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INFINITESIMALLY GENERATED
SUBSEMIGROUPS OF MOTION GROUPS

J. HILGERT

0. Introduction. Recent developments in nonlinear control theory
(cf. [2, 3] etc.) and also in analysis (cf. [19, 14, 15, 16, 17, 18])
indicate that there is an increasing demand for a systematic Lie theory
of semigroups. Whereas the groundworks of a local Lie theory begin to
emerge (cf. [12, 4, 5, 8]), there is not much on the record on a global
theory (cf. [12, 6, 9]). We will briefly outline the basic definitions and
the principal difficulties.

Let G be a connected Lie group and S be a subsemigroup of G. In
order to simplify matters we assume that the group generated by S in
G algebraically is all of G. Then we can associate with S a tangent
object L (S) by setting L (S) = {x ∈ L (G) : x = limn→∞ nxn, expxn ∈
S, n ∈ N }, where L (G) is the Lie algebra of G and exp : L (G) → G is
the exponential function. It turns out (cf. [12]) that L (S) is a wedge,
i.e., that it is a closed convex set, which is also closed under addition
and multiplication by positive scalars. Moreover it satisfies

(0.1) eadxL (S) = L (S) for all x ∈ L (S) ∩ −L (S),

where adx(y) = [x, y] with the bracket in L (G). We call a wedge
satisfying (0.1) a Lie wedge and L (S) the tangent wedge of S.

It has been shown in [8] that, for any Lie wedge W , there exists a
local semigroup Sw with L (Sw) = W , i.e., there is a neighborhood
U of the identity in G containing Sw such that SwSw ∩ U ⊂ Sw and
W = {x ∈ L (G) : x = limn→∞ nxn exp xn ∈ Sw, n ∈ N }. On the
other hand the examples (cf. [8]) show that by no means is every Lie
wedge in L (G) the tangent wedge of a (global) subsemigroup S of G.
Thus the principal question is: For which Lie wedges W in L (G) do
there exist subsemigroups S of G such that L (S) = W?

It is one basic idea of Lie theory that the tangent object should pro-
vide as much information as possible on the object under consideration.
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In the case of semigroups it is quite clear that, in contrast to the group
situation, many different semigroups may have the same tangent ob-
ject. Therefore one is interested especially in semigroups that are in a
sense determined by their tangent object. We call a subsemigroup S
of G infinitesimally generated if L (S) generates L (G) as a Lie algebra
and we have

(0.2) exp L (S) ⊆ S ⊆ 〈expL (S)〉− ,

where 〈expL (S)〉 is the subsemigroup of G generated algebraically by
expL (S).

Let W be any Lie wedge in L (G) which generates L (G) as a Lie
algebra. Suppose there exists a subsemigroup S of G such that
L (S) = W . Since we have

(0.3) L (S) = {x ∈ L (G) : expR +x ⊂ S},

by [12] we may assume that S is closed and contains expW . If we
now let T be the subsemigroup of G generated algebraically by expW ,
then obviously W ⊂ L (T ) ⊂ L (S) ⊂ W so that W is the tangent
wedge of an infinitesimally generated subsemigroup of G. Thus a
complete answer to our principal question would provide a classification
of all infinitesimally generated subsemigroups and hence yield a general
framework of a Lie theory of semigroups.

At the moment we are far from being able to give a complete answer
to our principal question. If we want to derive positive results we need
to restrict to certain classes of groups and to certain classes of Lie
wedges. The groups we will consider here are of the type G = CA,
where C is a compact subgroup and A is an abelian normal subgroup.
Such a group we will call a motion group. Accordingly we call a Lie
algebra L a motion algebra if it is of the type L = K + I, where I is an
abelian ideal and K is compactly embedded, i.e., spec(adx) ⊆ R i for
all x ∈ K.

The Lie wedges we want to restrict ourselves to are the so called
semialgebras (cf. [5]). These are Lie wedges W for which we can
find a neighborhood B of 0 in L (G) such that the Campbell-Hausdorff
multiplication x ∗ y = x + y + [x, y]/2 + · · · is defined on B and
W ∩ B is a local semigroup w.r.t. ∗, i.e., (W ∩ B) ∗ (W ∩ B) ⊂ W .
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Equivalently, semialgebras are the tangent wedges of divisible local
semigroups. There is yet another characterization of semialgebras
which we describe since we will use it in the sequel.

Let W be a wedge in a finite dimensional vectorspace L. Assume
that W is generating, i.e., that W − W = L. For x ∈ W we set
Tx = (W −R +x)− ∩ (R+x−W )− (cf. [5]). A closer inspection of the
definition of Tx yields (cf. [5]) that we may call Tx the tangent space
of W at x in accordance with our geometrical intuition. With this
terminology [5] shows that W is a semialgebra if and only if [x, Tx] ⊂ Tx

for all x ∈ W .

The paper is organized as follows: In Section 1 we provide some
general facts on the existence of a semigroup with a prescribed tangent
wedge. Section 2 will be devoted to the study of semialgebras in
motion algebras, and the last section will contain a description of
those semialgebras in motion algebras which are the tangent wedges of
infinitesimally generated subsemigroups in the corresponding motion
group.

1. A lemma on subsemigroups of Lie groups. In this section
we prove a lemma on the existence of subsemigroups with a prescribed
tangent cone which is of general interest. The idea is that if a cone K
sits properly inside a wedge W that is already the tangent wedge of a
semigroup S, then one can construct a semigroup SK with tangent cone
K by taking the union of a local semigroup with tangent cone K (which
exists by Lie’s Fundamental Theorem, cf. [8]) and a translate of S. We
note that, using a considerable amount of machinery, it is possible to
extend this result so that we no longer have to assume that K is a cone
(i.e., satisfies K∩−K = {0}). For a proof of the generalization we refer
to [11] and [10]. Here we give a technical but elementary proof of the
special case in order to make the paper as self-contained as possible. In
order to state the lemma precisely we introduce the following notation:
For two wedges W1 and W2 in a vectorspace L, we write W1 ⊂⊂ W2 if
W1\(W1 ∩ −W1) is contained in the interior of W2.

Lemma 1.1. Let G be a Lie group and S be a closed infinitesimally
generated subsemigroup of G whose tangent wedge L (S) = W is
generating in L (G) = L. If K is a cone (i.e., K ∩ −K = {0}) in
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L (G) satisfying K ⊂⊂ W , then there exists a closed subsemigroup SK

of G with K = L (SK).

Proof . Note first that we can find a cone K ′ satisfying K ⊂⊂ K ′ ⊂⊂
W . Now choose a nonzero x0 ∈ K. Then we can find a Campbell-
Hausdorff neighborhood B in L (G), a compact neighborhood of zero
B0 contained in B and an ε > 0 such that the maps φt : B0 → B
defined by φt(x) = tx0 ∗ x are homeomorphisms onto φt(B0) for all
t ∈ [−ε, ε]. Making ε and B0 smaller if necessary, we may assume by
[12] that there is a closed set

∑ ⊂ B0 ∩ K ′ with (
∑ ∗∑

) ∩ B0 ⊂ ∑

and K = {x ∈ L (G) : x = lim nxn, xn ∈ ∑}. Finally we may
assume that exp |B0 is a homeomorphism onto its image satisfying
exp(K ′ ∩ B0) ∩ S−1 = {1}. In fact exp(K ′) ⊂ S and S ∩ S−1

is a Lie subgroup with L (S ∩ S−1) = W ∩ (−W ) by [12]. Hence
exp−1(exp(K ′ ∩ B0) ∩ S−1 ⊂ W ∩ (−W ) ∩ K ′ = {0}.

Note that the uniform continuity of the ∗-multiplication on B0 and
the fact that K ′ ⊂⊂ W allow us to find an ε1 > 0 with ε1 < ε and
open, relatively compact, neighborhoods B1 and B2 of zero such that
(K ′ ∩ B1)\B2 ⊂ ε1x0 ∗ (W ∩ B0), B2 ∗ B2 ⊂ B1 and ε1x0 ∈ B2. In
fact, choose B1 and B2 such that B2 ∗ B2 ⊂ B1 ⊂ B1 ⊂ int B0. Then
(K ′ ∩B1)\B2 is a compact subset of the interior of W ∩B0. Hence we
may find an ε1 > 0 such that −ε1x0 ∗ ((K ′ ∩B1)\B2) is still contained
in int(W ∩ B0). But we may assume that ε1 < ε so that φ−ε1 is a
homeomorphism onto its image and we obtain

(K ′ ∩ B1)\B2 = φ−1
−ε1(− ∈1 x0 ∗ (K ′ ∩ B1)\B2) ⊆ φ−1

−ε1(W ∩ B0)

= ε1x0 ∗ (W ∩ B0)

as desired (cf. Figure 1).

Now we define
∑′ =

∑∩B2 and S′ = (exp
∑′)(exp ε1x0)S. Then

(exp
∑′

)(exp
∑′

) = exp(
∑′ ∗

∑′
) ⊆ exp(

∑
∩B1)

⊆ exp(
∑

∩B2) ∪ exp((
∑

∩B1)\B2)

⊆ exp
∑′ ∪ exp((K ′ ∩ B1)\B2).

But exp((K ′ ∩ B1)\B2) ⊆ (exp ε1x0) exp(W ∩ B0) ⊆ S′ since
expW ⊂ S. If we now set SK = exp

∑′ ∪ S′, then this shows that
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−ε1x0

−ε1x0∗B2

−ε1x0∗B1

−ε1x0∗ ′K ∩ B0

0

WB0

B1

B2

K

−ε1x0∗ ′K ∩ B1( ) \ B2( )

FIGURE 1a.

(exp
∑′) (exp

∑′) ⊆ SK . Moreover, since S′ ⊂ S, we have S′S ⊆ S′ ⊆
SK . Therefore, in order to show that SK is a semigroup it only remains
to show that (exp

∑′)S′ is contained in SK .

Let s ∈ S′ and x ∈ ∑′ be fixed. Then s = (expx′)(exp ε1x0)g for
some x′ ∈ ∑′ and g ∈ S. We have to consider two cases:

Case 1. x∗x′ ∈ B2. In this case we conclude (expx)(expx′)(exp ε1x0)g
= exp(x ∗ x′)(exp ε1x0)g ∈ S′ since x ∗ x′ ∈ ∑

.

Case 2. x ∗ x′ ∈ ∑ \B2. In this case we know x ∗ x′ = ε1x0 ∗ w
for some w ∈ W ∩ B0 since x ∗ x′ ∈ ∑∩B1 ⊂ K ′ ∩ B1. Hence
(expx)(expx′)(exp ε1x0)g = (exp ε1x0)(expw)(exp ε1x0)g which is in
S′ since expw ∈ S.

Finally we have to show that L (SK) = K. In order to do that it
suffices to show that we can find a neighborhood U of 1 in G such that
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B2

0

K

K

FIGURE 1b.

exp−1(SK ∩ U ) ⊂ ∑′ since then L(SK) = K.

Note that exp(
∑′ ∗ ε1x0) is compact since exp

∑′ is. But
∑′ ∗ ε1x0

does not contain zero, for otherwise −ε1x0 ∈ ∑′∩−K ⊆ K ′∩B1∩−K =
{0}. The set A = (exp(

∑′ ∗ ε1x0))S is closed since S is closed and
exp(

∑′∗ε1x0) is compact. Moreover A contains S′ but not the identity
1 since we calculate

exp(
∑

′ ∗ ε1x0) ∩ S−1 ⊂ exp(K ′ ∩ B0) ∩ S−1 ⊂ {1}.

Thus there exists a neighborhood U of the identity in G such that
U ∩ A = ∅ which implies U ∩ SK ⊂ exp

∑′.

The following example shows that the hypothesis on K to satisfy
K\{0} ⊂ int W cannot be dropped.

Example 1.2. Let G1 be the Heisenberg group and K1 be a cone
in L (G1) containing a central point in its interior. If G = G1 ⊕R and
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K = K1 ⊕ R +, then K ⊂ L (G1) ⊕ R + and G1 ⊕ R + is a semigroup
with L (G1 ⊕ R +) = L (G1) ⊕ R +. Nevertheless there cannot be a
semigroup S in G with L (S) = K since S ∩ G1 would have to be a
semigroup containing central points which is not possible by [9].

2. Semialgebras in motion algebras. In this section we give
a complete geometric description of all generating semialgebras W in
motion algebras which will enable us to decide whether we can find
global semigroups S with L (S) = W or not.

First we note that motion algebras admit a sort of fitting decompo-
sition.

Lemma 2.1. Let L = K + I be a finite dimensional Lie algebra,
where K is compactly embedded and I is an abelian ideal, i.e., L is a
motion algebra. Then we have the decomposition

(2.1) L = [K, I] + [K, K] + Z(K, L),

where Z(K, L) is the centralizer of K in L and (2.1) is a direct
decomposition of vector spaces. Moreover Z(K, L) is abelian.

Proof . Since K is compactly embedded, any adx with x ∈ K is
semisimple so that L is the direct sum of the vector spaces [K, L] and
Z(K, L). Moreover we have K = [K, K] + Z(K) where Z(K) is the
center of K and [K, K] is semisimple. Since [K, I] ∩ [K, K] = (0) the
decomposition (2.1) follows.

Note that Z(K, L) = Z(K) + Z(K, I) where Z(K, I) = {x ∈ I :
[x, K] = {0}} and hence Z(K, L)′ = Z(K, I)′ = {0}.

We now are ready to give the announced description of semialgebras
in motion algebras.

Theorem 2.2. Let L be a motion algebra. Then for any generating
semialgebra W in L we have

(i) [L, I] ⊂ W for any abelian ideal I of L.

(ii) W is invariant, i.e., eadxW = W for all x ∈ L.
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(iii) W is of the form W = J + R +(a + C), where J is an ideal,
C is a compact convex neighborhood of zero in a compactly embedded
subalgebra E of L, and a ∈ Z(K, L) where K is the maximal compactly
embedded subalgebra of L containing E. Moreover C is invariant under
the group generated by the eadk with k ∈ K.

Proof . (i) Let L be a counterexample to claim (i), which has minimal
dimension and consider an x ∈ int W . If U ⊆ W is a neighborhood
of x then the set [U , I] = {∑n

i=1[ui, vi] : ui ∈ U , vi ∈ I, n ∈ N }
is all of [L, I] and, for any u ∈ U \I, the wedge W ∩ (Ru + I) is a
generating semialgebra in Ru + I =: Au. If I has codimension greater
than one in L, then the minimality of the counterexample shows that
[Ru, I] ⊆ W for all u ∈ U \I since Au is again a motion algebra. But
then [L, I] = [U , I] ⊆ W contrary to our assumptions. Thus I is a
hyperplane in L, since L cannot be abelian.

Now let x ∈ L\I be such that Rx is compactly embedded and
consider the operator D = adx : L → L and its dual D̂ : L̂ → L̂.
Both D and D̂ are semisimple with purely imaginary spectrum. If
y ∈ W\I such that Ty is a tangent hyperplane of W in y, then Ty ∩ I
is a hyperplane in I which is invariant under ady, hence also under
D. Therefore any nonzero linear form ω ∈ Î with kerω = Ty ∩ I

is an eigenvector of D̂ and thus contained in ker D̂. We conclude
that D(I) ⊆ kerω ⊆ Ty. Since y was an arbitrary point on W\I
which defines a tangent hyperplane Lemma 1.2 [4] implies that [L, I] =
D(I) ⊆ ∩y∈W Ty ⊆ W (cf. also [4]).

This final contradiction to our assumptions proves part (i) of the
theorem.

In order to prove parts (ii) and (iii) we note that Lemma 2.1 implies
L = [L, I] + [K, K] + Z(K, L). By part (i) we know that [L, I] ⊆ W
and hence W1 = W ∩ ([K, K]+Z(K, L)) is a generating semialgebra in
the compact Lie algebra [K, K] + Z(K, L). Thus [7] shows that W1 =
J1 +R +(a+C ), where J1 and E = R C are ideals in [K, K]+Z(K, L)
and C is a compact convex neighborhood of 0 in E, which is invari-
ant under the group generated by the eadx with x ∈ [K, K] + Z(K, L).
Moreover a ∈ Z(K, L) and W1 is invariant in [K, K] + Z(K, L). But
since [L, I] is an ideal, W1 + [L, I] is invariant. Finally we have
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L = [L, I] + [K, K] + Z(K, L) and [L, I] ⊆ W so that W = W1 + [L, I]
and the proof is finished if we set J = J1 + [L, I].

Note that the results of Theorem 2.2 can be extended to a certain
degree:

Remarks 2.3. Let L be the sum of a compactly embedded subalgebra
K and a nilpotent ideal N , then any generating semialgebra W in L is
invariant.

Proof . Let L be a counterexample of minimal dimension. By [7]
we can assume that N �= {0}. If x ∈ int W then Rx is compactly
embedded in Rx + Z(N), where Z(N) is the center of N , since, for
x = k + n, k ∈ K, n ∈ N , we have adx|Z(N) = adk|Z(N). Therefore
2.2 implies that [x, Z(N)] ⊂ W and thus [L, Z(N)] ⊂ W since x was
chosen arbitrarily in int W . Set J = [L, Z(N)] and note that J is
an ideal in L. Since L is a counterexample of minimal dimension to
our claim we have J = 0 which means that Z(N) ⊂ Z(L). Let now
x ∈ C ′(W ), i.e., such that Tx is a hyperplane and 0 �= y ∈ Z(N). Then
by the minimality of L we know that (W + R y)−/R y is invariant in
L/R y, hence we know also that (W + R y)− is invariant in L. There
are two cases possible:

Case 1. y ∈ Tx. In this case Tx is also a tangent hyperplane of
(W + R y)− so that by [7] we have [x, L] ∈ Tx.

Case 2. y /∈ Tx. In this case we have [x, Tx] ∈ Tx since W is a
semialgebra and also [x, y] = 0 since y ∈ Z(N) ⊂ Z(L). Thus we again
conclude [x, L] ⊂ Tx which shows that W is invariant, contradicting
our assumptions. This proves the claim.

3. Subsemigroups in motion groups. The problem to
decide whether there exists a subsemigroup S of a Lie group G with
a prescribed tangent wedge W may be decomposed into two separate
problems. The first is to find a subsemigroup S̃ of the universal covering
group G̃ of G with tangent wedge W and the second is to decide whether
it is possible to project S̃ down to G without enlarging L (S̃). We have
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Proposition 3.1. Let G and H be Lie groups and q : G → H
a quotient map. If S is a subsemigroup of G generating G as a
group, then L(q)(L (S)) ⊂ L (q(S)) where L(q) : L(G) → L(H) is
the morphism associated with q. The converse need not be true. If T
is a subsemigroup of H generating H as a group and containing the
identity then L (q−1(T )) = (L(q))−1L (T ).

Proof . Note first that we may assume that S is closed since
q(S) ⊂ q(S)

−
so that L(q)(L (S)) ⊂ L (q(S)) implies L(q)L (S) =

L(q)(L(S)) ⊆ L (q(S)) ⊂ L (S)−) = L (q(S)). If now expH : L(H) →
H and expG : L(G) → G are the respective exponential functions, then
expG R +x ⊆ S implies expH R +L(q)(x) = q(expG R +x) ⊆ q(S) ⊂
q(S)−, hence, by (0.3), x ∈ L (q(S)). To see that the converse is not
true consider an ice-cream cone W in R 3 and factor a discrete sub-
group of a line whose intersection with W is a halfline in the boundary
of W ; then W is a semigroup with L (W ) = W , whereas the quotient
semigroup has a halfspace as tangent wedge.

To see the last statement note first that q−1(T ) generates G as a group
since T generates H and ker q ⊂ q−1(T ) so that L (q−1(T )) makes sense.
Moreover q(q−1(T ) = T so that the inclusion L (q−1(T )) ⊂ L(q)−1L (T )
follows from the first part. Conversely if x ∈ L(q)−1(L (T )), then
expH R +L(q)x ⊆ T so that expG R +x ⊆ q−1(T ). But since H
is metrizable [1; Cap. IX, § 2, Prop. 1.8] implies that q−1(T ) ⊂
(q−1(T ))−, since any Cauchy sequence in T can be lifted to a Cauchy
sequence in q−1(T ). In fact, for any s ∈ q−1(T ) we find a sequence hn

in T converging to q(s) and hence a sequence sn ∈ q−1(hn) ⊆ q−1(T )
converging to s, i.e., s ∈ (q−1(T ))−. Thus expG R +x ⊆ (q−1(T ))− or,
by (0.3), x ∈ L (q−1(T )).

Proposition 3.1 shows that, for invariant wedges, our problems are
reduced to the case of proper cones:

Corollary 3.2. Let G be a Lie group and W a generating invariant
wedge in L(G). Then there exists a subsemigroup S of G with L(S) =
W if the analytic group A associated with H(W ) = W ∩ −W is closed
and there exists a subsemigroup T of G/A such that L (T ) = W/H(W ).
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Proof . Note first that H(W ) is an ideal since W is invariant.
Therefore A is a closed normal subgroup of G and we may consider the
quotient map q : G → G/A. But W/H(W ) is a generating invariant
wedge in L(G)/L(A) so that T generates G/A as a group and contains
the identity. Thus Proposition 3.1 implies that q−1(T ) is a semigroup
with L(q)−1(W/H(W )) = W as tangent wedge, which proves our claim.

We can also handle the case where L is a compact Lie algebra.

Lemma 3.3. Let G be a connected Lie group whose Lie algebra L
is compact, and let W be a generating invariant cone in L. Then, for
the maximal compact subgroup K of G, the following statements are
equivalent:

(1) There exists a subsemigroup S of G such that L (S) = W .

(2) W ∩ L(K) = {0}.

Proof . (1) ⇒ (2). Let x ∈ W ∩ L(K). Then we may assume that
expx ∈ S since L (S) = L (S). Since (expRx)− is compact, this
implies (expRx)− ⊂ S so that Rx ⊂ W , whence x = 0.

(2) ⇒ (1). Note first that G ∼= K ⊕ V , where V is a vector-
group. Let LM be a hyperplane in L(G) containing L(K) and sat-
isfying LM ∩ W = {0}. This is possible by (2). Then LM is an ideal
in L(G) whose corresponding analytic subgroup M is closed and con-
tains K. Now consider G/M ∼= R and the cone (W + LM )/LM in
L(G/M). Identifying G/M with L(G/M) we see that (W + LM )/LM

is a subsemigroup of G/M , so that Proposition 3.1 shows that there is
a subsemigroup S1 of G with L (S1) = LM + R +x where 0 �= x ∈ W .
But since LM ∩ W = {0} we have W ⊂⊂ LM + R +x so that Lemma
1.1 yields the existence of the desired S.

Using this result we obtain

Theorem 3.4. Let G be a motion group and W be a generating
semialgebra in L(G). If A is the analytic subgroup corresponding to
H(W ) and K is a maximal compact subgroup of G, then the following
statements are equivalent.
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(1) There exists an infinitesimally generated subsemigroup S of G
such that L (S) = W .

(2) The group A is closed and W ∩ L(K) ⊂ H(W ).

Proof . (1) ⇒ (2). Recall first that A ⊂ S since S is infinitesimally
generated. If x ∈ L(A) then expRx ⊆ A ⊂ S so that Rx ∈ L (S),
i.e., x ∈ H(W ). Hence L(A) = L(A) and thus A = A. Now consider
the quotient map q : G → G/A; S = q−1(S)) since A ⊂ S so that W =
L (S) = L(q)−1(L (q(S))) by Proposition 3.1. But then L (q(S)) =
W/H(W ). Note that Theorem 2.2 implies that W is invariant and
L(G)/H(W ) is a compact Lie algebra. Thus we may apply Lemma
3.3 to W/H(W ) in L(G/A) and find (W/H(W )) ∩ L(K1) = {0} in
L(G/A) = L(G)/H(W ) where K1 is the maximal compact subgroup of
G/A.

Note that q(K) is compact, hence contained in K1. Therefore
L(K) ⊂ L(q)−1L(K1), whence

W ∩ L(K) ⊂ L(q)−1(W/H(W )) ∩ L(q)−1(L(K1))
= L(q)−1(W/H(W ) ∩ L(K1)
= L(q)−1({0})
= H(W ).

(2) ⇒ (1). Conversely, if A is closed we can consider G/A and find,
again by Theorem 2.2, that L(G/A) is compact and W/H(W ) is a
generating invariant cone in L(G/A). Let K1 again denote the maximal
compact subgroup of G/A and q : G → G/A the quotient map. Then
K ⊂ q−1(K1) and, by [13], even q−1(K1) = KA since K is also
a maximal compact subgroup of q−1(K1). Hence L(q)−1L(K1) =
L(KA) = L(K) + H(W ) and L(q)−1(W/H(W ) ∩ L(K1)) = W ∩
(L(K) + H(W )) = W ∩ L(K) ⊂ H(W ) by (2). Thus Lemma 3.3
applies to W/H(W ) and yields a subsemigroup S1 of G/A such that
L (S1) = W/H(W ). But then Proposition 3.1 shows that S = q−1(S1)
has tangent wedge W so that the Theorem is proven in view of the
introductory remarks.

We conclude with

Corollary 3.5. Let G be a simply connected motion group and W be
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a generating semialgebra in L(G), then there exists an infinitesimally
generated subsemigroup S of G such that L (S) = W .

Proof . If G is simply connected it is of the form V × K, where
K is a semisimple compact group and V is a vectorgroup. But then
W ∩ L(K) ⊂ H(W ) by [7].
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