫ T

0

(g(ad XU (t))U(t) − U(t)dt
∥∥∥

�
∫ T

0

‖g(ad XU (t))U(t) − U(t)‖dt

�
∫ T

0

‖XU (t)‖ ‖U(t)‖dt

(by the preceding paragraph)

�
∫ T

0

(
2

∫ t

0

‖U(s)‖ds
)‖U(t)‖dt (by Lemma 2.3)

= 2
∫ T

0

∫ t

0

‖U(s)‖ ‖U(t)‖ds dt

=
1
2

(
2

∫ T

0

∫ T

0

‖U(s)‖ ‖U(t)‖ds dt
)

(since the integrand is symmetric
about the diagonal)

=
∫ T

0

‖U(s)‖ds ·
∫ T

0

‖U(t)‖dt = (c(U))2.

Recall also from Proposition 2.4 that the principal solution XU (t) exists
for small δ. Thus we have

PROPOSITION 4.1. Let Φ ⊆ L, a Dynkin algebra, and let B be a
CHB-neighborhood. There exists ε > 0 such that, for any regulated
bounded control function U : [0, T ] → Φ with c(U) =

∫ T

0
‖U(t)‖dt < ε,
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the principal solution XU : [0, T ] → B exists, and ‖XU (T )−ZU (T )‖ �
(c(U))2, where ZU (T ) =

∫ T

0
U(t)dt.

We consider now the case that Φ ⊆ K, a closed cone (= proper
cone) in a finite dimensional Lie algebra L or a strictly positive cone
in a Dynkin algebra (see [8] for the definition). In [8] it is shown
that the norm on L can be chosen so that it is also additive on K.
For any bounded regulated function U : [0, T ] → Φ we then have
‖ZU (T )‖ = ‖ ∫ T

0
U(t)d(t)‖ =

∫ T

0
‖U(t)‖dt = c(U). (The verification

follows directly from the additivity of the norm for piecewise constant
functions, and in general by taking uniform limits of such.)

THEOREM 4.2. Let K be a closed proper cone in a finite-dimensional
Lie algebra L (or a strictly positive cone in a Dynkin algebra). Then
Φ ⊆ K admits rerouting locally.

PROOF. Let r > 0. Choose 2δ smaller than ε in Proposition 4.1, for
an additive norm ‖ · ‖, 2δ < 1/4. Choose B to be the ball of radius
δ/2 around 0. Suppose x ∈ NReach(< 2δ) ∩ B. Then there exists a
regulated control function U : [0, T ] → Φ with principal solution XU (t)
such that c(U) < 2δ and XU (T ) = x. By Proposition 4.1 and the
remarks preceding this proposition,

‖XU (T ) − ZU (T )‖ � (c(U))2 < (2δ)2 <
1
4
(2δ) =

1
2
δ.

Thus

c(U) = ‖ZU (T )‖ � ‖ZU (T ) − XU (T )‖ + ‖XU (T )‖ <
1
2
δ +

1
2
δ = δ.

Note that, in actuality, no rerouting is necessary for the cone case. If
a reachable point has a small norm, then control functions to reach it
must have a proportionally small norm cost.

We consider finally the construction of Hilgert and Hofmann in [5].
We restrict to the finite-dimensional case (the results remain true in
Dynkin algebras with appropriate modifications). Let W be a Lie
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wedge in L, i.e., a closed wedge whose edge H = W ∩ −W satisfies
the condition ead xW = W for all x ∈ H. Let V be a vector space
complement for H in L. Then K = V ∩ W is a closed (proper)
cone. For small CHB-neighborhoods, B, there exist unique continuous
projections pH : B → H and pV : B → V such that x = pV (x) ∗ pH(x).
Pick a closed cone K0 in V surrounding K (see [7] for the definition and
construction). Hofmann and Hilgert show, for CHB-neighborhoods B
small enough, that if X : [0, T ] → B is a solution of differential equation
(D) with X(0) = 0 for U : [0, T ] → W , then pV ◦X is also a solution for
some UV : [0, T ] → W . Pick a norm additive on K0 that also satisfies
the other requirements of this section. We show Φ = W admits local
rerouting.

Pick a small δ > 0, with the ball B of radius 2δ satisfying the
previous “smallness” conditions. Pick a smaller open ball C around
0 with pH(C) and pV (C) contained in the ball of radius δ/3. Suppose
X : [0, T ] → B, X(T ) ∈ C, is the principal solution for some U :
[0, T ] → Φ. Let Y = pV ◦ X. Then it is shown in [5] that (i)
Y is the principal solution for some regulated U1 : [0, T ] → W
(Proposition 3.8); (ii) Y ′(t) ∈ K0; and (iii) t → ‖Y (t)‖ is increasing
on [0, T ] (see Lemma 4.2). Since the norm is additive on K0, we have
‖Y (T )‖ = ‖ ∫ T

0
Y ′(t)dt‖ =

∫ T

0
‖Y ′(t)‖dt. Thus

c(U1) − ‖Y (T )‖ �
∣∣∣
∫ T

0

‖U1(t)‖dt −
∫ T

0

‖Y ′(t)‖dt
∣∣∣

�
∫ T

0

∣∣‖Y ′(t)‖ − ‖U1(t)‖
∣∣dt

�
∫ T

0

‖Y ′(t) − U1(t)‖dt

=
∫ T

0

‖g(ad Y (t))U1(t) − U1(t)‖dt

�
∫ T

0

‖Y (t)‖ ‖U1(t)‖dt (by (##))

� ‖Y (T )‖
∫ T

0

‖U1(t)‖dt by increasing property

= ‖Y (T )‖c(U1).
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Solving for c(U1), we obtain

c(U1) < ‖Y (T )‖/(1 − ‖Y (T )‖)
<

1
3
δ/

2
3
δ =

1
2
δ.

Since X(T ) ∈ C, ‖pH(X(T ))‖ < δ/3. Thus, using the constant
control pH(X(T )), we see that pH(X(T )) ∈ NReach(δ/3). Pasting this
control together with U1 (as, e.g., in Proposition 3.8, the Rerouting
Theorem, of [5]), we see that

X(T ) = pV (X(T )) ∗ pH(X(T )) ∈ NReach(δ).

Thus Φ = W admits local rerouting. Thus we have proved

THEOREM 4.3. Let Φ = W be a Lie wedge. Then Φ admits local
rerouting.

Remark 4.4. Note that Corollary 3.3 says closed local semigroups
generated by W ∩ C are contained in wNReach(< δ) for small C. By
Proposition 2.2 we have also the same conclusion for wReachΦ(< T ).
Hence, for Lie wedges, local semigroups contain locally reachable sets
and vice-versa.
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