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ABSTRACT. A theorem on convergence of row sequences
of Padé approximants for functions which are meromorphic
in a disk was established by de Montessus in 1902. Stahl,
in 1976, proved a companion theorem on divergence of these
sequences outside the disk. In 1984, we extended de Montes-
sus’s theorem to the case of convergence in a disk of a row
sequence of vector-valued approximants (simultaneous Padé
approximants). Here, we establish the associated divergence
results for these approximants outside the disk under virtually
identical conditions.

1. Introduction. The famous convergence theorem of R. de Montes-
sus de Ballore [12] for a row sequence of Padé approximants has become
a result of considerable interest and generalization. Recently, attention
has been directed to theorems containing generalizations of the inter-
polation set [13, 20, 21, 18], to inverse problems [4, 5, 9, 2], to
associated divergence results [14, 17, 18] and to the adaptability of
the theorem to vector-valued rational interpolation [11, 6, 16].

We discuss here the scheme of vector-valued rational interpolants
whose confluent forms are also known as simultaneous Padé approzi-
mants. The polynomials constituting the vector-valued rational inter-
polants are also familiar as solutions of the German polynomial ap-
prozimation problem [10]. Simultaneous Padé approximation involves
approximation of several functions {f;(z)}% , which are analytic at
z = 0 by rationals of the form {Py ;(2)/Qn(2)}¢ ,, where the denom-
inator polynomial @y (z) is common to each of the d components. Let
nonnegative integers pi, p2,...,pq be given, such that 2?21 pi = M.
It is well known that nontrivial polynomials {Py;(2)}¢; and Qn(2)
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can be found with the properties

(1.1) MPyni(z)} <N —pi, i=1,2,...,d
(1.2) HAn ()} <M
(1.3) PN,i(z) —QN(Z)fl(Z) :O(ZN+1), 1= 1,2,... ,d

for each N > M. We define a vector numerator polynomial by

(1.4) Py (2) := (Pni(2), Pn2(2),--. ,Pna(2))

and take the vector of given functions to be

(1.5) £(2) := (f1(2), f2(2), - - -, fa(2)).

Thus, whenever Qx(0) # 0, we immediately have a solution of the

vector-valued Padé approximation problem, satisfying the characteris-
tic accuracy-through-order property that

(1.6)

This property (1.6) pertains to osculatory rational interpolation at
the origin, whereas vector-valued rational interpolation includes inter-
polation on a more general point set. In the latter case, for each positive
integer N, we are given an associated point set

(17) SN = {/BN,iy Z.ZO,].,...,N:BNJ ES},

and we require that Sy C S for some given compact set S C C. A
rational fraction Py (2)/Qn(z) composed from polynomials Py (z) and
Qn(z) satisfying (1.1), (1.2), (1.4) and

(18) PN(ﬁN,Z)/QN(ﬁN,Z) :f(/BN,i)v iZO,l,...,N,

in the Hermite sense, is called a vector-valued rational interpolant to
f(z) on the point set Sy. Newton-Padé approximation [3] is the name
given to rational interpolation schemes specified by (1.7), (1.8) in the
special case where 8y ; = f;, independently of V.
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An extension of de Montessus’s theorem to the simultaneous Padé
approximation problem was discovered by Mall [11]. Convergence the-
orems for vector-valued Padé approximants and vector-valued rational
interpolants were derived by Graves-Morris and Saff [6]. The present
paper contains an account of divergence properties for cases considered
in [6], and so [6] is a natural introduction to and logical precursor of
the present paper. We refer to it for motivation for the present study
and for the background references.

The condition of polewise independence was introduced in [6] to
ensure that the functions f1, fa,..., f4 are significantly different from
each other, and it has subsequently been exploited by van Iseghem
[16]. This condition is imposed to ensure that degenerate cases and
degenerate limiting cases are avoided.

Definition 1.1. Let each of the functions fi(z), f2(2),..., fa(z) be
meromorphic in the disk Dg := {z : |z|] < R}, and let nonnegative
integers p1, p2, ..., pg be given for which

d
(1.9) > pi>o0.
=1

Then the functions f;(z) are said to be polewise independent, with
respect to the numbers p;, in Dpg if there do not exist polynomials

m1(2), m2(2), - .., m4(2), at least one of which is nonnull, satisfying
(1.10a) M{mi(z)} < pi =1, if p; > 1,
(1.10b) ’/T,'(Z) = O, if Pi = 0

and such that .,
®(z) := Zﬂ'i(z)fi(z)
i=1

is analytic throughout Dp.

Using this condition, the following theorem was proved [6]:

Theorem 1.1. Suppose that each of the d functions fi(z), f2(z),. ..,
fa(z) is analytic in the disk Dg := {z : |z| < R}, except for possible
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poles at the M (not necessarily distinct) points z1,z2,...,20m in Dg
which are different from the origin. (If zx is repeated exactly p times,
then each f;(z) is permitted to have a pole of order at most p at zy.)

Let p1, pa, ..., pa be nonnegative integers such that
d
v=Y0
i=1

and such that the functions f;(z) are polewise independent in Dgr with
respect to the p;’s in the sense of Definition 1.1. Then, for each integer
N sufficiently large, there exist polynomials Qn(2), {Pni(2)}¢, sat-
isfying (1.1),(1.2) and (1.6) where Py (z) and £(2) are defined by (1.4)
and (1.5).

The denominator polynomials (suitably normalized) satisfy

M
(1.11) Jim Qn(2) = Q(2) = [[(z-=2), vzecC.
j=1
Let Dy, := Dg — Uj]‘/il{zj}. Then
(1.12) ngn Py(2)/Qn(2) =f(z), Vze Dp,

the convergence being uniform on compact subsets of Dy. More pre-
cisely, if K is any compact subset of the plane,

1
(1.13) limsup [Q — QY < — max{|z} < 1,
N — o0 R j=1
and iof E is any compact subset of Dy,
(L14)  lmsup|fi - Prg/QullE" < lslls/R <1
—00

fori=1,2,...,d.

In (1.13) and (1.14), the norm is taken to be the sup norm over
the indicated set. In the present paper, we are primarily concerned
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with divergence results which can be established under very similar
hypotheses.

Stahl [14] proved a divergence theorem for row sequences of Padé
approximants, and his result is a natural counterpart to de Montes-
sus’s theorem as originally stated. Wallin [17] showed that analogous
convergence and divergence results hold when Padé approximation is
generalized to Newton-Padé approximation.

Kakehashi [7] showed that divergence results can be established for
the very general polynomial interpolants based on the scheme (1.7),
provided that this point set satisfies a strong regularity property.
Wallin [18] established a generalization of de Montessus’s theorem, in
which interpolation on the latter point set is used.

We state next our main theorem about divergence of simultaneous
Padé approximants. It is expressed as a natural extension of Stahl’s
theorem [14]. We give its proof in Section 2. In Section 3, we state its
generalization to an interpolation set which satisfies Kakehashi’s strong
regularity property.

Theorem 1.2. Let {Pn(2)/Qn(2)} be a sequence of vector-valued
Padé approzimants to £(z), satisfying all the hypotheses of Theorem
1.1. If, for some i, fi(z) is not analytic at some point on Cg := {z :
|z| = R}, then the sequence {Pn(z)/Qn(2)} diverges at each point z
exterior to Cr, according to the rule

(1.15) limsup [Py (2)/Qn ()N = |2|/R, |2| > R,
N—o0

where | - | denotes any norm on the vector space C2.

The proof of Theorem 1.1 is based on the use of certain auxiliary
functions {Fj s}, and these functions are also central to the proof of
Theorem 1.2. They are specified in

Lemma 1.1. With the assumptions of Theorem 1.1, write the list

21,22, ..., 2m in the form {(x}}_,, where the (s are distinct and each
Cr is of multiplicity my, so that
M v

(1.16) Q) =[[G-2)=]](z—¢)™, > mp=M.
k=1

j=1 k=1
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Then, for each k = 1,2,...,v, and each s = 1,2,...,my, there exists
a function Fy, s(z) of the form

d
(1.17) Fr(2) = ZM(Z)J%(Z),

where the m;’s satisfy (1.10), which is analytic in Dy, except for a pole
of order s at the point (.

Naturally, the polynomials 7;(2) in (1.17) will, in general, depend on
k and s.

Lemma 1.1 is proved in [6]; as a consequence of it, we can write

Ik,s\Z
Frs(2) = ﬁ, E=1,2,...,v; s=1,2,...,mg,
where gi s(2) is analytic in |z| < R and nonzero at z = (;. These
conditions ensure that F} s(z) has a pole of precise order s at (.

It is tempting to speculate that Theorem 1.2 extends to rational in-
terpolation on distinct points and to Padé-type approximation. We
state a result which is a straightforward extension of Theorem 1.2 to
the case of rational interpolation, where the interpolation points satisfy
Kakehashi’s rule, in Section 3. We also give an example which shows
that divergence results for Padé-type approximation have a substan-
tially different character from those of ordinary Padé approximation.

2. A proof of Theorem 1.2. To set the scene and establish
notation, we begin with a preliminary lemma and then state two
lemmas due to Kakehashi. Then we give an inductive proof of Theorem
1.2 in two parts; part A is the initialization and part B is the inductive
step.

Lemma 2.1. Let {fi(2),i =1,2,...,d} be a set of d functions which
are analytic at the origin and meromorphic in the disk D := {z : |z| <
R}, where each f;(z) has poles of total multiplicity not greater than M
in Dg. Let {fi}gzl be polewise independent in Dgr with respect to the
given numbers p1, p2, ... ,pd, and let

(2.1) Bp :={Frs(2),k=1,2,...,v, s=1,2,...,my}
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be the set of elementary functions specified by Lemma 1.1 and formed
from {fi(2)}{;.
If one or more of the functions f; is nonanalytic on |z| = R, then

there is at least one function Fy, s in the set By defined by (2.1) which
is not analytic at some point on |z| = R.

Proof. Suppose the conclusion to be false, so that Br consists only
of functions which are analytic on |z| = R. Let V} be the linear space
of functions spanned by

-1 -1 -1
flazjiv"'azpl flaf2azjba"'azp2 jaa"'afdazjba"'azpd jﬁ-

Because {f;} are assumed to be polewise independent with respect to
p1,P2,-- -, Pd, the space V¢ has dimension M := Z?zl p;i- Since each
Fp s(2) lies in Vy, and the M elements {F}, ;} of Br are clearly linearly
independent, these functions form a basis for V. Therefore, numbers

() oxist such that

ck&
0

(2.2) fi2) =) ) cihFrs(2)
k=1s=1

for each i. Consequently, all f;(z) are analytic on |z| = R, contrary to
hypothesis. O

We use integers k, 3 to identify an element F; (2) in Bp with the
property that § is the least value of s for which Fj, ;(z) is not analytic
on |z| = R.

In the proof of Theorem 1.2, we use two preliminary results:

Lemma 2.2 [7]. Given a sequence of complex numbers {gn, n =
0,1,2,...} with the property that

(2.3) limsup |g,|'/" = R™*

n—ro0

for some R > 0, then the numbers {g,} may be expressed as

(2.4) In = Ancn/R™, n=0,1,2,...,
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where {\,} is a sequence of positive numbers, and {c,} is a bounded
sequence of complexr numbers, with the properties

(2.5) limsup |c,| =1
n—r o0
(2.6) nh_}n;o Ant1/An =1

and either 1 =X g <A\ <Ao< --- orl=X>A1 > Xy >--->0.

Remark. As Kakehashi observes, a simple consequence of (2.6) is
that

(2.7) lim A/ =1,

n—oo

Lemma 2.3 [8]. Suppose that g(z) is analytic in the annulus
A= {z : r < |z| < R}, but is not analytic on |z| = R, so that
g(z) has the Laurent expansion

(2.8) g9(z) = Z g;zl, z€A.

j=—o0

Then {g;} has the representation (2.4) for j > 0 with the properties
(2.5),(2.6). Let {h,(z), n=1,2,...} be a sequence of functions which
are analytic on Cr := {2 : |z| = R} and such that

(2.9) nILH;o hn(2) = h(z2)

uniformly on a closed region which contains Cr in its interior, with
h(z) # 0 for any z € Cg.

If hy,(2)g(z) has the Laurent expansion

(2.10) hn(2)9(2) = Z ’yJ(-")zj, n=1,2...,
j=—o00
then -
0 < limsup M < 00,
n—oo ATL

where {\,} satisfies (2.6).
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Proof of Theorem 1.2. We observe from (1.14) that, for each i =
1,2,....d,

limsup || Py, /Qn [l < 1,

N—o00

and, hence, from the Bernstein-Walsh lemma [19, p. 77], we obtain

limsup [Py (2)/Qn (2)[VY < |2I/R,  |2] > R.

N —o00

Hence, to establish (1.15) we need only show that

(2.11) limsup [Pn(2)/Qn ()N > |z|/R, |z| > R.

N —o0

This will be done in two parts.

A. Initialization. Assume that there exists an element Fj 1(z) in
Bp having a simple pole in |z| < R and which is not analytic on
|z| = R. Let pn,1(2) denote the N*! Maclaurin section of Qn (2) F 1(2),
possessing the accuracy-through-order property

(2.12) QN (2)Fia(2) = Bna(z) = 0"
and the degree bound (cf. (1.3) and (1.17))

(2.13) H{pna(2)} < N - L
Following [6], we define

(2.14) 9r1(2) = (2 = Gk) Fra(2),

and then g 1(2) is analytic in |z| < R. Substituting (2.12)—(2.14) into
Hermite’s formula, we obtain

ZN 1 1
(2.15) (2 — G)pnalz) = 1 /C <1 tN;) QN (B)gra(t)

_% t—=z

for any complex z and any R’ € (0, R). Now fix z with |z| > R. Set

(2.16) hmwF(tZ;?+)?T3
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Then

: . Q)
ngnoo hn(t) = h(t) := P
in some neighborhood of |t| = R and h(t) # O for all ¢ € Cg. From
(2.15) and (2.16), we find

(2.17) (2= Gpnalz) _ L/ hw(Ogra(®) 4
C

2N+1 T omi tV+1

Hence, the left-hand side of (2.17) is a Maclaurin coefficient in the
expansion of Ay (t)gk,1(t).
Because Fj (%) is not analytic on |z| = R, neither is gx 1(2). So we
can use Lemma 2.3 of Kakehashi and obtain
RN (2 — G)pna(2)

2.18 0 < i < 00,
(219 Nowe | AnENT >

where we have used (2.8) in the form
(2.19) G ( Z)\ ¢; z/R
and preserved properties (2.5)—(2.7).

From (2.18), we have

(2.20) limsup |1 (2)|"N = |2|/R.

N—o0

From (1.3), (1.17) and (2.12), we obtain

(2.21) Pz Z”z )Pn i(z

Hence, from (2.20) and (2.21), the inequality (2.11) follows for the case
of 5 =1.

B. The inductive step. Suppose that Fj, (z) is analytic on |z| =
for all k£ and all s < 3, but F} ,(2) is not analytic at some point on
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|z| = R, for some § > 1. From the former of these two assumptions, it
follows from an inspection of the proof of Theorem 1 of [6] that

(2.22) limsup [QY (¢)[YY < 1¢;

N—o0

i=0,1,...,s—1,

where Q%)(z) denotes the ;' derivative of Qn(z) and the strict
inequality in (2.22) follows as a consequence of the fact that the
integrals In(z) in (2.31) of [6] can be taken over |t| = R’ for some
R > R.

Analogous to (2.12), let iy s(2) denote the N*® Maclaurin section of
QN (2)Fi,s(2),

(2.23) QN (2)F s(2) — Pn,s(z) = O(zN*th).

From (1.3), (1.17) and (2.23),

(224) pNs Z’/Tl PNz

where it should be remembered that {m;(z)} depends on s and k.
Hence,

(2.25) Dina(2)} < N 1.
Analogous to (2.14), we define
(2.26) grs(2) :=(2—Ck)°Frs(2), k=1,2,...,v, s=1,2,...,my,

so that {gr s(2)} are analytic in |z| < R but g; .(z) is not analytic on
|z| = R and g} ,(¢;) # 0. From (2.24)—(2.26), we obtain

(2.27) QN(Z)W

— (2= (pns(z) = O,

and, therefore,

()

(2.28) (2= (p)pns(2) = dt,

1 tN+1 _ ,N+1 QN( )
J.

9is,3
2mi Jo, NF(t—2) (-G
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where 0 < r < |(;|. We extend the contour in (2.28) to Crs, for some
R' € (|¢;], R), by evaluating the contribution of the pole at ¢ = (; in
the right-hand side of (2.28). We write (2.28) as

(2.29) (z = ¢p)pn,s(2) = In(2) = In(2),
where

| tNFL N QN (t)gy, 4(t)
(2.30) () = %/CR’ T T
with R’ € (|¢;|, R) and

2.31 = — 2 dt
( ) 211

| N+ — 2N QN (8)g;4(2)
JIn(z A&—(,;—s Nt —2z) (=)t

Using the Taylor expansion of @y (t) about ¢ = (; and the inequalities
(2.22), we readily obtain

(2.32) limsup |Jy(2)[YN < |z|/R, |z| > R.
N —o00

Also, by using the Kakehashi-Wallin method described and used in
Part A, we obtain

(2.33) limsup [Iy(2)|*N = |z|/R, |z| > R.

N—oo

From (2.29), (2.32) and (2.33),

(2.34) limsup |pn,s(2)| YN = |2|/R, |2| > R.

N —o0

From (2.24), it now follows that

limsup [Py (2)/Qn (2)[ /N > |2|/R, |2| > R

N—o0

for all cases in which § > 1. Combining this result with Part A, we
have established equation (1.15). O

3. Rational interpolation. Kakehashi [7] established divergence
results for interpolatory polynomials based on the interpolation set
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Sn defined in (1.7) and satisfying the strong condition (3.2) below.
To express this condition, we suppose S is a bounded continuum
with connected complement containing more than one point. Assume
Sy C S, and define

(3.1) wn(z) == H(z—,BN,i), N=1,2....

Let

z a_1 a_9
w:¢s(z)zz+a0+7+z—2+---

be the one-to-one analytic mapping of the complement of & onto
the exterior of the unit disk {w : |w| > 1}, with ¢¥s(c0) = o0,
¥s(00) = 1/c > 0. Then Kakehashi’s condition is expressed as

(3.2) im —NE) 50 e,

N —o0 CN[flis(Z)]N o

where A(z) is analytic and nonzero in C\S, and the convergence of
(3.2) is uniform on any compact subset of C\S.

Let I';, 0 > 1, denote generically the level curve

(3.3) Lo :={z2: [s(2)| = o},

and D, denote the interior of I';. We summarize our convergence
and divergence results for a row sequence of vector-valued rational
interpolants in the following theorem.

Theorem 3.1. Assume that the interpolatory point sets Sy C S, as
defined in (1.7), are given, and that Kakehashi’s condition (3.2) holds
for them. Let each of the functions fi(z), fa(2),..., fa(z) be analytic
on S and also in the larger region Dy, except for possible poles at the
points z1,22,.-.,2pm n Dg. Define

M

D;{ = DR — U{Z,},

i=1
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and let E be any compact subset of Dy . Given d nonnegative integers

P1, P2, - - Pd Satisfying M = Z?Zl pi, assume that the f;(z) are pole-
wise independent with respect to the p;’s in Dg. Then, for each N large
enough, there exist polynomials Qn(2), {Pni(2)}d_, with

HQn(2)} =M, O{Pni(2)} <N —pi;, i=12....d,
such that Py ;(2)/Qn(z) interpolates as
Pni(2)/Q@n(2) = fi(2) Vz€SN, i=1,2,...,d,
in the Hermite sense. The denominator polynomials obey
M
(3.4) A}gnoo Qn(z) =Q(z) := };[l(z —2z), VzeC.

Furthermore,
(3.5) A}im Pni(2)/Qn(2) = fi(2), Vze Dy, i=1,2,...,d,
—00

the convergence being uniform on E, which is an arbitrary, compact
subset of Dy,

Define og(> 1) to be the infimum of numbers o (> 1) for which it
1s true that E C D,. Then the rates of convergence of the interpolants
are given by

(3.6) limsup || f; — Pni/QnIYY <og/R, i=1,2,...,d,
N—o00

and, provided some f;(z) is not analytic at some point on g, their
rate of divergence is given by

(3.7) limsup [Pn(2)/Qn(2)|"N = [¢s(2)|/R, ze C\{DrUTg},

N —oc0

where | - | denotes any norm on the vector space C4.

Proof. The proof of the convergence properties (3.4)—(3.6), and
further detail of them, follows a fortiori from Theorem 3 of [6]. The
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proof of the divergence result (3.7) is but a minor variant of that given
in Section 2 of this paper. O

Recently, an extended cross-rule was established by van Iseghem
[15] for vector-valued Padé-type approximants. There has also been
some unpublished speculation about which convergence and divergence
properties of vector-valued Padé approximants extend to vector-valued
Padé-type approximants. The following example delimits the extent of
progress possible under the standard hypotheses for Padé-type approx-
imation [1].

Example. Consider Padé-type approximants p,, 1(2)/gn,1(z) of type
[n/1] to f(z), where

2 1

(3.8) f(2) = Ty

Let ¢,,1(2) be defined as the denominator of the ordinary Padé approx-
imant of type [n/1] for g(z) := 1/{(z — 1)(z — 2)}, and let p,1(2) be
defined by the two conditions

(3.9) Hpna(2)} <,
(3.10) P (2) = f(2)dn,1(2) = O(" ).

Then, with a suitable normalization, we have

(3.11) gni(z) 21—z,

(3.12) Tim o (2)/ana(2) = £(2), |2 <2,

but

(3.13) lim sup |pn, 1 (2)/gn.1(2)|[Y™ # |2|/2 for some |z| > 2.
n—0o0

Proof. Let pn(2)/qn1(z) be the Padé approximant of type [n — 1/1]
for g(z), and let

(314) pn,l(z) = (Z - 3)ﬁn(z)



260 P.R. GRAVES-MORRIS AND E.B. SAFF

Properties (3.9) and (3.10) follow directly from the definitions of p, (z),
Pn,1(2) and g¢n,1(2). And de Montessus’s theorem applied to the
sequence of [n — 1/1] Padé approximants of g(z) implies (3.11) and
(3.12).

However, (3.14) ensures that p, 1(3) = 0, and so z = 3 is one point
for which (3.13) holds good. O

The extension of this example to a similar one for vector-valued Padé
type approximants is trivial. Consequently, there can be no direct
analogue of Theorem 2.2 or Theorem 3.1 for Padé type approximation
without the imposition of supplementary conditions.
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