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EXISTENCE OF TRANSVERSAL HOMOCLINIC POINTS
IN A DEGENERATE CASE

KENNETH J. PALMER

Introduction. Let F be a diffeomorphism on a compact manifold.
Smale [8, 9] shows that if F' has a transversal homoclinic point there is
a Cantor-like set on which some iterate of F' is invariant and isomorphic
to the Bernoulli shift on a finite number of symbols. In Palmer [5, 7] it
was shown how this result could be simply deduced from the shadowing
lemma for hyperbolic sets.

Also, in [5] (see also Gruendler [2]), a periodic differential equation
(1) & = g(x) + ph(t,z,p), =€RF,
was considered, where the unperturbed system

(2) &= g(x)

has a saddle point and an associated homoclinic connection ¢(t) such
that, up to a scalar multiple, ¢'(t) is the unique bounded solution of
the variational equation

(3) & =g'(¢(t))z.

Under this condition the equation adjoint to (3) also has, up to a scalar
multiple, a unique bounded solution ¥ (t), and, if the Melnikov function

Afa) = — /_OO V¥ (¢ + a)h(t, Bt + a), 0) dt

has a simple zero, it turns out for g # 0 sufficiently small that the
period map for equation (1) has a transversal homoclinic point.

Note that the condition on the variational equation (3) is equivalent
to the requirement that the tangent spaces to the stable and unstable
manifolds of the saddle point have a one-dimensional intersection along
the homoclinic orbit ¢(¢). In this paper we want to relax this condition,
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assuming a two-dimensional intersection or, equivalently, that the
subspace of bounded solutions of equation (3) has dimension 2. Then
#(t + o) may or may not be a one-parameter subfamily of a two-
parameter family of homoclinic orbits. If it is, a certain scalar quantity
is zero.

First, we consider the case where ¢(¢ + «) is a one-parameter sub-
family of a two-parameter family of homoclinic orbits and show that
if a certain vector function consisting of two Melnikov functions has
a simple zero, then the period map for equation (1) has a transver-
sal homoclinic point for p # 0 sufficiently small. A similar result was
obtained by Gruendler [2] under three additional conditions: (a) “uni-
formly transverse perturbation,” (b) the number of parameters is at
least two and (c) rank A(£) = 2 (cf. [2] for notation).

Second, we consider the case where ¢(t + «) is not a one-parameter
subfamily of a two-parameter family. This is ensured by the nonvan-
ishing of the aforementioned scalar quantity. (We have not considered
the even more degenerate case where this scalar quantity vanishes but
¢(t+ ) is still not a one-parameter subfamily of a two-parameter fam-
ily.) To handle this case, we prove an abstract theorem related to one
of Hale and Téboas [3]. We consider an equation f(z,u) = 0 which,
for 4 = 0, has a one-parameter family of solutions ((«) such that
f2(¢(a),0) is Fredholm of index zero with dim N (f.(¢(a),0)) = 2.
(The case dim N (f;(¢(),0)) = 1 was dealt with in Theorem 4.1 in
Palmer [5].) We impose a nondegeneracy condition corresponding to
the nonvanishing of the aforementioned scalar quantity. Then if one of
our two Melnikov functions has a simple zero and the other is nonzero
at that point, the equation f(z,u) = 0 has two solutions for u on one
side of zero and none on the other side. When we apply the theorem
to equation (1), these solutions correspond to transversal homoclinic
points of the period map.

Finally, I wish to thank J. Moser for suggesting consideration of this
problem to me.

2. The case of a two-parameter family of homoclinic orbits.
Let g : R* — R* be a C? function such that

(A1) system (2) has an equilibrium point z¢ such that the eigenvalues
of g’(z¢) have nonzero real parts;
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(A2) system (2) has a family of solutions ¢(t,8), 8 € J, J an interval,
such that |¢(t,8) — zo| — 0 as [t| — oo; ¢(t, ) is a C? function of its
arguments and is bounded together with its derivatives; also ¢ (t, ()
and ¢g(t, B) are linearly independent for all (¢, 5);

(A3) for each B the variational equation

(4) & =g'((t,8))z

has a two-dimensional subspace of bounded solutions.

Since |¢(¢,8) — xo| — 0 as |[t| — oo and the eigenvalues of ¢'(x¢)
have nonzero real parts, it follows from the roughness theorem for
exponential dichotomies (Coppel [1, p. 34]) that system (4) has an
exponential dichotomy on [0,00) and (—oo,0] and the ranks of the
corresponding projections P(3), Q(3) are equal. Then if we take the
Banach spaces £ = C*(R,R¥), F = C°(R, R¥), it follows from Lemma
4.2 in Palmer [5] that the linear operator from & into F defined by
z(-) = 2'(-) — ¢'(é(¢, 8))z(-) is Fredholm of index zero and a function
p € F is in its range if and only if

| wemd=o
for all bounded solutions ¥ (t) of the adjoint equation
(5) &= —g'(¢(t, B))"z.

Now the subspace of bounded solutions of (5) consists of those
solutions with initial values in AM(P(8)*) N R(Q(B)*). This is just

the nullspace of the matrix [ Iféﬁ()ﬁ*)* }, which has constant rank k — 2

and, by Proposition 2.3 in Palmer [6], is C' in . So we can find
a C! basis ¥1(8), ¥(B) for its nullspace. Then it follows from the
proof of Proposition 2.3 in Palmer [6] that if ¢ (¢, 8), ¥2(t,8) are the
solutions of (5) with initial values ¥1(8), ¥2(8), then 8 — ¥;(-, ),
i = 1,2, are C! as functions into C°(R, R¥) and ¢;(t, B), ¥is(t,8) — 0
exponentially as |t| — co.

THEOREM 1. Let g : RF — RF be a C? function satisfying (A1),
(A2), (A3), and let h: R x R* x R — R* be a C? function, bounded
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together with its derivatives and T -periodic in its first variable. Define

A(Oé,ﬂ) = (Al(aaﬁ)aAZ(aaﬁ))’ where, fOTZ' = ]-a2}

©  atwn=-[ T+ 0 B)A(E, Gt + o, B), 0) d.

Suppose, for some (ap,Bo),
A(ag, By) =0, det A'(a, By) # 0.

Then if p # 0 is sufficiently small, the period map for system (1) has
a unique transversal homoclinic point with orbit near that of ¢(co, Bo)-

PROOF. We use Theorem 4.1 in [5]. Note that conditions (ii) and
(iii) in that theorem can be reformulated as follows (cf. Palmer [6, p.
341]). Referring to the notation of Theorem 4.1, let dim AV (L) = d and
suppose M is parameterized as {(a), where « is in a neighborhood of
ap in R, Then, for a near a({(an) = 0), f=(¢(),0) is also Fredholm
of index zero and its nullspace has dimension d. Let ¥ (a),... ,¥q4(a)
be linear functionals in F* such that

d

R(f2(¢(a),0)) = (YN (¥i(@))-

i=1

These can be chosen to be C! in « by a result in the Appendix. We
define
Ala) = (Ar(a),. .., Ad(a)),

where

Ai(a) = di(@)(fu(¢(a), 0)).
Then conditions (ii) and (iii) of Theorem 4.1 are equivalent to the
requirement that

(7) A(ao) = 0, det A,(Oéo) # 0.

Here we take £ = C1(R,R*), F = C°(R,R*) and define f : ExR —
F by

[f(z, mw)](t) = 2(t) — {g(p(t + ao, Bo) + 2(t)) — g(&(t + v, Bo))
+ ph(t, p(t + o, Bo) + 2(t), 1) }-
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It is clear that f is C? and that, for all y in &,

[f=(z, )yl (t) = 9(t) — {9 ((t + o, Bo) + 2(t))
+ phe (t, ¢(t + ao, Bo) + 2(t), 1) }y(t).

We see also that f(¢(a, 8),0) = 0, where

C(a, B) = ¢(- + o, B) — ¢(- + a0, Bo),

and that

[£2(¢(e, 8), 0)y](t) = §(t) — 9" (6 (t + o, B))y (t)-

It follows from (A3) and the remarks before the theorem that f.({(«, 3),
0) is Fredholm of index zero with dim N'(f,({(e, 3),0)) = 2. With M
as the two-dimensional manifold parametrized as ((«, ), we see that
Te(a,pyM C N(f:(¢(, B),0)). Since both these subspaces have dimen-
sion 2, they must be equal. Also, it follows from the remarks before
the theorem that, for the application of Theorem 4.1, we may take
¥i(a, B) € F*, i = 1,2, as the linear functional defined by

il B)(p) = / G2t + o, B)p(t) dt.
Note also that

fﬂ(((av ﬂ)v 0) = _h(t7 ¢(t +a, ﬂ)v 0)7

so that, in this case, A;(«, 3) is defined by (6) for i = 1,2 and we may
apply Theorem 4.1 in [5] to deduce the existence of o > 0 such that,
for p # 0 sufficiently small, the equation

f(zau) =0

has a unique solution z(u) satisfying ||z(n)|| < 0. Moreover, z(0) = 0,
z(p)is C* and, when p # 0, f.(2(u), p) is invertible. Then, as in Palmer
[5], we deduce that, for p # 0, (¢, u) = ¢(t + o, Bo) + 2(1)(t) is the
unique solution of (1) such that, for all ¢, |z(t, u) — é(t + o, Bo)| < 0.
Moreover, its variational equation has an exponential dichotomy on
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(—o00,00). As in [5] again, it follows that the period map for equation
(1) has (0, ) as a transversal homoclinic point for u # 0.

Finally, a standard Gronwall lemma argument shows the existence of
oo > 0, pg > 0 such that if 0 < || < po and z(t) is a solution of (1)
satisfying |z(nT) — ¢(nT + ag, Bo)| < o¢ for all n, then |z(t) — ¢(t +
ap, Bo)| < o for all t. Hence, if u # 0 is sufficiently small, z(0, u) is
the unique point whose orbit {z(nT, p)} under the period map satisfies
|z(nT, p) — d(nT + ag, Bo)| < o9 for all n. O

3. An abstract theorem. This theorem is related to a theorem of
Hale and Téboas [3]. They applied their theorem to the existence of
periodic solutions.

Let &£, F be Banach spaces and let f : £ x R — F be a C° function
such that

f(¢(a),0) =0,
where ((a) is a C* function defined for real a near ag with ¢’(ag) # 0.
We write L(«) = f;({(«),0) and make the following two hypotheses:

(H1) L(c) is Fredholm of index zero with dim N'(L(a)) = 2;

(H2) if w € N(L(e)) and fzz(¢(a),0)ww € R(L(a)), then w is a
multiple of {'(a).

As proved below, (H2) implies that the closed subspace V, generated
by R(L()) and {fzz({(@),0)ww : w € N(L(a))} has co-dimension
1 and there exist ¥, (a), ¥2(a) in F*, which are C* in «, such that
R(L(e)) = N(¥1(a)) "N (¥2(a)) and Vo = N (¥1(a)).

Note that (H2) is a differential condition implying that {(a) is not
a one-parameter subfamily of a two-parameter family of solutions of

f(z,0)=0.

THEOREM 2. Let £, F be Banach spaces, and let f : € x R — F be
a C® function such that f({(a),0) = 0, where £(a) is a C* function
defined for real a near oy with {'(ayp) # 0.

Suppose (H1) and (H2) are satisfied, and define

Az(a) = wz(a)(fﬂ(g(a)v 0))’ 1= la 27
Ao = —2A2(ao)/'ﬁ["Q(aO)(fzw(((aO)’O)U(ao)v(ao))’
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where {¢'(ap),v(ap)} form a basis for N(L(ag)). Then if

(8) Ai(ao) =0, Al(ag) #0, Az(ag) #0,
the equation
(9) flz,p) =0

has ezactly two solutions z1(p), z2(1) near ((ao) for >0 (if Ao > 0,
p < 0 if g < 0) sufficiently small and no such solution for up < 0
(respectively, u > 0) sufficiently small. Moreover, x1(p),x2(1) are C?
functions of /i (respectively \/—p ) with 21(0) = x2(0) = ((ag) and
fo(zi(p), p), i = 1,2, is invertible for u # 0.

PROOF. Preliminaries. We choose a projection P(a) which is C*
in a and such that R(P(a)) = N(L(a)). (See the appendix for a
proof of this statement.) Then we can find v(a) € N(L(«)) depending
C* on «a such that N(L(a)) is generated by (’(a) and v(a)—for
example, we can take ('(ag) and vy as a basis for N (L(ap)) and then
choose v(a) = P(a)vy. As proved in the appendix, we can also find
bounded linear functionals ¥, («), 2 (a), which are C* in «, such that
R(L(a)) = N(¢1(a)) N N (¢p2()) and a projection Q(a), which is C*
in «, such that R(Q(a)) = R(L(x)).

Differentiating the equations

fz(C(a)ao)CI(Ol):O, ( a) ) ( ):0

(

with respect to «, we find that fy,(¢(a),0)¢" ()¢’ (o) and fi,({(e),0)
('(a)v(a) are both in R(L(«)). Now (H2) implies that w(a) =
fzz(C(a),0)v(a)v(e) ¢ RL(a). So the subspace V, generated by
R(L(e)) and {fzz(¢(a),0)ww : w € N(L(«))} is a closed subspace
of F of codimension 1. Since w(a) ¢ RL(a), we can assume without
loss of generality that, for o near ag, ¥2(a)(w(a)) # 0. Then
(Y1(@) + Bia(a))(w(a)) = 0if B = =1 (a)(w(a))/Pz(a)(w(a)). So
if we replace 11 (a) by ¥1(a) + Bi2(a), we see that V, = N (¢1(a)).
Clearly, 91 (o) is unique up to a scalar multiple.

Ezistence. We look for solutions to equation (9) of the form z =
¢(a) + Bv(a) + w, where 8 € R and w € N(P(ap)). So we want to
solve the equation

f(¢(a) + Bv(a) + w,p) =0
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for o, 8 € R and w € N(P(w)). For |a — ap| < &1, this is equivalent
to the solution of the pair of equations

(10) Q(ao)f(¢(e) + Bo(a) +w,pu) =0
(11) [ = Q(a)]f(¢(a) + Bv(a) + w, p) = 0.

We can write the left side of (10) as G(a, 8, w, 1), where G is a mapping
of I x R X N(P(ap)) X R into R(L(c)) (I is an interval around ay).
Note that G is C*, G(«,0,0,0) = 0 and G, (ao,0,0,0) = Q(ao)L(ao) :
N(P(a)) = R(L(ag)). The latter operator is invertible and so, by
the implicit function theorem, there exist 2 > 0, o2 > 0 such that
equation (10) has a unique solution w = w(w, 8, ) in |w| < o2 when
la — ag| < 82, |B] < 02, || < 82 w(a, B, p) is a C* function and, by
uniqueness, w(w,0,0) = 0.

We substitute w = w(a, 8, 1) into (11) and obtain the equation

[ - Q(a)]f(¢(a) + pu(a) + w(e, B, ), p) = 0.

This is equivalent to the equation

(12) h(aaﬁ,ﬂ) - (hl(aaﬂaﬂ)7h2(awgau)) =0,

where

hi(a, B, 1) = Yi(@)[f (((@) + Bu(a) + w(a, B, ), p)]-

Now h is C* and it is easy to verify that, for i = 1,2,

h(e,0,0) =0, hs(e,0,0) =0

08 (@0,0)= Ad(a),  higal@,0,0) = u(a)(w(a)).

Then, by Taylor’s theorem, we may write

1
h(c, B, 1) = hy(e,0,0)p + 5’%@(% 0,0)8” + hgu(a,0,0)Bu

(14) L %hw(a,o,o)u2 +p(a, B, 1)B>

+ q(a, B, 1) Bu + (e, B, p)p?,
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where p = (p1,p2), ¢ = (q1,92) and r = (ry,72) are C? and zero at
(,0,0).

Now we solve equation (12). There are two cases.

Case 1. Ag = —2Aq(ap)/92(co)(w(ag)) > 0. In this case we set
= €%, B = ey and define

€ 2h(a, €y, €?), €e#£0

H =
(@7,6) { hyu(2,0,0) + Lhgs(@, 0,072, €=0.

It follows from (14) that, for € # 0,

1
H(aa Y 6) :h’lt (av 0) 0) + §h5ﬂ(aa Oa 0)72 + Eh;@,u(aa 07 0)7
1
+ 562]7/##(0(, 0) 0) + p(Oé, 67) 62)72
+eq(a, ey, )r + Pr(a, ey, €).
Thus, H = (Hy, Hy) is C? with
1 2
Hi(a,7,0) = Ai(e) + 5 ¢i(a)(w(a))r,
1d
Hia(a,7,0) = Aj(a) + §£{¢i(a)(w(a))}72,

for i = 1,2. So H(w,7,0) = 0 for a = ag, v = £/ Ao and, using
the fact that 1 (a)(w(a)) = 0, we find that the determinant of the
Jacobian matrix of H(«,,0) at (ap, £v/Xo) is

£ (a0) v/ Aov2 (o) (w(ap)) # 0.

Then, by the implicit function theorem, there exist e3 > 0, d3 > 0 such
that, when |e| < €3, the equation

(15) H(a,v,e) =0

has a unique solution o = a;(€), v = 7v1(€) (respectively az(€),v2(€))
in o — ap] < 83, |y — VAol < d3 (respectively |a — ap| < 63,
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|7 + vXo| < d3). Moreover, a;(e),vi(€), i = 1,2, are C? functions
with a1(0) = a2(0) = ao, 71(0) = VAo, 72(0) = =/ Q0.
Then, for i =1, 2,

zi(€) = C(ai(e)) + evi(e)v(ei(e) + w(ai(e), evi(e), %), €= /i,

is a C? (in € = /1) solution of equation (9) with z;(0) = {(ap). To see
that z1(€) # x2(€) for € # 0, note that, for i = 1,2,

7;(0) = a}(0)¢' (o) + (=1)""*v/Ao[v(@0) + wp(ao, 0,0)].

If we differentiate f(z;(¢),e?) = 0 with respect to € and set ¢ = 0, we
obtain

f2(¢' (), 0)2;(0) = 0.
This means z(0) € N(L(ay)) = R(P(ap)). But wg(a,0,0) €
N (P(ap)) and so it must be zero. Thus, for i = 1,2,

(16) 2;(0) = ;(0)¢' (@) + (=1)" " v/ Aov(an).
Hence, z1(€) # z2(¢) for € # 0 sufficiently small.

Case 2. A = —2Aq(ap)/92(co)(w(ag)) < 0. In this case we set

pu = —€2, B = ey and consider

e 2h(a, ey, —€?), e#0

H =
(@ 7,€) { —hyu(0,0,0) + Shsp(a, 0,0)92, € =0.

We proceed as in Case 1 with obvious modifications to get C? solutions
a;(€), vi(e) of H(a,v,€¢) = 0 with a;(0) = g, 7:(0) = (=1)"T1y/=X.
Again, we get two distinct solutions z;(€) of (9) with z;(0) = {(ao).

Uniqueness. Assuming Ay > 0 (the other case can be similarly dealt
with), we show there exists 4 > 0 such that if (o, 8, p) is a solution of
equation (12) with |a — ag| < d4, |B] < 64, 0 < || < b4, then pp > 0

and a = o;(\/i), B = /pvi(\/m) for i =1 or 2.

Using (13) and (14), we may write, for i = 1,2,

i B, 10) = e+ | 39u() (wila) +pilas B, )| 57+ s(e s ),

where g;(a, 8, 1) is C? with g;(,0,0) = 0.
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Suppose h(a, B,p) = 0 where |a — ag| < 84, |8] < 04, 0 < |u| < 44
(04 satisfies 04 < d3,€3 and other conditions to be mentioned below).
Then if we assume 4 is so small that [pa(a, B, p)| < 3[¥2(e)(w(e))],
we can solve ha(a, 3, 1) = 0 to get

B2 —[As(a) + galer B, )]

B Lys(a)(w(@) + pa(e, Bop)

Hence, if &, is sufficiently small, 3?/u has the same sign as Ao and
1B//B— (£vA0)| < 83. So if we put € = /i and v = 3/\/n, (a,7,€) is
a solution of equation (12) satisfying |a — ag| < 83, |7 — (£vX0)] < 83,
le| < €5. Then, by the uniqueness above, @ = «;(€) and 8 = S;(¢) for
1 =1 or 2, and so the assertion follows.

Now we show there exists n > 0 such that if | — ()| < n, * =
¢(a) + Bv(a) + w where w € N (P(ag)) and |a — ag| < min{dy, d2,d4},
|B] < min{ds,d4}, |w| < o9. To do this, consider the C* mapping
g: I xR xN(P(ap)) — & defined by

g(e, B,w) = {(a) + Bv(a) + w.

Also, g¢(ap,0,0) = ((a) and the derivative at (cg,0,0) is
[¢'(a0) v(ap) J] where J : N(P(ap)) — € is the inclusion. The deriva-
tive has a bounded inverse sending y € £ into (v, o, [I — P(ao)]y), where
7, o are the unique solutions of v¢'(ap) + ov(ag) = P(c)y. So, by the
inverse function theorem, there exist open neighborhoods U and V of
(0, 0,0) and {(ap), respectively, such that g : U — V is a diffeomor-
phism. The existence of n follows immediately.

Finally, let = be a solution of equation (9) with |z — {(ap)| <
n, 0 < |p] < min{ds,d4}. Then z = ((a) + Bv(a) + w where
|a — ap| < min{d1,d2,04}, |8] < min{d2,d4}, |w| < g2, w € N(P(v)),
and «,3,w,p is a solution of the two equations (10), (11). By the
uniqueness there, w = w(a, 8, 1) and («, 8, i) is a solution of equation
(12) with |a — ag| < d4, |B] < 64, 0 < |p| < 64. Then it follows that
p > 0 and that o = a;(\/1), B = /ivi(y/1), for i = 1 or 2, so that
x = x;(\/p) for i =1 or 2.

Invertibility.  Finally, we must show that A(e) = f.(z(e),€?)
(fs(z(€),—€%) in Case 2), where z(¢) = x1(€) or zz(e), is invertible
for € # 0 sufficiently small. First we observe that A(0) = f,(¢(ap),0)
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is Fredholm of index zero with N'(A(0)) spanned by ¢'(ap) and v(ayp).
Also

(17) A'(0) = faa(C(e0), 0)2'(0),

where, in Case 1, 2’(0) is given by (16) and, in Case 2, by the same
formula with —)\g instead of A\yg. Thus we have the situation that
A (0)¢'(a0) € R(A(0)) but A'(0)v(ap) ¢ R(A(0)), and so need the

following lemma.

LEMMA . Let £, F be Banach spaces and, for € near 0, let A(e) :
E — F be Fredholm of index zero with N'(A(0)) = span{¢i,ps2}.
Suppose also that A(e) is C? in € and that A'(0)¢; € R(A(0)) but
A (0)p2 ¢ R(A(0)). Choose linear functionals vy1,vs in F* such that
R(A(0)) = N(¥1) NN (2) and ¢1(A'(0)p2) = 0, and let w € € be such
that A(0)w = —A'(0)p1. Then if

(18) Y1 (20" (0)w + A" (0)¢1) # O,

A(e) is invertible for € £ 0 sufficiently small.

PROOF. Let wq,ws satisfy A(0)w; = A(0)wz = —A’(0)¢1. Then
wy; — wz € N(A(0)), and so wy — wy = Y11 + Y2P2 for some scalars
Y1,v2. Then

Y1(2A(0)(wy — wa)) = QZ%%(A/(O)@) =0.

=1

So, the quantity 11 (2A’(0)w+A"(0)¢;) is independent of the w chosen.
Also, since 1); is determined up to a scalar multiple, condition (18) is
independent of the v, chosen also.

Now let P and @ be projections such that R(P) = N(A(0)), R(Q) =
R(A(0)). All we have to show is that A(e) is one to one for € # 0
sufficiently small. If x € £ we can write z = y1¢1 + Y2¢2 + w, where
Y1, 72 are scalars and w € N (P), and we want to solve

A(€)[y101 + Y22 +w] =0
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for 71, v2, w. This is equivalent to the equations

(19) QA(e)[y101 + Y22 + w] =0
(20) Yi(A(e) (b1 + Y22 +w)) =0, i=1,2.

We can write (19) as

(21) K(e)w = —QA(e) (1101 + 7292),

where K (¢) = QA(e) : N(P) — R(A(0)). K(0) is invertible and, for €
sufficiently small, so also is K(¢). Hence, we may solve (21) for

w = —K(e)T'QA(e) (711 +7262) = Mwi(e) + 2wa(e),
where, for i =1, 2,
wi(€) = —K(€) " QA() i
Substituting this back into (20) obtains

2

(22) > wi(Ale)(¢ +wi(e)y; =0, i=1.2.

j=1

Now & = 37, vi(¢i+w;(€)) where w;(0) = 0. Thus, if € is sufficiently
small, ¢ + w1 (€) and @2 + wo(e€) are linearly independent, and so z # 0
if and only if not both 1,72 are zero. Hence, if we can show that the
2 X 2 matrix

[aij ()] = [i(Ae)(dj + w;(e))]

is invertible for e # 0 sufficiently small, it will follow that (22) has only
the solution v; = 2 = 0 and the lemma will be proved.

Write d(e) = det [a;;(€)]. Since a;;(0) = 0 for all 4, j, d(0) = d'(0) = 0.
Also
d"(0) = 2[a},(0)as,(0) — a12(0)as, (0)] =0,

since aj; (0) = 1;(A’(0)¢1) = 0 for i = 1,2. Then

d"'(0) = 3[af;(0)an,(0) — aj5(0)ay, (0)]
= 31 (A"(0)¢1 + 2A7(0)w} (0)) ¥2(A'(0)¢2)-
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Since A'(0)¢2 ¢ R(A(0)) but 1(A’(0)¢2) = 0, we must have
¥a(A'(0)p2) # 0. To calculate wj(0), observe that

QA(e)wi(e) = —QA (€)1
Hence,
QA(0)wy(0) = —QA'(0)41.

Since A'(0)p1 € R(A(0)) = R(Q), it follows that A(0)wi(0) =
—A’(0)¢1. Then, by hypothesis, 1 (A”(0)¢1 +2A’(0)w](0)) # 0. Thus,
d"'(0) # 0 and d(e) # 0 for e sufficiently small. So the proof of the
lemma is complete. O

We now apply the lemma to A(e) = f.(z(€),€?) (or fi(z(e), —€?)).
We may take ¢1 = ('(ao), ¢2 = v(ao), ¥1 = P1(a0), Y2 = Y2(a).
Note that 11 (a) was chosen so that ¥y (ag)(A’(0)¢2) is a multiple of
¥1(a0) (fzz(C(ap), 0)v(ap)v(ap)) which is 0. We have to find w such
that A(0)w = —A’(0)¢1. Differentiating the identities

fz(((a)a O)CI(O‘) =0, f:c(C(a)a O)U(a) =0

with respect to a and setting o = ay, we obtain

A0)¢" () = — faz(¢(a0),0)¢" (a0)¢ (o),
A(0)v' (o) = = faz(¢(a0),0)¢" (a0)v(0)

so that, using (17),
A(0)[e(0)¢" (o) + 7(0)v" (@0)] = —A"(0)¢' (),

where a(0) = «;(0),7(0) = v:(0). So, if we define ¢(a) = o/ (0){' () +
~v(0)v(a), then z'(0) = g(ap) and we may take w = ¢’ ().

Then

2N’ (0)w + A" (0)d:
= 2f22({(0), 0)g(0)q (o)
+ fzaz(C(0), 0)g(ao)g(an)¢ (o)
+ faz((a0),0)z" (0)¢" (0) £ 22 (¢(0),0)¢" (0)

:pl( )7
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where

(23) p(a) = fo(¢(a),0)2"(0) + fou(C(a), 0)g(a)g(e) £ 2f.(¢(a),0)

and we have + in Case 1 and — in Case 2.

All we have to show is that 9;(ag)(p'(a0)) # 0. First note that
differentiating f(x(e),£€?) = 0 twice with respect to €, and setting
e =0, gives

f2(C(0),0)2"(0) + faz (C(a0), 0)2'(0)2"(0) £ 2£u(C(e0), 0) = 0.

Thus p(ap) = 0.

Hence,
$1(00) (7 (0)) = (1 (2) (p(0)) e

But, using (23) and observing that R(f.({(«),0)) € N (¥1(a)) and
$1(@)(fea(C(a), 0)g(a)g(a)) = 0,

Y1(a)(p(a)) = £2¢1(a)(fu({(a),0)) = £244 ()

so that ¢1(a0)(p'(@0)) = £2A1(a0) # 0.

So, by the lemma, f,(z(¢),+e?) is invertible for ¢ # 0 sufficiently
small and the proof of Theorem 2 is completed. O

4. The case of a single homoclinic orbit with a two-
dimensional nullspace. Let g : R* — RF be a C° function such
that (A1) is satisfied and such that

(A4) System (2) has a solution @(t) with |¢(t) — x| — 0 as [t| — oo;

(A5) The variational equation (3) has a two-dimensional subspace of
bounded solutions;

(A6) If the subspace of bounded solutions of (3) is spanned by ¢'(t)
and v(t), then the equation

& =g'(¢(t)z + g" (6(t))v(t)v(t)

has no bounded solution.
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As in Section 2, it follows from (A4) and (A5) that the adjoint
equation

(24) & =—g'(o(t))x
has a two-dimensional subspace of bounded solutions. Let this subspace

be spanned by v (t),¥2(t). It follows from (A6) and Lemma 4.2 in
Palmer [5] that

(25) / B ()g" (B(0))u(e)u(t) dt # 0

for i =1 or 2. Assume without loss of generality that ¢ = 2. Then, if
we replace ¥ (t) by ¥1(t) + Bia(t), where

p=- 1 N U1 (t)g" (6(t))v(t)v(t) dt / [ b i) g (6(t))v(t)v(t) dt,
we see that

(20 | wiod @wrouw o

THEOREM 3. Let g : RF — RF be a C° function satisfying (A1),
(A4), (A5), (A6), and let ¥1(t),v2(t) be linearly independent bounded
solutions of (24) such that (26) is satisfied. Let h : R x R* x R be a
C® function, bounded together with its derivatives and T'-periodic in its
first variable. Define A; : R — R, i=1,2, by

Ai(a) = —/_oo WF(t + a)h(t, 6t + @), 0) dt.

Suppose, for some aq,
AI(QO) =0, A,1(040) #0, A2(a0) #0.
Then if As(an)/ [T w3 ()g" (o(t))v(t)v(t)dt > O (respectively < 0)

sufficiently small, the period map of equation (1) has ezxactly two
transversal homoclinic points whose orbits under the period map lie



TRANSVERSAL HOMOCLINIC POINTS 1115

near that of ¢(ag) and, for p < 0 (respectively > 0) sufficiently small,
it has none.

PROOF. We apply Theorem 2, taking & = CY(R,RF), F =
C°(R,R*) and defining f : £ x R — F by

[f (2, w](t) = () — g(x(t)) — ph(t, z(t), p)-

It is clear that f is C® and that, for y in &,

[fe (@, )y)(8) = ' () = [9' (2()) + phe (E 2 (1), w)]y(2).

We see also that f(¢(«),0) = 0, where ((a)(t) = ¢(t + o),
[L(@)y)(t) = [f2(¢(@), 0)y](t) = ¥'(t) — 9" (8t + ))y(®)-

As in the proof of Theorem 1, we can show that L(«) is Fredholm
of index zero with dim N (L(«)) = 2. Also, we see that N(L(«a)) is
spanned by ¢'(- + ), v(- + @) and p(-) € R(L(«)) if and only if
2 it + a)p(t)dt = 0 for i = 1,2. So, if we define ¥;(a) € F*
for i = 1,2 by ¢;(a)(p) = [~ ¥} (t + a)p(t) dt, ¢; depends C° on a
and R(L(a)) = N(¢1(a)) NN (¢h2())-

From the proof of Theorem 2, we see that fu.({(a),0)wiws €
R(L(a)) if wy = (@) and wy = '(a) or v(- + ). But (A6) tells
us that

$a(a)(fax (C(a), 0)v(-+a)u(-+a)) = —/joi/fé(t)g"(¢(t))v(t)v(t) dt # 0,

so that fz(¢(a),0)v(- + @)v(- + a) ¢ R(L(«)). Moreover, it follows
from (26) that 1 (a)(fzz(¢(a),0)v(- + a)v(- + a)) = 0.
Now

[Fu(C(@), 0)](£) = —h(t, ¢(t + ), 0).
So, for i =1, 2,

@00 = = [ e+ )bt ot -+ ), 0) e
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Then, by Theorem 2, if
2A2(a0)// ¥3(t)g" (o(t))v(t)v(t) dt > 0 (respectively < 0),

for p > 0 (respectively < 0) sufficiently small, equation (9) has exactly
two solutions z1(u), z2(u) near ((ag) and for p < 0 (respectively > 0)
it has no such solutions. Moreover, f(x;(1),p) is invertible for p # 0.
Then the conclusions of the theorem follow as in the proof of Theorem
1.0

APPENDIX

Let £, F be Banach spaces, and, for « near ap, let L(a) : £ — F be a
Fredholm operator with index and dimension of nullspace independent
of a. Suppose also that L(a) is C*.

Let Py, Qo be projections such that
R(Py) = N(L(ao)), R(Qo) = R(L(a)).
Now z € N(L(a)) if and only if
(27) L{ao)z = {L(ay) — L(a)}e.

We can write x = u + v where u € R(F,), v € N(Fp). Then equation
(27) is equivalent to the two equations

QoL(ao)v = Qo{L(ao) — L(a)}(u +v)
(I = Qo){L(a0) — L(a)}(u + v) =0.

Now QoL(a) : N(Py) — R(Qop) is invertible, and so M(a) =
QoL(cap) — Qo{L(w) — L()} : N(Py) — R(Qy) is also invertible if
a is near oy. Moreover, M(a)~! is C* in a. Hence, we may solve
(28) to get v = M(a)™'Qo{L(ao) — L(a)}u = N(a)u. This shows
that N(L(a)) € N(L(ap)) + N(a)(N(L(ap))). But, if a is near ayp,
|N(a)] < 1 and the subspace on the right has the same dimension as
N(L(a)). Since dim N (L(a) = dim N (L(ayp)), we must have equality.

Then P(a) = (I + N(a))Py is a projection such that R(P(«a)) =
N(L(a)) and P(a) is C* in a. Note this also enables us to choose a
C* basis for N'(L(a)).

(28)
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It follows, from Kato [4, p. 234], that L(a)* : F* — £* is Fredholm
with AN(L(a)*) equal to the annihilator of R(L(«a)). Also L(a)* is C*
in a. By what we have just proved, we can choose a C* basis () for
N (L(a)*) so that R(L(a)) = NN (¢;()).

Now F = R(L(a))®N(Qo) if o is near ap. Let Q() be the projection
with R(Q(«)) = R(L(a)) and N (Q(a)) = N(Qp). We show Q() is
C*. Let v1,vy,... be a basis for N(Qp). Then we may write

Qa)y =y — Zw(a)(y)vj

where v;(a) € F*. All we have to show is that each 7;(«) is C*. Now,
for all ¢ and y,

0=¢i(a)(y) - Z bi(@)(v)7; (@) (y)-

So, for all 7 and «,

Z¢i(a)(vj)7j(a) = ¢Yi(a).

Now the matrix [¢;(a)(v;)] is invertible since R(L(c)) NN (Qo) = {0}
and everything is C* in a. So 7;(a) is also C* in a.
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