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1. Introduction. Deterministic modelling in the biological sciences
often leads to ordinary differential equations defined on the state
space R, each coordinate representing the population density of a
component or “species” of the system. If only the relative population
frequencies are of interest, or some conservation of total mass holds,
then the state space reduces to the probability simplex S, = {x €
R” : > x; = 1}. Often the boundary and hence the interior of the
state space R} or S, is invariant under the flow as in ecological models,
meaning that a species absent at time 0 will not appear at any future
time. This leads to ecological differential equations

(1) i; = @i fi(x).

This is not true, however, for more general models, as in population
genetics (selection models including mutation, recombination, or dif-
ferential fertilities), epidemiology, ecological models with migration, or
chemical reaction kinetics. Here R’ (as well as its interior) is only
forward invariant, i.e., if x;(0) > 0 (respectively > 0) for all i, then
z;(t) > 0 (respectively > 0) for all £ > 0. Then bd R} is not invariant
but “semipermeable.” If the state space is strictly forward invariant
(the flow being transverse to the boundary) then Brouwer’s degree the-
ory implies that the sum of the indices over all (interior) fixed points
equals +1. Quite often, however, part of the boundary is invariant.
Then some of the boundary fixed points have to be included in this
index theorem.

We first single out these special boundary fixed points, which we call
saturated fixed points. In §2 we describe some elementary properties
and state the index theorem under the assumption that all of them are
regular. The proofs are given in §3. In §4 a generalization to isolated
fixed points is indicated, using the concept of the boundary indezx. This
also allows an extension of the Poincaré-Hopf theorem to semiflows on
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manifolds with boundary, with singularities allowed on the boundary.
We conclude with some applications to mathematical ecology, to game
theory, and to mathematical programming.

2. Saturated fixed points. Consider a semiflow on the nonnegative
orthant R’} which is given by a C ! vector field

2) x = F(x).

We make two assumptions.

(A1) RY is forward invariant. By a well-known invariance principle
(see Amann [1, p. 240]), this holds if and only if

(3) Ii:0:>Fi(X)ZO

holds for all: =1,...,n.

(A2) The semiflow generated by (2) is dissipative (see Hale [8]), i.e.,
there exists a compact set K C R’} such that, for all x € R}, there
is some time ¢(x) such that x(¢) € K holds for all ¢ > #(x). The set
K+ = U;>oK(t) is then compact, forward invariant, and absorbing for
the semiflow on R’}. An equivalent statement is that the solutions of
(2) are eventually uniformly bounded: there exists a constant k& > 0
such that

limsupz;(t) < k

t—+oo
holds for all x(0) € R’}. This assumption also guarantees the existence
of the solutions x(t) for all positive times ¢ > 0 so that (2) actually
defines a (global) semiflow.

Let now X be a fixed point of (2). Let I = {i : T; = 0} and J be its
complement, the support of X. We compute now the Jacobian DF(X)
of (2) at X. Since, for i € I and j € J, (3) implies F;(X+te;) > 0 for ¢
in a neighborhood of 0 (here e; is the jth unit vector in R™), we obtain

OF; _ . .
(4) (9:vj(x)_0’ iel,jed.
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Moreover,

OF;
(5) -

(X) 20, i,jel,i#],

since F;(x + te;) > 0 for ¢ > 0. Hence, after a rearrangement of the
indices and taking I = {1,2,...,k}, the Jacobian matrix at X reduces
to the block triangular form

(® rw = (§ &)

where the k X k matrix A is quasimonotone, i.e., its off-diagonal terms
aij, % # j, are nonnegative. We call A the external part, and C, the
restriction to components present at X, the internal part of the Jacobian
matrix (6). In the case of ecological equations (1), A is a diagonal
matrix, A = diag (f;(X)). Since A can be written as A = A’ —cl,
with A’ a nonnegative matrix, ¢ € R and 1 the identity matrix, the
Perron-Frobenius theory applies. In particular, the stability modulus
s(A) = max{Re X : A an eigenvalue of A} is itself an eigenvalue of A
and there is a nonnegative eigenvector associated with it.

DEFINITION. X is said to be a (strictly) saturated fixed point of (2) if
all eigenvalues of the external part A = (8F,- / 8acj)i,j cr of the Jacobian
at X have nonpositive (respectively negative) real part, i.e., s(A) <0
(respectively s(A) < 0).

The term “saturated” reflects the intuition that, since all external
eigenvalues are stable, none of the missing species ¢ € I can invade the
system at X. In order to decide whether a fixed point X is saturated,
the following results from the theory of M-matrices are useful (see [3]).

LEMMA 1. For a quasimonotone k X k matrix A, the following
conditions are equivalent:

(a) A is stable, i.e., s(A) < 0.

(b) The leading principal minor of A of order i has sign (—1)¢, for

i=1,2,...,k.
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(c) The inverse matriz A~ exists and has nonpositive entries only.
(d) There is a positive vector p > 0 such that Ap < 0.

If A is also irreducible, then the following are equivalent:

(a') A is semistable, i.e., s(A) < 0.

(b") The leading principal minor of A of order i has sign (—1)* or 0,
fori=1,... k.

Therefore, an efficient way of checking whether a fixed point X is
saturated is the following. Ome splits the external part A into its
irreducible blocks and computes the sign of their leading principal
minors. For an ecological equation (1), these irreducible blocks reduce
to the diagonal entries f;(X). In this case X is saturated if and only
if f;(X) < 0 holds for all ¢ € I. If X > 0 is a fixed point in int R,
then I = @ and there is no external part. Such a fixed point is always
saturated.

The importance of saturated fixed points is summarized in the fol-
lowing two theorems which will be proven in the next section.

THEOREM 1. If a solution x(t) € int R"} of the semiflow (2) converges
to a point X as t — +00, then X is a saturated fized point. Conversely,
if X is strictly saturated, then there exists at least one solution x(t) €
int R such that lim;_, o x(t) = X.

THEOREM 2. (“Index theorem”). Ewvery dissipative semiflow on R}
(i.e., an equation (2) satisfying both (A1) and (A2)) admits at least one
saturated fized point. Moreover, if all saturated fixed points are regular,
the sum of their indices equals +1.

Recall that a fixed point X is said to be regular if the Jacobian
DF (X) is nonsingular. The index of X is then defined as the sign of the
determinant of —DF(X). Note that the minus sign is included here for
convenience so that a stable fixed point gets index +1 in any dimension,
in contrast to the classical definition in [16].

A simple consequence of these theorems is the following. If the
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dissipative semiflow (2) has no interior fized point, then there must
be at least one saturated fixed point on the boundary. If, in addition,
this point is strictly saturated (which should be the “generic” case),
then at least one interior solution must converge to the boundary.

This has obvious applications to the problem of persistence of species
which will be briefly discussed together with other applications in the
last section. A flow on R? studied by Butler and Waltman [5] shows
that the above result is in some sense the best possible: Their flow has
no interior fixed point, yet an interior limit cycle attracts all orbits in
int Ri, up to just one orbit which converges to a (strictly) saturated
fixed point on the boundary.

However, as F. Zanolin pointed out to me, on can modify the examples
by Wilson [19] to construct dissipative flows on R’} with no interior
fixed point, where every interior orbit has its w-limit in int R%}. One
can give such examples even with a unique saturated (but not strictly
saturated) fixed point on the boundary.

3. Proofs of Theorems 1 and 2. Let X be a fixed point of (2)
and I,J as defined above, and assume again I = {1,2,...,k}. Then
the first k equations of (2) may be rewritten as

k
(8) T; = Zaij(x)mj +d,($1,6,$n)
j=1

Here
di(mlv"'axn) = Fi(ov"'aoaxk-l-la"'vxn)

and

aij(azl,...,mn) =
== (Fi(O,...,xj,wj+1,...,xn)—Fi(O,...,x]-H,...,wn))/wj
inductively for j = k,...,1. Since F; € C*(R"), the a;;(x) is still
continuous on bdR7 and C' in the interior of RY}. With z =

(1,...,2x) and x = (21, ..., x,) for short, we can rewrite (8) as

(9) &= A(x)z + d(x).
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From (3) we see again that, for ¢,j € I,d;(x) > 0,d;(X) = 0, and
a;j(X) > 0 for ¢ # j. Of course A(X) equals the external part A of the
Jacobian at X.

Proor OF THEOREM 1. Suppose X is not saturated. Then there
exists a positive eigenvalue A > 0 and a nonnegative left eigenvector
(i.e., arow vector) v > 0 of A = A(X) : vA = \v. Rearranging indices,
we may assume v; > 0 for ¢ = 1,...,m and v; = 0 for ¢ > m. Here
m < k. Then (8) implies, for i = 1,...,m,

(10) T :Zaij(x)mj+Fi(O,...,O,wm_,_l,...,xn).
j=1
From (3) we get

(11) Zvii?i > Z viaij(x)xj >0
i=1

ij=1

for x € int R} sufficiently close to X, since }_, v;a;;(x) > 0 for each 1.

Suppose now that an interior orbit x(t) converges to X as t — +oo0.
Then, for large ¢, (11) will hold along the orbit, meaning that v(z) =
> v;z; increases finally. This is a contradiction, as z;(t) — 0 for all
i€l

Conversely, if X is strictly saturated, then the external part A is
stable. The stable invariant subspace of the linearized vector field at
X is then an (at least k-dimensional) linear subspace transverse to the
subspace {x € R" : z; = 0 for ¢ € I'} in R™. Hence the stable manifold
of X, being tangent to that linear subspace, meets int R"}. O

For the proof of Theorem 2 we need the following Lemma.

LEMMA 2. A wvector field x = f(x) on R™ which gives rise to a
dissipative semiflow has degree +1 with respect to any bounded open set
containing all its fixed points.
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Here the degree is the classical Brouwer degree of a function f: U C
R" — R", that is,

deg(f,U) = > {ind(X):X € U, f(X) = 0},

if 0 is a regular value of f (see [1, 16]), up to our different normalization
(see the remark after Theorem 2).

PROOF. Let K be a compact set which contains all w-limits of the
orbits in R™ in its interior. Define 7(x) as the time of the first entrance
into K:

(12) 7(x) = inf{t > 0: x(¢) € int K}

The function 7(x) is defined for all x € R", and the continuity of
t — x(t) implies that 7 is upper semicontinuous and therefore locally
bounded. Let

T =max{r(x):x € K}

be the maximum time for orbits leaving K to return to K. Then the
set

KT ={x(t):x(0) € K,0 <t <T}={x(t) : x(0) € K,t >0}

is compact and forward invariant.

Consider now a ball B D K*. The entrance time 7 will again attain
an upper bound 73 on B. We consider now the homotopy

f(x), t=0
13 h(x,t :{x x
(13) (x,t) (t)t (0), £> 0.

Clearly h(x,t) # 0 for all x € bd B and ¢ € R since there are neither
fixed points nor periodic points on bd B. Therefore the degree of the
vector field x — h(x,t) with respect to B is defined for all ¢ > 0 and
is independent of ¢. For ¢t > T}, h(x,t) points inwards on bd B and so
its degree is +1. Hence the degree of the vector field x = f(x) with
respect to B (or any other open bounded set which contains K or at
least all fixed points) equals +1. 0



1024 J. HOFBAUER

PrROOF OF THEOREM 2. We consider a small perturbation of (2) by
adding a small inward flow,

(14-¢) &; = Fi(x) + g:p(x).
Here, either ¢ = (e1,...,€,) is an n-vector of positive numbers or
€ =¢ = --- =gy, > 0 for simplicity. The function p(x) will be

chosen as follows to retain the dissipativity for (14-¢). Let K C R}
be a compact forward invariant set for (2) which contains the w-
limits of all orbits x(t) > O in its interior (relative to R’). Denote
K(t) = {x(¢t) : x(0) € K}, and let

(15) Q=K CintK
>0

be the global attractor of the semiflow. Now choose p as a nonnegative
C*-function on R’ such that p(x) > 0 for x € Q and p(x) = 0 for
x ¢ K. Then the solutions x°(t) of (14-¢) coincide with those of (2)
as long as they are outside K. Hence K is absorbing and forward
invariant for (14-¢) as well. The attracting sets 2. for the semiflows
(14-¢) are then contained in K NintR%. Let B = {z € R} : z; < b}
be a box which contains K. Then for every € > 0, the degree of
the vector field (14-¢) with respect to int B is 1, as Lemma 2 shows.
(The semiflow there is defined on R™, and (14-¢) a priori only on
R, but it can be extended to an open neighborhood of R/ which
is homeomorphic to R™). Therefore (14-¢) has at least one fixed point
X(e) € int B C int R, and if all fixed points of (14-¢) are regular then
the sum of their indices is 1. In order to complete the proof of Theorem
2 it remains to show the following two assertions.

(A) A limit point X of fized points X(¢) of (14-¢), ase — 0, is a
saturated fized point of (2).

(B) If X is a regular, saturated fized point of (2), then its unique
continuation X(g) to a C* family of fived points of (14-€) yields fized
points X(¢) € int R” for e > 0.

ProoF OF (A). Suppose the fixed points X(g) of (14-¢) accumulate
at X as ¢ — 0. If X is not saturated we proceed as in the proof of
Theorem 1. Take v > 0 with v; > 0,7 = 1,2,...,m, and VA = Av,
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A > 0. (14-¢) can be written as

(16) T; = iaij (x)z; + F5(0,...,0,Zmq1,- -, Tpn) + ep(x).
j=1

And (11) shows that

(17) i via;j(x)z; > 0

,j=1

holds for x in a neighborhood of X. On the other hand, at x = X(¢),
(16) implies

Zaij(x)%‘ = —Fi(x) —ep(x) <0

for i =1,2,...,m, which contradicts (17). Hence X is saturated. O

Proor OF (B). If X is a regular fixed point of (2) in R}, there exists
a unique C! family X(¢) of fixed points of (14-¢), in a neighborhood of
R’ by the implicit function theorem. In the notation of (9), X(¢) is
then a solution of the system of & nonlinear equations

(18) A(x)x +d(x) + ep(x) = 0.

Since the external part of the Jacobian of (2) at the strictly saturated
fixed point X, A(X), is a stable quasimonotone matrix we have, by
Lemma 1(c), —A~! > 0. Hence, the vector

ot = —A"Y(d(R) + ep(%))

in R* has all entries positive as d(X) = 0 and p(X) > 0. By continuity,
the fixed point x = X(e) which satisfies (18) and hence

2= —A(x)Hd(x) + ep(x))

is still positive for small € > 0. O

4. The boundary index. Theorem 2 assumes that the saturated
fixed points are all regular. In an attempt to relax this condition we
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consider now an isolated fixed point X € Rt. Let U be an isolating
neighborhood of X and U, = U NR. Then, for small perturbations
gi(x) > 0, the vector field #; = F;(x) + ¢;(x) will not have fixed points
on bdU,, so that its degree is well-defined and depends neither on
the perturbation (because they are all homotopic) nor on the isolating
neighborhood. We call this the boundary index of X for the given vector
field (2):

(19) bd—ind (X) = deg(F(x) + &(x), U4 ).

If X is not saturated then bd—ind (X) = 0, since, by assertion (A) of
§3, the perturbed field has no fixed point near X in R. Assertion (B),
on the other hand, shows that, for a regular saturated fixed point X,
bd—ind (X) = ind(X) = +1 or —1. For saturated fixed points which
are not regular, the boundary index generally differs from the index,
however. A simple example is the vector field #; = —z? on R for
which the origin 0 has boundary index +1 but index 0.

It is obvious that, with the boundary index, Theorem 2 extends to the
case that all saturated fixed points are isolated. The theorem also easily
extends to dissipative semiflows on differentiable manifolds M with
corners, as treated in Michor [15]. Such manifolds are, by definition,
locally diffeomorphic to open subsets of R'}. Hence the concepts of a
saturated fixed point and the boundary index extend via charts to this
situation. The sum of the indices then equals the Euler characteristic
X(M) of the manifold M (which must be finite if such a dissipative flow
exists on M).

5. Applications. We conclude by indicating several applications
of the index theorem. The first three concern the special case where
bd R is actually invariant, so that the vector field is of the form (1),
where the proofs of Theorems 1 and 2 simplify considerably (see [13,
Chapter 19]).

5.1. Persistence of ecological systems. An ecological system modelled
by a dissipative equation (1) or (2) has been called weakly persistent,
respectively persistent [7], if, for all interior orbits x € int R},

(20) lim sup z;(t) > 0,

t—+o0
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respectively
(21) ltlin-q}&f z;(t) > 0,
holds for all ¢ = 1,2,...,n. Furthermore, uniform persistence [4] or

permanence [12, 13] means the existence of a constant ¢ > 0 such that

(22) ltlin+1{.10f z;(t) > ¢

holds for all x(0) > 0. It has been observed several times that uniform
persistence implies the existence of an interior fixed point. Actually,
the easiest way to prove this seems to be to apply Lemma 2 above, after
mapping int R"} diffeomorphically onto R", e.g., with (z;) — (logz;).
The results of §2 allow us to extend this result to robustly weakly
persistent systems. These are systems of the form (1) or (2) which
remain weakly persistent after a small C! perturbation of the vector
field (within the class described by assumption (Al)). Without the
robustness assumption this need not be true, however, as was pointed
out at the end of §2.

THEOREM 3. If a system (1) or (2) is robustly weakly persistent, then
it has an interior fized point. Moreover, deg(F(z),U) = 1 for every
open set U with U C int R"} which contains all interior fized points.

PRrROOF. We note first that there is no saturated fixed point on bd R} .
Indeed, if x were such a rest point with s(A(x)) < 0 then, by a suitable
perturbation, x would become strictly saturated, i.e., s(A(x)) < 0
(replacing just those F;(x) with ¢ € I by Fi(x) — ex;, with ¢ > 0
small, will do). Together with Theorem 1 this contradicts the weak
persistence of the perturbed system.

Therefore, the set S of saturated fixed points of (2) is a compact
subset of int R"t. Let U be any open neighborhood of S with U C
int R, Then assertion (A) above implies that, for ¢ > 0 small enough,
(14-¢) has no fixed point in R’} — U, so that, by homotopy,

deg(F(x),U) = deg(F(x) +ep(x),U) = deg(F(x) +ep(x),int R} ) =1

This implies also the existence of an interior fixed point. O
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In the case of Lotka-Volterra equations, i.e., f;(x) = r; — (Ax); in
(1), a variation of Theorem 3 leads to explicit characterizations of
permanence and robust weak persistence in low dimensions n = 3,4
(see [10, 13]).

5.2. Game theory. A classical situation in game theory, see Owen
[17], is that each of the two players has a set of available tactics
FEy, ..., FE,, respectively Fy,..., F,,, which he is allowed to play with
certain probabilities x1, ..., x,, respectively y1, ..., ¥mn- In a contest of
E; versus F}, the payoff for the first player is a;; and for the second b;;.
If mixed strategies x € S,,,y € S, are played, the respective payoffs
are xX - Ay = inaijyj and y: Bx = Zyjbﬂxl

A pair of strategies (p,q) € S, X Sy, is said to be a Nash equilibrium
for the bimatriz game (A, B) if

(23) V(x,y) €Sp xSm, P-Agq>x-Aq and q-Bp>y-Bp;

this means that p is a best reply to q and q is a best reply to p.

THEOREM 4. FEvery bimatrix game has a Nash equilibrium. For
generic payoff matrices (A, B) the number of Nash equilibria is odd.

This classical and well-known theorem, which, in game theory, is
usually proven by constructive algorithms, is a simple corollary of our
index theorem. The key is to associate to the game (A,B) a certain
differential equation on S,, X S,,, namely, its standard evolutionary
dynamics [13, Chapter 27]:

(24) @i =x((Ay)i —x-Ay), 7 =y;((Bx); —y-Bx).

This equation is a special case of (1), and it is easy to check that the
saturated equilibria of (24) are precisely the Nash equilibria of (A, B).

5.3. Complementarity problems. Given a function f : R} — R", the
complementarity problem is to find a solution of x > 0,f(x) > 0 and
> x;fi(x) = 0. In our terminology solutions x of the complementarity
problem are thus precisely the saturated fixed points of the ecological
equation

(25) & = —x; fi(x)
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on R . This complementarity problem was introduced in mathematical
programming in order to unify different problems like computation of
optimal solutions, game theoretic equilibria, or economic equilibrium
theory. (See [14] for a survey.) Of particular interest is the linear
complementarity problem, where f(x) = Mx + q. It consists in
finding the saturated equilibria in Lotka-Volterra equations. There,
a rather complete answer is possible, see [11]. Here we concentrate on
the nonlinear case and present one typical (though admittedly weak)
existence result as a consequence of Theorem 2 above. Stronger results
may also be obtained with degree methods, see [18].

THEOREM 5. Let f be C', and assume that x-£(x) > 0 holds for large
x > 0. Then the complementarity problem has at least one solution. If
all solutions are reqular, then their number is odd.

PrOOF. The assumption implies that S(x) = Y z; is a strictly
decreasing Lyapunov function for large x for (25). This shows that
(25) is dissipative and Theorem 2 applies. O

5.4. Magration models. One of the simplest models describing the
dispersion of a single species among n patches is given by

(26) ;= Izgz(mz) + Zdijwj — (Zdﬂ>m’

J#i J#i

Here z; is the density of the species in the ¢-th patch, d;; > 0 is the
migration rate from patch j to patch ¢, and G ;(z;) is the growth rate
in the i-th patch.

We assume that the dispersion matrix (d;;) is irreducible, that the
basic growth rates r; = G;(0) > 0, and G ;(z;) < O for large x;. The
following theorem, which improves a result in [2], was also proved in
Freedman and Takeuchi [6].

THEOREM 6. Under the above assumptions, (26) has a positive
equilibrium X € int R'.. If, furthermore, Gi(x;) < 0 for x; > 0, for
all i, then X is unique and globally stable.
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PROOF. First observe that
n n
Z T; = ing i(x4).
i=1 i=1

This is negative for large z; which shows that (26) is dissipative. For
small z; ~ 0, this is approximately »_ z;G;(0) > 0, which shows that
0 is not saturated (e.g., by Theorem 1). Since, by irreducibility of the
matrix (d;;),0 is the only fixed point on bd R, the index theorem
implies the existence of a fixed point X € int R’}. Now compute the
Jacobian matrix J(X) at such a fixed point X:

J(X)ij = (ng;(ml) +Gi(z;) — (dei>)5ij + dij (1 — di5).

ki
Then
(J(®) )i = Y J(R)i%;
j=1
= 276 (i) + @G i) + Y dijaj — (Z dki)wi
A KA

= z3G(z;) <O0.

Hence, J(X) - X < 0 and Lemma 1(d) shows that the quasimonotone
matrix J(X) is stable. In particular, ind (X) = 1 holds for any interior
fixed point X of (26). The index theorem then implies uniqueness of X.
Since (26) is a cooperative system in the sense of Hirsch [9], uniqueness,
local stability and dissipativity together give global stability of X. O

Acknowledgment. I am indebted to J. Franks, Y. Takeuchi and F.
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