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A SWITCH IN NODAL STRUCTURE
IN COUPLED SYSTEMS OF NONLINEAR

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

ROBERT STEPHEN CANTRELL

ABSTRACT. It is well known that the bifurcating non-
trivial solutions to nonlinear Sturm-Liouville boundary value
problems may be globally distinguished via the nodal struc-
ture of solutions. We demonstrate in this article that such is
not necessarily the case for appropriate coupled multiparame-
ter systems of such problems. Specifically, we give a calculable
condition for the existence of a continuum of nontrivial solu-
tions to such a system where the nodal structure of solution
components is not preserved.

1. Introduction. Nonlinear Sturm-Liouville boundary value prob-
lems and associated systems arise frequently in mathematical analysis
and applications. Consequently, there has been substantial interest in
a detailed understanding of the solution sets to these problems, and
a great deal of information has been obtained in the case of a single
equation. For instance, consider the problem

−(p(t)x′(t))′ + q(t)x(t) = λ(r(t)x(t) + f(t, x(t)))(1.1)
α1x(a) + α′

1x
′(a) = 0

α2x(b) + α′
2x

′(b) = 0,
(1.2)

where t ∈ [a, b] and (|α1| + |α′
1|)(|α2| + |α′

2|) > 0. In addition, we
require that p ∈ C1[a, b] with p(t) > 0 on [a, b], that q, r ∈ C[a, b]
with r(t) > 0 on [a, b], and that f : [a, b] × R → R is continuous with
lims→0

f(t,s)
s = 0 uniformly for t ∈ [a, b]. In this situation, as is well

known, there is a sequence

λ1 < λ2 < · · · < λn → +∞
of simple eigenvalues for the problem

(1.3) −(pw′)′ + qw = λrw
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plus boundary conditions (1.2) such that if wi is an eigenfunction
corresponding to λi, then wi has i − 1 zeros in the interval (a, b), all
of which are simple. Moreover, if E denotes the C1 functions on [a, b]
satisfying (1.2), then E is a Banach space under the usual C1 norm and
from (λi, 0) in R × E there emanates a continuum Ci of solutions to
(1.1 1.2). Ci is unbounded in R×E and if (λ, y) ∈ Ci, y �= 0, then y has
i − 1 zeros in (a, b), all of which are simple. In particular, Ci ∩ Cj = ∅

if i �= j. These results, which can be found in any number of sources
(e.g., [3,5,9]), illustrate the first alternative of the celebrated global
bifurcation result of Rabinowitz [7].

Now, as regards system analogues to problems of the type (1.1) (1.2),
the level of understanding is considerably lower. A natural question
to be addressed is whether there is any global analogue to the single
equation phenomena described above. The answer seems to depend
strongly on the coupling in the system. In certain instances of systems
which arise in mathematical biology, the answer is yes. However, such
is not always the case as we demonstrate in this article.

In [2] we considered the class of problems

(1.4)
Lu(x) = λf(u(x), v(x))
Lv(x) = μg(u(x), v(x)),

where x ∈ Ω, a smooth bounded domain in RN , L is a strongly
uniformly elliptic second order linear differential operator and u and
v are required to satisfy

(1.5) u(x) = 0 = v(x)

for x ∈ ∂Ω. We placed several requirements on the functions f, g :
R2 → R. First of all, f and g are required to be smooth with f(0, 0) =
0 = g(0, 0). In addition, ∂f(0, 0)/∂u, ∂f(0, 0)/∂v, ∂g(0, 0)/∂u, and
∂g(0, 0)/∂v are all assumed to be positive with

(1.6)
∂f(0, 0)

∂u

∂g(0, 0)
∂v

− ∂f(0, 0)
∂v

∂g(0, 0)
∂u

> 0.

With these assumptions (1.4 1.5) has, as linearization about (0, 0):

(1.7)
Lw = λ

(
∂f(0, 0)

∂u
w +

∂f(0, 0)
∂v

z

)

Lz = μ

(
∂g(0, 0)

∂u
w +

∂g(0, 0)
∂v

z

)
in Ω,
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w = 0 = z on ∂Ω.

We showed in [2] that if the eigenvalue problem

(1.8)
Lw = λw in Ω

w = 0 on ∂Ω

has eigenvalues 0 < λ1 < λ2 < · · · , then the generalized spectrum [6]
for (1.7) is given by the family of hyperbolae⎧⎨

⎩(λ, μ) : λ =
λn

(
∂g(0,0)

∂v μ − λn

)
(

∂f(0,0)
∂u

∂g(0,0)
∂v − ∂f(0,0)

∂v
∂g(0,0)

∂u

)
μ − λn

∂f(0,0)
∂u

⎫⎬
⎭ ,

n = 1, 2, 3, . . . . The hyperbola corresponding to λn will intersect the
one corresponding to λm, where n < m, if and only if

λn

λm
≤
√

∂f(0,0)
∂u

∂g(0,0)
∂v −

√
∂f(0,0)

∂v
∂g(0,0)

∂u√
∂f(0,0)

∂u
∂g(0,0)

∂v +
√

∂f(0,0)
∂v

∂g(0,0)
∂u

.

(Note that the intersection is transverse if the inequality is strict.)

Now suppose that N = 1, Ω = (a, b) and L is the Sturm-Liouville
operator given by

(1.9) Lw = −(pw′)′ + qw.

If (λ0, μ0) is a point on the hyperbola corresponding to λn in the
generalized spectrum but not a point of intersection with any of the
other hyperbolae in the collection, then 1 is an algebraically simple
eigenvalue of (

λ0
∂f(0,0)

∂u L−1 λ0
∂f(0,0)

∂v L−1

μ0
∂g(0,0)

∂u L−1 μ0
∂g(0,0)

∂v L−1

)
.

The corresponding eigenfunction is(
xn

βnxn

)
,
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where

Lxn = λnxn in Ω
xn = 0 on ∂Ω

and (
λn − λ0

∂f(0,0)
∂u −λ0

∂f(0,0)
∂v

−μ0
∂g(0,0)

∂u λn − μ0
∂g(0,0)

∂v

)(
1
βn

)
=
(

0
0

)
.

On the other hand, if (λ0, μ0) is a point of intersection for the nth and
mth hyperbolae, 1 is an algebraically double eigenvalue with eigenspace

〈(
xn

βnxn

)
,

(
xm

βmxm

)〉
.

Consequently, in the case of a simple eigenvalue the bifurcation theorem
of Alexander and Antman [1] may be applied to assert the existence
of a global multi-dimensional continuum of solutions to (1.4) (1.5)
emanating in R2 × E2 from (λ0, μ0, 0, 0). Moreover, if λ0 �= 0 and
μ0 �= 0, then if (λ, μ, u, v) is a solution to (1.4) (1.5) with ||(λ, μ, u, v)−
(λ0, μ0, 0, 0)||R2×E2 sufficiently small and (u, v) �= (0, 0), then each of
u and v has n − 1 zeros in (a, b), all of which are simple. (We should
note that these results, contained in [2], remain valid if u and v are
required to satisfy the more general boundary condition (1.2).)

The purpose of this article is to show that, in contrast to the single
equation case (1.1) (1.2), the above mentioned local result will be the
best that one can expect in general. In particular, we consider the case
f and g both analytic with not all of their second partial derivatives
vanishing at (0, 0). We give a verifiable condition for the existence
of a continuum in R2 × E2 not containing any trivial solutions for
(1.4) (1.5), between solutions to (1.4) (1.5) with components having
n−1 simple zeros in (a, b) and solutions whose components have m−1
simple zeros in (a, b), where n �= m.

Let us be somewhat more explicit. To this end, let

λ(n)(μ) =
λn

(
∂g(0,0)

∂v μ − λn

)
(

∂f(0,0)
∂u

∂g(0,0)
∂v − ∂f(0,0)

∂v
∂g(0,0)

∂u

)
μ − λn

∂f(0,0)
∂u

.
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Suppose that (λ∗, μ∗) is such that λ∗ = λ(n)(μ∗) = λ(m)(μ∗), n �= m
and, moreover, that the graphs of λ(n) and λ(m) meet transversely at
(λ∗, μ∗). Then, for δ > 0 and sufficiently small, ∂B((λ∗, μ∗); δ) =
{(λ, μ) ∈ R2 : |(λ, μ) − (λ∗, μ∗)| = δ} meets the generalized spectrum
for (1.7) in exactly four points, two of which lie on the graph of λ(n)

and two on the graph of λ(m). Consider the problem (1.4) (1.5) in
∂B((λ∗, μ∗); δ)× (C1

0 [a, b])2 and let Sδ denote the closure of nontrivial
solutions to (1.4) (1.5) in δB((λ∗, μ∗); δ)× (C1

0 [a, b])2. Our main result
is (Theorem 3.3 in the text)

Theorem. Under appropriate technical assumptions (as described in
§3), we may derive from (1.4) (1.5) a sixth degree polynomial P with the
following property. Namely, if P (λ(n)′(μ∗)) > 0 or if P (λ(m)′(μ∗)) > 0,
then there is a δ∗ > 0 such that, for any δ ∈ (0, δ∗), there is a continuum
Cδ ⊆Sδ such that

Cδ ∩ ({(λn(μ), μ) : μ ∈ R} × {(0, 0)}) �= ∅

and
Cδ ∩ ({(λ(m)(μ), μ) : μ ∈ R} × {(0, 0)}) �= ∅.

For the remainder of this article, we refer to the existence of Cδ as a
“switch in nodal structure.” Specifically, suppose that (λ, μ, u, v) ∈ Cδ,
(u, v) �= (0, 0) and ||(λ, μ, u, v) − (λ(n)(μ̄), μ̄, 0, 0)||R2×E2 is sufficiently
small, where (λ(n)(μ̄), μ̄) is a point of the intersection of the generalized
spectrum for (1.7) with δB((λ∗, μ∗); δ). Then, as previously noted, u
and v have nonzero derivatives at a and b and precisely n − 1 zeros
in (a, b), each of which is simple. However, Cδ also contains solutions
whose components have nonzero derivatives of a and b and precisely
m−1 zeros in (a, b), each of which is simple. Consequently, there can be
no maintenance of a specific nodal structure along Cδ. Since prescribed
nodal types form open sets in the C1 topology (see, for example, [3])
and since the only trivial solutions in Cδ occur for parameter values
(λ, μ) in the intersection of ∂B((λ∗, μ∗); δ) with the graphs of λ(n) and
λ(m), Cδ must contain a nontrivial solution in the boundary of a set
of pairs of functions of a prescribed nodal type. Hence, Cδ contains a
nontrivial solution to (1.4) (1.5) with a nontrivial component having a
double zero.
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The fact this linking phenomenon can occur in a class of nonlinear
problems is not too surprising after some reflection on the special case
when (1.4) (1.5) is linear. Consider, for example, the linear system

(1.10)
−u′′(x) = λ(2u(x) + v(x))
−v′′(x) = μ(u(x) + v(x))

(1.11)
u(0) = 0 = u(π)
v(0) = 0 = v(π).

It follows, from [2, §8] and a simple computation, that when (λ, μ) =
(10 − 2

√
7, 20 + 4

√
7), (1.10) (1.11) has eigenfunctions
(

u1

v1

)
=
(

sin 2x√
7−13
9 sin 2x

)

and (
u2

v2

)
=
(

sin 6x
(3 +

√
7) sin 6x

)
.

Then, for t ∈ [0, 1],

(
ut

vt

)
=

(
t sin 2x + (1 − t) sin 6x

t
(√

7−13
9

)
sin 2x + (1 − t)(3 +

√
7) sin 6x

)

is an eigenfunction for (1.10) (1.11). Hence, a switch in nodal type
occurs in R2 × E2. As previously noted, prescribed nodal types form
open sets in the C1 topology. Consequently, we must necessarily have
passed through a boundary with our homotopy. In particular, we find
that if t0 = 27(3+

√
7)/(89+26

√
7), then vt0(π/2) = 0 and v′t0(π/2) = 0.

This phenomenon could not occur in the case of a single equation by
uniqueness of initial value problems.

In the nonlinear case we analyze in some detail the structure of the
solution set to (1.4) (1.5) in a neighborhood of a point (λ∗, μ∗, 0, 0)
where 1 is a double eigenvalue of

(
λ∗ ∂f(0,0)

∂u L−1 λ∗ ∂f(0,0)
∂v L−1

μ∗ ∂g(0,0)
∂u L−1 μ∗ ∂g(0,0)

∂v L−1

)
.
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Upon reduction to R4 via a Lyapunov-Schmidt process (in §2), we
obtain a local representation of the solution set as the intersection of
two irreducible quadratic analytic varieties (the lowest order coefficients
are calculable from the boundary value problem). This intersection
is effectively quantified by the resultant [10] of two polynomials. In
particular, since the varieties are quadratic, the resultant determines
a quartic equation. However, since we always have the (0, 0) solution
in E2 for all (λ, μ) ∈ R2, the resultant may be reduced to a cubic.
Consequently, we can employ the cubic discriminant in order to count
the number of nontrivial solutions “above” (λ, μ). Combining this
information with Rabinowitz bifurcation theory, we obtain our main
result in Theorem 3.3. Namely, the switch in nodal properties described
above occurs if a certain polynomial P derived from the system of
boundary value problems is positive when evaluated at the slope (at
(λ∗, μ∗)) of either of the two intersecting hyperbolae of the generalized
spectrum. Moreover, the coefficients of P are explicitly calculable
provided the eigenfunctions of L are known. In §4, we demonstrate
with a particular example.

A comment is in order at this point. The coefficients of P are deter-
mined through a succession of calculations (reflecting the Lyapunov-
Schmidt procedure, the taking of a resultant, and so forth). Knowing
how to make this succession of calculations is, of course, the heart of
any application to a specific system of boundary value problems. How-
ever, the calculations per se are not crucial to an understanding of the
proof of Theorem 3.3. Consequently, for the sake of clarity, we do not
include the calculations in the body of the proof, but rather collect
them in an Appendix.

Finally, we note that the computations for the example were made
using the symbolic manipulation program MU-MATH. We wish to
express our appreciation to Dr. Wagar Ali for his help in facilitating
these computations.

2. Lyapunov-Schmidt reduction. Consider (1.4 1.5) which we
write as

(2.1)
Lu = λ(f1u + f2v + f̃(u, v))
Lv = μ(g1u + g2v + g̃(u, v)),

in Ω

where f1 = ∂f(0,0)
∂u , f2 = ∂f(0,0)

∂v , g1 = ∂g(0,0)
∂u , g2 = ∂g(0,0)

∂v and f̃ and g̃
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are higher order in ||(u, v)||E2 and

(2.2) u|∂Ω ≡ 0 ≡ v|∂Ω.

If we let G = L−1, (2.1) (2.2) may be expressed as

(2.3) φ = ΛAGφ + ΛGN(φ),

with φ =
( u

v

)
, Λ =

(
λ 0

0 μ

)
, A =

(
f1 f2

g1 g2

)
, G =

(
G 0

0 G

)
, and N(φ) =(

f̃(u,v)

g̃(u,v)

)
. If now Λ∗ =

(
λ∗ 0

0 μ∗

)
is such that 1 is a double eigenvalue of

(
λ∗f1G λ∗f2G
μ∗g1G μ∗g2G

)
,

it follows from the Riesz theory of compact operators [8] that

E2 =
〈(

xn

βnxn

)
,

(
xm

βmxm

)〉
⊕ R

(
I −

(
λ∗f1G λ∗f2G
μ∗g1G μ∗g2G

))
,

where xn and xm are normalized in an appropriate manner. (Without
any loss of generality, we assume n < m.) Then T : E2 → E2, given by

T (φ) = (I − Λ∗AG)φ + 〈φ, γ1〉φ1 + 〈φ, γ2〉φ2,

is a linear homeomorphism, where φ1 =
(

xn

βnxn

)
, φ2 =

(
xm

βmxm

)
, and

γ1, γ2 ∈ (E2)∗ are such that γi(φj) = δij and

γi | R

(
I−

(
λ∗f1G λ∗f2G
μ∗g1G μ∗g2G

))
≡ 0.

Consequently, with τ1 = λ−λ∗ and τ2 = μ−μ∗ and τ =
(

τ1 0

0 τ2

)
, we

find that (2.3) is equivalent to the system of equations

(2.4)

⎧⎨
⎩

φ = α1φ1 + α2φ2 + T−1(τAGφ + ΛGN(φ))
α1 = 〈φ, γ1〉
α2 = 〈φ, γ2〉.
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As in [2], the right-hand side of the first equation of (2.4) (which we
denote S(α1, α2, τ1, τ2)) is a contraction mapping of a neighborhood
of the origin if |(α1, α2, τ1, τ2)| is sufficiently small. If φ̂(α1, α2, τ1, τ2)
denotes the unique fixed point of S(α1, α2, τ1, τ2), then φ̂ is analytic in
(α1, α2, τ1, τ2). Consequently, solvability of (2.4) is equivalent to

αi = 〈φ̂(α1, α2, τ1, τ2), γi〉,

i = 1, 2, which, in turn, simplifies to

(2.5) 0 = 〈A−1Λ∗−1(τAφ̂ + ΛN(φ̂)), γi〉,

i = 1, 2 (see [2, pp. 272-273]). Since

φ̂(α1, α2, τ1, τ2) = lim
n→∞(S(α1, α2, τ1, τ2))n(0),

the lowest order terms of φ̂ are α1φ1 + α2φ2. Hence, since Λ = τ + Λ∗,
it is easy to see that the quadratic terms in (2.5) are given by

(2.6) 〈A−1Λ∗−1(τA(α1φ1 + α2φ2) + Λ∗Ñ(α1φ1 + α2φ2)), γi〉,

where Ñ denotes the quadratic terms of N .

3. Main results. Suppose now that f2 = g1. Then (see [2]) γ1 and
γ2 have the forms

γ1

(
u
v

)
=

1
k1

∫ b

a

uxn + vδ1xn

γ2

(
u
v

)
=

1
k2

∫ b

a

uxm + vδ2xm.

Consequently, since
∫ b

a
xnxm = 0, certain of the quadratic terms in

(2.5) are automatically zero. It follows that (2.5) is equivalent to

(3.1)

(i) c1α
2
1 + c2τ1α1 + c3τ2α1 + c4α2α1 + c5α

2
2

+ h.o.t. (α1, α2, τ1, τ2) = 0,

(ii) d1α
2
1 + d2α2α1 + d3τ1α2 + d4τ2α2 + d5α

2

+ h.o.t. (α1, α2, τ1, τ2) = 0,
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where the c’s and d’s are as given in the Appendix and h.o.t. (α1, α2, τ1, τ2)
denotes higher order terms in (α1, α2, τ1, τ2). Under the assumption
that c1 �= 0 and d1 �= 0, the Weierstrass preparation theorem [4] is ap-
plicable with α1 as distinguished variable. Moreover, the lowest order
terms in (3.1)(i)-(ii) are known. Hence, (3.1)(i-ii) is equivalent to

(3.2)

(i) c1α
2
1 + (c2τ1 + c3τ2 + c4α2 + h.o.t. (α2, τ1, τ2))α1

+ (c5α
2
2 + h.o.t. (α2, τ1, τ2)) = 0,

(ii) d1α
2
1 + (d2α2 + h.o.t. (α2, τ1, τ2))α1 + (d3τ1α2 + d4τ2α2

+ d5α
2
2 + h.o.t. (α2, τ1, τ2)) = 0.

Viewing (3.2) as two polynomials in α1, (3.2)(i) and (3.2)(ii) are
the Weierstrass polynomials [4, p. 68] corresponding to (3.1)(i) and
(3.1)(ii), respectively. Equations (3.2)(i) and (3.2)(ii) have a common
solution exactly when the resultant vanishes. From [10, p. 85], this
condition may be expressed

(3.3)
e1α

4
2 + e2τ1α

3
2 + e3τ2α

3
2 + e4τ

2
1 α2

2 + e5τ
2
2 α2

2

+ e6τ1τ2α
2
2 + e7τ

3
1 α2 + e8τ

2
1 τ2α2 + e9τ1τ

2
2 α2

+ e10τ
3
2 α2 + h.o.t. (α2, τ1, τ2) = 0,

where the e’s are expressed in terms of the c’s and d’s (see the
Appendix). Since (α1, α2) = (0, 0) solves (3.2) for any choice of (τ1, τ2)
(by virtue of the fact that it corresponds to the trivial solution of
(1.4) (1.5) at (λ∗ + τ1, μ

∗ + τ2)), α2 is necessarily a factor of (3.3).
Consequently, if e1 �= 0, solutions to (3.2) are possible exactly when
α2 = 0 or

(3.4)
e1α

3
2 + (e2τ1 + e3τ2 + h.o.t. (τ1, τ2))α2

2

+ (e4τ
2
1 + e5τ

2
2 + c6τ1τ2 + h.o.t. (τ1, τ2))α2

+ (e7τ
3
1 + e8τ

2
1 τ2 + e9τ1τ

2
2 + e10τ

3
2 + h.o.t. (τ1, τ2)) = 0.

Suppose now that (τ̄1, τ̄2) is fixed for the moment and that ᾱ2 = 0 or ᾱ2

is a real root of (3.4). Then (3.2)(i) and (3.2)(ii) have a common root
with (α2, τ1, τ2) = (ᾱ2, τ̄1, τ̄2). Observe that if there are two such roots,
the polynomials in (3.2) at (ᾱ2, τ̄1, τ̄2) are the same up to a multiple.
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Hence (ᾱ2, τ̄1, τ̄2) also satisfies
(3.5)

(i) d1(c2τ1 + c3τ2 + c4α2 + h.o.t. (α2, τ1, τ2))
− c1(d2α2 + h.o.t. (α2, τ1, τ2)) = 0,

(ii) d1(c5α
2
2 + h.o.t. (α2, τ1, τ2))

− c1(d3τ1α2 + d4τ2α2 + d5α
2
2 + h.o.t. (α2, τ1, τ2)) = 0.

If now, d1c4 − c1d2 �= 0 and d1c5 − c1d5 �= 0, (3.5) is equivalent to

(3.6)
(i) (d1c4 − c1d2)α2 + (d1c2τ1 + d1c3τ2 + h.o.t. (τ1, τ2)) = 0,

(ii) (d1c5 − c1d5)α2
2 + (−c1d3τ1 − c1d4τ2 + h.o.t. (τ1, τ2))α2

+ (terms of order ≥ 3 in (τ1, τ2)) = 0.

We now have the following lemma.

Lemma 3.1. Suppose that c1, d1, e1, d1c4 − c1d2, d1c5 − c1d5 are
all nonzero. If, in addition, either (d1c5 − c1d5)d2

1c
2
2 + (d1c4 −

c1d2)(c1c2d1d3) �= 0 or (d1c5 − c1d5)d2
1c

2
3 + (d1c4 − c1d2)c1c3d1d4 �= 0,

then there exist at most two curves in R2 passing through (λ∗, μ∗) such
that if (λ∗ + τ0

1 , μ∗ + τ0
2 ) is not on one of these curves and (τ0

1 , τ0
2 ) is

sufficiently near (0, 0) then the number of small norm nonzero solutions
to (1.4 1.5) for λ = λ∗ + τ0

1 , μ = μ∗ + τ0
2 , is the number of distinct real

roots of (3.4) at (τ1, τ2) = (τ0
1 , τ0

2 ).

Proof. Since d1c4 − c1d2 �= 0, we may solve for α2 in terms of τ1 and
τ2 in (3.6)(i). Substituting the result into (3.6)(ii) yields an analytic
equation in τ1 and τ2 with lowest order pure power terms ((d1c5 −
c1d5)d2

1c
2
2 +(d1c4− c1d2)(c1c2d1d3))τ2

1 and ((d1c5− c1d5)d2
1c

2
3 +(d1c4−

c1d2)(c1c3d1d4))τ2
2 . The lemma now follows from the Weierstrass

preparation theorem and the quadratic formula.

Before establishing our main result, we need an additional observa-
tion. Assume that c1, d1, and e1 are all nonzero. Then (λ∗, μ∗, 0, 0) is
an isolated solution of (1.4) (1.5) (in {(λ∗, μ∗)} × E2). Consequently,
there is an ε0 > 0 with the property that if 0 < ε < ε0, there is a
corresponding δ(ε) so that

(3.7) {(λ, μ, u, v) : (λ, μ, u, v) solves (1.4) (1.5),
|(λ, μ) − (λ∗, μ∗)| ≤ δ(ε), and ||(u, v)|| = ε} = ∅.
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That such is the case follows from the compactness of G = L−1.

Now let σ > 0 be small enough that

{(λ, μ) : (λ, μ) ∈ B((λ∗, μ∗); σ)

and

dim
{

N

(
I−

(
λf1G λf2G
μg1G μg2G

))}
= 2} = {(λ∗, μ∗)}.

Let λ̃n+ , λ̃n− , λ̃m+ , λ̃m− denote the four components of the intersection
of the generalized spectrum with B((λ∗, μ∗); σ)\{(λ∗, μ∗)}.

Let 0 < ε < ε0 and 0 < δ < δ(ε) and consider (1.4) (1.5)
in (∂B(λ∗, μ∗); δ)) × E2. Let Cn+ denote the maximal component
of the closure of the set of nontrivial solutions to (1.4) (1.5) (in
(∂B(λ∗, μ∗); δ))×E2) which emanates from the intersection {(λn+ , μn+)}
of ∂B((λ∗, μ∗); δ) and λ̃n+ ; similarly, for Cn− , Cm+ , and Cm− . Then

dim

(
∪k≥1N

{(
I−

(
λn+f1G λn+f2G
μn+g1G μn+g2G

))k
})

= 1.

Consequently, Cn+ satisfies the global bifurcation alternatives of Rabi-
nowitz [7] relative to (∂B((λ∗, μ∗); δ))×E2, as do Cn− , Cm+ , and Cm− .
From (3.7), Cn+ ⊆ (∂B((λ∗, μ∗); δ) × B((0, 0); ε)⊆ (∂B((λ∗, μ∗); δ)) ×
E2, and similarly for Cn− , Cm+ , and Cm− . Consequently, so long as
λn/λm < (

√
f1g2 − √

f2g1)/(
√

f1g2 +
√

f2g1), at least one of the four
components of ∂B((λ∗, μ∗); δ)\{λn+ , μn+), (λn− , μn−), (λm+ , μm+),
(λm− , μm−)} must be contained in the projection into ∂B((λ∗, μ∗); δ)
of both a Cn and a Cm. Let G denote said component. If, for some
(λ, μ) ∈ G, there is only one nontrivial solution to (1.4) (1.5) of norm
less than ε, the Cn and Cm intersect and by connectivity are the same.
We have now proved the following lemma.

Lemma 3.2. Assume c1, d1 and e1 are all nonzero and that λn/λm <
(
√

f1g2−
√

f2g1)/(
√

f1g2 +
√

f2g1). Let λ̃n+ , λ̃n− , λ̃m+ , and λ̃m− be as
above. Then a switch in nodal structure for the solutions of (1.4) (1.5)
occurs in a neighborhood of (λ∗, μ∗) provided that, for a sufficiently
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small δ > 0, each component of ∂B((λ∗, μ∗); δ)\{λ̃n+ ∪ λ̃n− ∪ λ̃m+ ∪
λ̃m−} contains a (λ, μ) with only one associated small norm nonzero
solution.

It is a consequence of Lemma 3.1 and Lemma 3.2 that a switch
in nodal properties for the solutions of (1.4) (1.5) will occur in a
neighborhood of (λ∗, μ∗) provided (3.4) has exactly one real root for
(τ1, τ2) in an open region of each component of B((0, 0); δ)\{τ̃n+∪ τ̃n−∪
τ̃m+∪τ̃m−}. (Here τ̃n+ denotes the translate of λ̃n+ to (0, 0) in the τ1-τ2

plane.) Since (3.4) is cubic, we naturally use the cubic discriminant at
this point. Recall that if we have cubic equation

(3.8) y3 + py2 + qy + r = 0,

with p, q, and r real numbers, and if we let

a =
1
3
(3q − p2)

b =
1
27

(2p3 − 9pq + 27r),

then (3.8) has one real and two complex conjugate roots when

b2

4
+

a3

27
> 0.

If we normalize (3.4) by letting mi = (ei + 1)/e1, then p, q and r have
the forms

p = m1τ1 + m2τ2 + h.o.t. (τ1, τ2),
q = m3τ

2
1 + m4τ

2
2 + m5τ1τ2 + h.o.t. (τ1, τ2),

r = m6τ
3
1 + m7τ

2τ2 + m8τ1τ
2
2 + m9τ

3
2 + h.o.t. (τ1, τ2).

Consequently, a and b have the forms

a = n1τ
2
1 + n2τ1τ2 + n3τ

2
2 + h.o.t. (τ1, τ2),

b = n4τ
3
1 + n5τ

2
1 τ2 + n6τ1τ

2
2 + n7τ

3
2 + h.o.t. (τ1, τ2),

where the n’s are expressed in terms of the m’s and are given in the
Appendix. Finally,

(3.9)
b2

4
+

a3

27
= γ1τ

6
1 + γ2τ

5
1 τ2 + γ3τ

4
1 τ2

2 + γ4τ
3
1 τ3

2 + γ5τ
2
1 τ4

2

+ γ6τ1τ
5
2 + γ7τ

6
2 + h.o.t. (τ1, τ2),
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where the γ’s are expressed in terms of the n’s (see the Appendix). We
may now state our main result.

Theorem 3.3. Suppose the hypotheses of Lemma 3.1 and Lemma
3.2 are satisfied and, in addition, that γ1 �= 0. Let

ωn = λ(n)′(μ∗) =
−λ2

nf2g1

((f1g2 − f2g1)μ∗ − f1λn)2

and

ωm = λ(m)′(μ∗) =
−λ2

mf2g1

((f1g2 − f2g1)μ∗ − f1λm)2
.

Let P (x) = γ1x
6 + γ2x

5 + γ3x
4 + γ4x

3 + γ5x
2 + γ6x + γ7, where γi,

i = 1, 2, . . . , 7, are as in (3.9). Then if P (ωn) > 0 or P (ωm) > 0,
there is a switch of nodal types for solutions to (1.4) (1.5) occurring
for parameter values in any sufficiently small neighborhood of (λ∗, μ∗).

Proof. Since γ1 �= 0, the Weierstrass preparation theorem [4] guaran-
tees that the right-hand side of (3.9) may be written ω(τ1, τ2) ·E(τ1, τ2)
where ω1 is a Weierstrass polynomial of degree six in τ1 and E is ana-
lytic with E(0, 0) = 1. The sign of (3.9) is then the same as ω(τ1, τ2)
for |(τ1, τ2)| sufficiently small. Then if τ2 �= 0, ω(τ1, τ2) > 0 if and only
if ω(τ1, τ2)/τ6

2 > 0. Hence, ω(τ1, τ2) > 0 if and only if

P

(
τ1

τ2

)
+
(

τ1

τ2

)5

h1(τ2) +
(

τ1

τ2

)4

h2(τ2) +
(

τ1

τ2

)3

h3(τ2)

+
(

τ1

τ2

)2

h4(τ2) +
(

τ1

τ2

)
h5(τ2) + h6(τ2) > 0,

where hi is an analytic function of τ2 such that hi(0) = 0 and hi is
real-valued for τ2 ∈ R.

Suppose now that P (ωn) = c > 0. Then there is an ω > 0 so that
P (τ1/τ2) > c/2 if τ2 �= 0 and (τ1/τ2) ∈ [ωn−ω, ωn +ω]. Since hi(0) = 0
for i = 1, 2, . . . , 6, there is a number η > 0 such that

6∑
i=1

∣∣∣∣τ1

τ2

∣∣∣∣
6−i

|hi(τ2)| <
c

4
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if τ1/τ2 ∈ [ωn−ω, ωn+ω] and 0 < |τ2| < η. Consequently, ω(τ1, τ2) > 0
if τ1/τ2 ∈ [ωn −ω, ωn + ω] and 0 < |τ2| < η, and the result follows. An
analogous argument holds if P (ωm) > 0.

4. An example. Consider the problem

(4.1)
−u′′ = λ(2u + v + u2)
−v′′ = μ(u + v + v2)

(4.2)
u(0) = 0 = u(π)
v(0) = 0 = v(π).

Since −w′′ = αw, w(0) = 0 = w(π) has eigenvalues α = m2,
m = 1, 2, . . . , with corresponding eigenfunctions sin mt, m = 1, 2, . . . ,
it follows that the generalized spectrum for (4.1) (4.2) is{

(λ, μ) ∈ R2 : λ =
n2(μ − n2)
μ − 2n2

for some n ∈ Z+

}
.

In particular, if λ(1)(μ) = (μ−1)/(μ−2) and λ(3)(μ) = 9(μ−9)/(μ−18),
then

λ1

λ3
=

1
9

<

√
2 · 1 −√

1 · 1√
2 · 1 +

√
1 · 1 =

√
∂f(0,0)

∂u
∂g(0,0)

∂v −
√

∂f(0,0)
∂v

∂g(0,0)
∂u√

∂f(0,0)
∂u

∂g(0,0)
∂v +

√
∂f(0,0)

∂v
∂g(0,0)

∂u

.

Hence the hyperbolae λ(1) and λ(3) intersect. In fact, a simple compu-
tation shows that, at the points of intersection, μ = 5 +

√
7 or 5−√

7.
We therefore take (λ∗, μ∗) = ((5 −√

7)/2, 5 +
√

7).

We aim to show that Theorem 3.3 is applicable and that switching of
nodal types occurs around (λ∗, μ∗) = ((5−√

7)/2, 5+
√

7). Toward this
end, we must calculate the coefficients for (3.2)(i) and (3.2)(ii). In order
to do so, we must obtain φ1, φ2 and the functionals γ1, γ2. Notice that

φ1 and φ2 may be taken as
( sin t

β1 sin t

)
and

( sin 3t
β3 sin 3t

)
, respectively,

where β1 and β3 are as given in Lemma 2.1. It is immediate that

β1 =
λ1 − λ∗f1

λ∗f2
=

1 −
(

5−√
7

2

)
· 2(

5−√
7

2

)
· 1

=
√

7 − 13
9
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and

β3 =
λ3 − λ∗f1

λ∗f2
=

9 −
(

5−√
7

2

)
· 2

5−√
7

2

= 3 +
√

7.

From [2, §3], it follows that γ1 and γ2 may be taken as

γ1

(
u
v

)
=

1
k1

(∫ π

0

(
u

sin t

λ∗ + v
β1 sin t

μ∗

)
dt

)

and

γ2

(
u
v

)
=

1
k2

(∫ π

0

(
u

sin 3t

λ∗ + v
β3 sin 3t

μ∗

)
dt

)

where k1 =
∫ π

0
((sin2 t)/λ∗+(β2

1 sin2 t)/μ∗) dt and k2 =
∫ π

0
((sin2 3t)/λ∗+

(β2
3 sin2 3t)/μ∗) dt. A simple computation will show that k1 = ((52 −

4
√

7)/81)π and k2 = ((12 + 4
√

7)/9)π. Consequently, γ1 and γ2 are
given.

Observe now that, for (4.1) (4.2), N11 = N23 = 1 (see the Appendix),
while the other terms in the quadratic expansion of f and g are zero.
The computations involved in determining the coefficients in (3.2)(i)
and (3.2)(ii) for (4.1) (4.2) are simplified somewhat by this fact. One
will find that these coefficients are as follows:

c1 =
61
√

7 − 235
54π

d1 = −
(

595 − 133
√

7
(2430)π

)

c2 =
3 +

√
7

8
d2 = −

(
37 + 29

√
7

35π

)

c3 =
3 −√

7
16

d3 =

(
13 −√

7
72

)

c4 = −
(

77 + 21
√

7
15π

)
d4 =

13 +
√

7
144

c5 = − (275 + 107
√

7)(9)
70π

d5 =
35 + 11

√
7

18π
.

It is easy to calculate that ω1 =(3
√

7−8)/2 and ω3 =(−88+13
√

7)/166.
Employing the symbolic manipulation program MU-MATH, we may
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determine the coefficients in P in this case and evaluate P (ω1) and
P (ω3). It turns out that

P (ω1) = 135168820322265625/465575385114047037
035487855558745922088450164514619392PI∧6
(−192575321696809006195999626679898843674
+ 72786629979716818209633066601426891801 7∧(1/2))

and

P (ω3) = 12981613503750390625/13967261553421411111064635666762
37766265350493543858176 PI∧6(−6748085436520111274763118
+ 2549462243054411756659907 7∧(1/2)).

Observe now that P (ω1) has the form (p/q)(−a+b
√

7)π6, where p, q, a,
and b are positive integers and P (ω1) is positive provided 7b2 − a2 is
positive. We find that this quantity is

15479136944417532808136858437499373912179259916640037346931.

Consequently, P (ω1) > 0 and a switch in nodal structure from solutions
to (4.1) (4.2) whose components have no zeros in (0, π) to solutions of
(4.1) (4.2) whose components have two simple zeros in (0, π) occurs.

APPENDIX

The coefficients alluded to in the body of this paper are as follows:

Ñ

(
u

v

)
=

(
Ñ1 (u, v)

Ñ2 (u, v)

)
=

(
N11u2 + N12uv + N13v2

N21u2 + N22uv + N23v2

)
.
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c1 =

〈(
(g2(N11 + N12βn + N13β2

n) − f2(N21 + N22βn + N23β2
n))x2

n

(−g1(N11 + N12βn + N13β2
n) + f1(N21 + N22βn + N23β2

n))x2
n

)
, γ1

〉

c2 =

〈(
g2(f1 + f2βn/λ∗)xn

−g1(f1 + f2βn/λ∗)xn

)
, γ1

〉

c3 =

〈(
−f2(g1 + g2βn/μ∗)xn

f1(g1 + g2βn/μ∗)xn

)
, γ1

〉

c4 =

〈(
(g2(2N11 + N12(βm + βn) + 2N13βmβn) − f2(2N21 + N22(βm + βn)

(−g1(2N11 + N12(βm + βn) + 2N13βmβn) + f1(2N21 + N22(βm + β2
n)

+2N23βmβn))xnxm

+2N23βmβn))xnxm

)
, γ1

〉

c5 =

〈(
(g2(N11 + N12βm + N13β2

m) − f2(N21 + N22βm + N23β2
m))x2

m

(−g1(N11 + N12βm + N13β2
m) + f1(N21 + N22βm + N23β2

m))x2
m

)
, γ1

〉

d1 =

〈(
(g2(N11 + N12βn + N13β2

n) − f2(N21 + N22βn + N23β2
n))x2

n

(−g1(N11 + N12βn + N13β2
n) + f1(N21 + N22βn + N23β2

n))x2
n

)
, γ2

〉

d2 =

〈(
(g2(2N11 + N12(βm + βn) + 2N13βmβn) − f2(2N21 + N22(βn + βn)

(−g1(2N11 + N12(βm + βn) + 2N13βmβn) + f1(2N21 + N22(βm + β2
n)

+2N23βmβn))xnxm

+2N23βmβn))xnxm

)
, γ2

〉

d3 =

〈(
g2(f1 + f2βm/λ∗)xm

−g1(f1 + f2βm/λ∗)xm

)
, γ2

〉

d4 =

〈(
−f2(g1 + g2βm/μ∗)xm

f1(g1 + g2βm/μ∗)xm

)
, γ2

〉

d5 =

〈(
(g2(N11 + N12βm + N13β2

m) − f2(N21 + N22βm + N23β2
m))x2

m

(−g1(N11 + N12βm + N13β2
m) + f1(N21 + N22βm + N23β2

m))x2
m

)
, γ2

〉
e1 = (2c1d5 − c4d2 + 2c5d1)2 − (4c1c5 − c24)(4d1d5 − d2

2)

e2 = 2(2c1d3 − c2d2)(2c1d5 − c4d2 + 2c5d1) + 2c2c4(4d1d5 − d2
2)

− 4d1d3(4c1c5 − c24)

e3 = 2(2c1d4 − c3d2)(2c1d5 − c4d2 + 2c5d1) − 4d1d4(4c1c5 − c24)

+ 2c3c4(4d1d5 − d2
2)

e4 = (2c1d3 − c2d2)
2 + c22(4d1d5 − d2

2) + 8c2c4d1d3

e5 = (2c1d4 − c3d2)
2 + c23(4d1d5 − d2

2) + 8c3c4d1d4

e6 = 2(2c1d3 − c2d2)(2c1d4 − c3d2) + 2c2c3(4d1d5 − d2
2)

+ 8c2c4d1d4 + 8c3c4d1d3

e7 = 4c22d1d3

e8 = 4c22d1d4 + 8c2c3d1d3

e9 = 4c23d1d3 + 8c2c3d1d4

e10 = 4c23d1d4

mi =
ei+1

e1
, i = 1, . . . , 9
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n1 =
3m3 − m2

1

3

n2 =
3m5 − 2m1m2

3

n3 =
3m4 − m2

2

3

n4 =
2m3

1 − 9m1m3 + 27m6

27

n5 =
6m2

1m2 − 9(m2m3 + m1m5) + 27m7

27

n6 =
6m1m2

2 − 9(m1m4 + m2m5) + 27m8

27

n7 =
2m3

2 − 9m2m4 + 27m9

27

γ1 =

(
n3

1

27
+

n2
4

4

)

γ2 =

(
n2

1n2

9
+

n4n5

2

)

γ3 =

(
n2

1n3 + n1n2
2

9
+

2n4n6 + n2
5

4

)

γ4 =

(
6n1n2n3 + n3

2

27
+

n4n7 + n5n6

2

)

γ5 =

(
n1n2

3 + n2
2n3

9
+

2n5n7 + n2
6

4

)

γ6 =

(
n2n2

3

9
+

n6n7

2

)

γ7 =

(
n2

3

27
+

n2
7

4

)
.
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