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GLOBAL EXISTENCE FOR
SEMILINEAR PARABOLIC SYSTEMS
ON ONE-DIMENSIONAL BOUNDED DOMAINS

JEFF MORGAN

ABSTRACT. We consider semilinear parabolic systems of
partial differential equations of the form

ut(z,t) = Duge(z,t) + Cug(z,t) + flu(z,t)) 0<z <1, t>0

with bounded initial data and homogeneous Dirichlet bound-
ary conditions, where D is an m by m diagonal positive defi-
nite matrix, C is an m by m diagonal matrix and f : R™ —
R™ is locally Lipschitz. We prove that if the vector field f
satisfies a generalized Lyapunov type condition, then solutions
of (1) exist for all ¢ > 0. Our result begins an extension of
recent results in Morgan [7].

1. Introduction and notation. Until recent years, most of the
work on semilinear parabolic systems of partial differential equations
has fallen into one of two groups; one either assumes that sufficient a
priori bounds can be obtained for solutions of the system or assumes
a bounded invariant region exists for the system. Of these two ap-
proaches, generally only the second considers the vector field involved
as anything more than an algebraic expression. Consequently, since
invariant regions do not exist for many systems, the geometry of the
vector field involved is often ignored. Recently, however, Alikakos [1],
Groger [3], Hollis, Martin, and Pierre [4], Masuda [6], and others have
begun to exploit this geometry via Lyapunov type structures. Some of
their results are extended in [7]. In this work we extend the results in [7]
to include systems containing linear convection terms. For simplicity,
we restrict our attention to the one-dimensional setting. A complete
extension of these results in arbitrary space dimensions, including an
interesting treatment of a class of systems with nonlinear diffusion co-
efficients, will be given in a forthcoming paper of Fitzgibbon, Morgan
and Waggoner.
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Specifically, we consider systems of the form
(1.1)
uy(x,t) = Duge(x,t) + Cug(z,t) + f(u(z,t)) 0<z<1,t>0

u(z,t) =0 z=0,1,t>0
u(z,0) = up(x) 0<z<1
where

(A1) D is a diagonal m by m matrix with entries d; > 0 on the
diagonal,

(A2) Cis a diagonal m by m matrix with entries ¢; on the diagonal,

(A3) f:R™ — R™ is locally Lipschitz,

(A4) wup:(0,1) — R™ is bounded and measurable.

Furthermore, it is assumed there exists some unbounded invariant
m-rectangle M = My x --- x M, for (1.1) with faces parallel to the

coordinate hyperplanes and a smooth function H : M — R™T which
satisfies:

(H1) there exists z € M such that H(z) =0, and if y € M, y # z,
then H(y) > 0,

(H2) H(z) = oo as |z| — o0 in M,
(H3) 0?H(z) is nonnegative definite for all z € M,
(H4) there exist Ly > 0 such that for all z € M, 0H(2)f(z) <

That is, H is a nonnegative convex coercive functional and the vector
field f has a restricted growth rate across level curves of H (this is the
geometric exploitation of f). In addition, if L; = 0, then (H1) and
(H4) imply that H is a Lyapunov function for the ordinary differential
equation

Hence, we refer to this H-structure as a generalized Lyapunov struc-
ture.

2. Statements of the main results. Before stating and proving
our main results, we state the following well known result (cf. [4]).
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Theorem 2.1. Suppose that (A1)—(A4) are satisfied. Then there
exists Tmax > 0 and N = (N;) € C([0, Tymax), R™) such that

(1) (1.1) has a unique, classical, noncontinuable solution u(x,t) on
[0,1] x [0, Thmax), and

(ii) |ui(-,t)\w7[071] < N;(t) for all 1 <i<m, 0 <t< Thax-

Moreover, if Tnax < 00, then |ui(-,t)|o 03] — 00 a5 t — Tiax- for
somel <i<m.

We state our first result.

Theorem 2.2. Assume that (A1)—(A4) and (H1)—(H4) are satisfied
and ug : (0,1) = M. In addition, assume that

(H5) there exist hy : M; — R for all 1 < i < m such that

m

H(z) = Zhi(zi) for all z € M.

i=1

Then there exists S € C([0,00)) such that if 0 < T < Tpax, then
[ H (w)l]2,(0,1)x (0,7) < S(T).

This a priori bound actually guarantees global existence for a large
class of systems. We state this as our main result.

Theorem 2.3. Assume that (A1)—(A4) and (H1)-(H5) are satisfied
and ug : (0,1) = M. In addition, assume that

(H6) there exists an m by m lower triangular matrix A = (a;j;)
with positive entries on the diagonal and K1, Ky > 0 such that, for all
1<k<m,

k
Zakjh;-(zj)fj(z) <K [HR)*+ Ky forallze M
i=1
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and

(HT) there exist r, K3, K4 > 0 such that, for all 1 <i < m,

hi(z:) fi(2) < K3[H(2)]" + K4 for all z € M.
Then Tpax = 0.

We note that condition (H6) does not imply that the nonlinearities
present can be no more than quadratic. It simply states that there is a
“balancing” of higher order terms between components of f. We have
found many model systems in the literature that satisfy (H1)—(H6).

3. Proofs of Theorems 2.2 and 2.3. Throughout this section we
will denote (0,1) by Q. Furthermore, all norms given in this section
will be taken over Q x (1,T) unless otherwise stated. That is, ||v]|, will
denote ||v||p.qx (7). The values of 7 and T" will be given in the context.

In order to prove Theorems 2.2 and 2.3, we will need the following
results concerning the scalar equation
vy = d(Vge — V) + ez + ¢ ze, T<t<T
(3.1) v=0 r=0,1, 7<t<T
v=20 zeQ, t=1

where d,e >0,c>0and 0 <7< T.

Lemma 3.1. Suppose that 1 < p < oo, g € LP(2 X (1,T)) such that
g>0andc>0. Then (3.1) has a unique nonnegative solution v which
satisfies the following.

(i) Ifd=1 and e > 0, then there exists C, > 0 independent of g
such that

(- T)|

P, ||U||pv ||Uth7 ||Uz||pv H”ww”p < Cp”ng-

(i) If1 < p < 3/2 and p' = 3p/(3 — 2p), then there exists
Cp,(r—r) > 0 independent of g such that

o]lp < Cp w—n)I9]lp-
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(iii) If 1 <p <3 andp =3p/(3—p), then there exists K, (y_,) >0
independent of g such that

||Uw||p’ < K;D,(T*T)Hg”p-

Proof. Existence, uniqueness and part (i) are well known for parabolic
equations [5]. The solution is nonnegative from basic maximum prin-
ciples. Parts (ii) and (iii) are a special case [5] of Lemma 3.3 combined
with part (i). O

Remark. If ¢ > 0 in part (i), then C), can be given independent of 7
and 7'. One can obtain much sharper estimates when p = 2.

Lemma 3.2. Supposep =2,d > 0,c=0 ande =1 in the statement
of Lemma 3.1. If ||g||2 =1, then

(i) [lvll2 < [1 —exp(—d(t — 7))]/d and
(iif) [|vell2 < sqr ([l — exp(=d(t — 7))]/d).

Proof. To obtain part (i) we rewrite the first equation in (3.1) as
vy — dvg, + dv = g. Then we square both sides and integrate over
Q x (1,T). For part (ii) we multiply the first equation in (3.1) by v on
both sides and integrate over Q x (7,¢) for all 7 <t < T to obtain

(3.2)
%/ﬂ(v(m,t))zdm—i—d/:/ﬂwm(m, s)|2dmds+d/:/ﬂ(v(x,s))2dmds

< </Tt/ﬂ(v(x, s))2dacds>1/2.

Thus, if we denote the third term on the LHS in (3.2) by w(¢), then
we obtain

w'(t) + 2dw(t) < 2(w(t)V/? forall 7 <t<T
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and
w(0) =0.

Thus, a simple calculation yields part (ii). Substituting this quantity
into (3.2) yields part (iii). O

Proof of Theorem 2.2. Let 0 < 7 < T < Tyax. Suppose that g is given
as in Lemma 3.2, ¢ =0, ¢ = 1, d > max{d;} and let v be the solution
of (3.1). Set w(z,t) = v(z,7 + T —t) and ¢(z,t) = g(x, 7+ T —t) for
all (z,t) € @ x (r,T), and note that w satisfies parts (i)—(iii) in Lemma
3.2. Furthermore, let b = min{d;} and e = max{|c;|}. Then we can
easily show that

/T ’ /Q H(u)qd dt

(3:3) §/tT/QH(u)[(Ll+d)w+(d—b)|wm|+ewz|] dx dt

+ /Q H(u(z, ))w(z, 7) dz.

Also, from Lemma 3.2 and Holder’s inequality, the first term on the
RHS of (3.3) is bounded by

Li+d

(3-4)  [[H(u)[2

(1= exp(—d(T — 7))) + <1 - g)

te (éu — exp(—d(T — T)))> 1/2]

which is bounded by

(3.5) [|H(u)||2[1 —b/(2d)] for T sufficiently close to Tiax.
In addition, the second term on the RHS of (3.3) is bounded by
(3-6) [1H (u(-, 7)) oo, I2U(T = 7)]/2.

Consequently, if we combine (3.3) with the bounds obtained in (3.4)-
(3.6), then we obtain

(3.7) 1H (u)]]2 < 2%II\H(U(wT))Hoo,n[IQI(T — )
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for all 7 sufficiently close to T'. The result follows. O
In order to prove Theorem 2.3, we will need the following lemma.

Lemma 3.3. Suppose w > 1 and for all w < p < oo there exist
0 <6, <1 and My, N, € C([0,00)) such that, for all 1 < j < m and
0=7<T < Thax,

(3.8) 1 (ui)llp < My(T) + Np(T)||H (u)|[p-

Then Tyax = 0.

Proof. Suppose (by way of contradiction) that T.x < 0o. Then (3.8)
holds when T' = T},,x. Consequently,

(3.9) [1H (w)lp < Mp(Tmax) + Np(Timax) || H (w)][p7

for all w < p < 0o, which implies that ||H(u)||, < oo forall 1 < p < 0.
It then follows that

(3.10) || K3 [H ()] + Kylp < o0

for all 1 < p < oo, where K3, K, and r are given in (H7). Now let
1 <j <m,set w= h;(u;) and suppose vy = |||uog|||oo,o. Then from
the convexity of H and standard maximum principles we have w < v
where v solves

v = djVyy + v, + K3[H(u)]" + K4 on Q x (0, Timax)
(3.11) v=0 on {0,1} x (0, Trpax)
v=1p on Q x {0}.

Furthermore, from Lemma 3.1 and the Sobolev imbedding theorem we
have ||w]||eo < ||V]loo < 00. That is, ||hi(w;)]|ec < 00 for all 1 < i < m.
Hence, from the coercivity of H, we have ||u;||co < 0o for all1 <i < m.
This contradicts (via Theorem 2.1) our assumption that Thax < 00,
and, therefore, Ti,.x = co. O

Proof of Theorem 2.3. Let 1 < k < m be given such that the
hypotheses of Lemma 3.3 hold with the restriction j < k (this holds
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trivially if £ = 1). We will show that these hypotheses also hold for
j=k.

One easily shows that if we choose 1 < p < 3/2, with p sufficiently
close to 1, and set

6p — 2p? 2p?
b= ———"— d b, =
T RepGr-3) T 13
then
2 6p 2 p
—>1 -b = — d
b <5p—3 1)2—1;1 p—1 *
p—1 2\2-b; p-1
P 3 2 p
and
2 3p 2 P
i 1 —b = — d
by (4p—3 2)2-1;2 p—1 ™

dp—-3\2—-by p-—1

< 3 ) 2 " p
Now, let ¢ = 1, ¢ = 0 and d = di in (3.1), p’ = p/(p — 1) and
0 <7 < T < Tpax- Suppose that g is given as in Lemma 3.1, with
llg||p = 1, and let v be the solution of (3.1). Set w(z,t) = v(z,7+T —1)
and ¢(z,t) = g(z, 7+ T —t) for all (z,t) € Q x (r,T), and note that w
satisfies parts (i)—(iii) in Lemma 3.1. Applying (H1)—(H6), we obtain
(3.12

)
/TT/Q hi(ui)qdz dt = /tT/Q hi(w;)[drkw + (di — di)wee + ciw,] dz dt
+ /Q hi(ui(x, 7))w(z, 7) do
+/TT/Q whi(u;) fi(u) dz dt

and, thus,
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(3.13)

T k
/ / Zakjhj(uj)qdm dt
T JQ j=1

T k
< / / Zakjhj(uj)[dkw + (dj — dp)wyy + cjw,] da dt

Consequently,
(3.14)

T k-1 T
/ /akkhk(uk)qdacdtg RHS above — E akj/ /hj(uj)qudt.
T Q . T Q
Jj=1

We proceed to develop some bounds on the terms appearing on the
right-hand side of (3.14). First, note that part (ii) of Lemma 3.1 and
Holder’s inequality yield

(3.15)

// 2dz dt < Cp () [// w)) %P/ OP) do dt

Hence, from the choice of p above, there exists 0 < €, < 1 such that
(3.16)

(p—1)/p+2/3
{/ / ))6P/(5P=3) gy dt]
[/ / 6”/(5”*3)4’1 (H(u))b1 dx dt

Epl b
< |[H (u)| 57 || H (w) 517 2/6],
Thus, (3.15) and (3.16) imply

3 ].7 / / K1 +K2] dz dt

b 5 —3 6 E 7 ’
< chp,<T_T>||H(u)||;“ PP H ()77 + Ko Gy |9 (T )] V/7

]( p-1)/pt2/3

] (p—1)/p+2/3



724 J. MORGAN

In a similar manner, we apply part (iii) of Lemma 3.1 to obtain
0 < &, < 1 such that
(3.18)

T ’
b2[(4p—3)/6 €,
[ e dede < Kyl H@IE P @)

Now, from part (ii) of Lemma 3.1 and Holder’s inequality,

1) [ [ Hpwdzdt < Gyl H@)]I(T - 7020/,

Furthermore,
(3.20)

k k
Dl | H(ute )tz ) de < 3 o | 1H O, Gl
j=1 Q j=1
and from our hypothesis and (3.8), for all 1 < j < k — 1, we have
(3.21)
T 5.1
/ / By 045w | di dt < Gy | (T—7) /P [My (T) + Ny (T) | H () 2]

Finally, from our hypothesis and (3.8), for all 1 < j < k — 1, we have

(3.22) / /th(uj)qudtSMpr(T)+Np'(T)HH(u)Hif"-

Therefore, if we apply (3.17)—(3.22) to the right-hand side of (3.14),
then we see that the hypotheses of Lemma 3.3 hold with the restriction
1 < 7 <k, and, hence, they hold without restriction, i.e., Tiyax = 0.
O

4. An application. In this section we consider an extension of the
Schlogl model [8] due to Gray and Scott [2]:

A+2BZ3B
BZC.

We consider the Gray-Scott model in a one-dimensional reaction-
diffusion system in which chemicals are fed perpendicular to a thin
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reacting layer of length one. The equations in nondimensionalized form
are:

ar = dyGgy + k1ag, — ab® +mb® 4+ a1 — a)
(4.1) by = dobyy + koby + ab® — b — B(b — mac) — ab
Ct = d3czw + k?ng + /B(b - 7]26) —ac

with zero Dirichlet boundary conditions at + = 0 and x = 1 and
nonnegative initial data. Here ki, k2, and k3 are real numbers and
dy,do,dz, o, B,m1,m2 > 0. Setting H(a,b,c) = a? + n1b% + mm2c? + a,
we see that (H1)-(H7) are clearly satisfied. Therefore, from Theorem
2.3, solutions to (4.1) exist for all ¢ > 0.
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