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EXTENDED DOMAINS
OF SOME INTEGRAL OPERATORS

P. SZEPTYCKI

ABSTRACT. The extended domain is determined for a
class of integral operators with rapidly oscillating kernels of
modulus one.

1. Introduction. For a o-finite measure space S (or respectively T'),
L9(S) (or respectively L°(T')) denotes the space of all measurable finite
a.e. complex valued functions on S (or 7') with the metric topology of
convergence in measure on all subsets of finite measure.

K : D C L°(S) — L%(T) is an integral operator with kernel k(t, s)
and with the (proper) domain Dg = {u € L(S) : [ [k(t, s)||u(s)|ds <
00 a.e.}:

(1.1) Ku(t) = /Sk(t,s)u(s) ds, u € Dg.

We assume that K is nonsingular, i.e., 39 € Dk, g > 0 a.e.

The extended domain Dy of K was first introduced in Aronszajn-
Szeptycki [1]. It is the maximal solid topological vector subspace of
L9(S) to which K can be extended by continuity.

For more information about these notions we refer to Labuda-
Szeptycki [3, 4] and to bibliographies in these papers.

In [3] the extended domain Dg was found for kernels k of the form
(1.2) k(t,s) = exp iP(t — s), t,s € R,
where P is a real polynomial in one variable. The spaces which

occur in this context are of independent interest and are referred to
as compressed amalgams (see Fournier-Stewart [2]).
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The aim of the present note is to show that the approach used in [3]
applies to more general kernels of the form

(1.3) k(z,y) = exp i¢(t, s), s,teR,

where ¢ : R? — R is a continuous function satisfying suitable regularity
conditions and suitable growth conditions with respect to the variable
5. Obviously in this case Dg = L'(R). Dx turns out to be a suitable
compressed ¢%(L') amalgam determined by the rate of growth of ¢ with
respect to s.

The approach applies to the case where ¢(t,s) is an arbitrary real
polynomial with nonzero mixed derivative ¢;s or when ¢(¢,s) = |t — s|
where @ > 1. (Note that when ¢;s = 0, k is a one dimensional operator
and the questions we are addressing become trivial.) This complements
the result in Labuda-Szeptycki [3] and gives the positive answer to a
question stated in that paper.

We note that some special cases of k of the form (1.3) can be reduced
by a suitable change of variables to the Fourier transform in which case
the extended domain is the (ordinary) amalgam ¢?(L'). The results
below could be viewed as perturbations of this approach, even though
we were unable to derive them directly from those corresponding to the
Fourier transform.

2. Some definitions and notations. We recall the concept of the
extended domain of an integral operator defined by (1.1).

Denote by 7 the weakest (locally) solid topology in L°(S) which
makes the operator K : D C L%S) — L°(T) continuous. It turns
out that 7 is a complete metric group topology whose restriction to
Dy is a vector topology.

The closure Dy of Dg in L°(S) equipped with 7 is referred to as
the extended domain of K.

The same construction can be carried out with L°(T) replaced by a
smaller image space L C L°(T)). This gives rise to the extended domain
relative to L, Dk 1.

We do not describe the explicit construction of the distance function
giving rise to the topology 7, as it will not be needed in this paper.
We will use, however, the following characterization of D .
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For a function u € L°(S) we denote by F, the collection of all
sequences {g,} C Dk with supports of g,, for distinct n’s intersecting
along null sets and such that |g,| < |u| a.e. for every n.

Theorem 1.1. u € D < X|Kg,(t)]> < 0o a.e. on T ¥{g,} € Fu.

There are some variants of this theorem; we state two of them.
Let S=T =R.

For u € L°(R) let F/, be the collection of all sequences {g,} in F,
with supports of g, contained in nonoverlapping intervals.

_Theorem 1.2. If k is continuous and # 0 everywhere on R?, then
Di C L. andu € Dk < X|Kg(t)]* < oo V{g/} € F, and a.e. t € R.

loc

We next consider the extended domain relative to L . Let k be as

in Theorem 1.2 and let this time 7" be any subset of R.

Theorem 1.3. u € DK,L? 0 © S [o|Kat)?dt < oo V{g} € F,
Yu compact C C T.

The proof of Theorem 1.3 is quite similar to that of Theorem 1.2 in [3]
and uses a known property of series whose partial sums with all changes
of signs form a bounded set in L? (if {ZnN:1 +fu; N=1,2,...}isa
bounded set in L? then X||f,|* < 00).

Remark . We don’t know a useful characterization of the extended
domain relative to L , similar to those in Theorems 1.2 and 1.3.

We recall next the notion of compressed amalgam of ¢9 with LP (see
[2])-

For an increasing sequence {f,}52 _ . such that 8, T co as n — oo
and (3, | —oo as n — —o0, £4(By, LP) = {u € Li : E||u\|%p(ﬂmﬂn+1) <
p}. With an obvious norm ¢9(3,, LP) is a Banach space referred to as
a compressed, or stretched, amalgam of ¢¢ with L?, depending on the
behavior of the sequence 8,41 — Bn.
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When 3, = n one gets the “ordinary” amalgam denoted by ¢P(L?)
and for p = q, ¢#(B,, LP) = LP(R) for every {8,}.

Note the obvious isomorphism of ¢9((3,,, L?) onto ¢¢(Z, L?) of all ¢¢
sequences with values in L”(0, 1). This isomorphism is topological only

when {8,+1 — B} is bounded and bounded away from 0. In this case
04(fy, LP) coincides with ¢4(LP).

3. Statement of results. Let ¢(t,s) be a real valued polynomial
of two real variables. We write ¢ in the form

(3.1) 6(t,5) = 6(0,5) + do(t)s™ + Y _ d;(t)s™ 7,
j=1
where ¢;(t) are polynomials in ¢,7 =0, ..., m.

We assume that ¢¢ # 0 and that ¢o(0) = 0.

Let k(t,s) = explid(t, s)] and let K be the corresponding integral
operator (1.1). Obviously Dg = L'.

Theorem 3.1. With K as above, Dl( = E{( ', L) where B, =
(sign n)|n|/™. Moreover, in this case Dg = D

R\{roots of ¢}} and K : £*(B,,L') — L

loc

KL, (T) where T =

(T') is continuous.

In the case of convolution operator with ¢(t,s) = P(t — s), where P
is the real polynomial of one variable, the result is given in [3]; in that
case T = R. The next theorem confirms a conjecture made in that

paper.

Theorem 3.2. Let a > 1, let k(t,s) = expli|t — s|%], and let K
be the corresponding integral operator. Then Dy = 2(B,, L) where
B = (signn)|n|/ @V, In this case Dk = DKLlloc(R) = DKLfoc(R) and
K : 02(B,, L) — L2

oo(R) is continuous.

Recall that, for « € (0,1] and K as above, D = Dg = L*.

Theorems 3.1 and 3.2 can be obtained as special cases of a single
result which may be of independent interest.
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Let w(s) be a strictly increasing function, w(s) T co as s — oo and
w(s) } —oo as s = —oo. Consider the following condition on a function
¢(t, ).

R can be written as the union of an at most countable collection I' of
closed intervals {I'}, bounded or unbounded, such that for every I € T,
there is an M > 0 such that, for ¢t € I and s > M and, respectively, for
tel, s<—M, ¢(t,s) can be represented in the form similar to (3.1):

(3.2)  &(t,s) = p_1(s) + do(t)w(s) + Z ¢; ()|w(s)|*777 + 1h(t, s)
jp<l

where ¢_1(s) is measurable, p € (0,1), ¢;(t) are m + 1 times continu-

ously differentiable on I where m is the least integer > 1/p and ¢, is

strictly monotone on I.

The function (¢, s) is continuous and bounded together with partial
derivatives with respect to ¢ up to order m+1 and satisfies the condition
(3.3)

max{|¢(t,s) — Y(t,w 1(n)| :s € [w (n),w H(n+1)],t€l} =0

as |n| — oco.

Note that the representation (3.2) is allowed to have different coeffi-
cients ¢; and v for s > M and for s < —M.

Theorem 3.3. If ¢ satisfies the above conditions and if k(t,s) =
exp(ig(t, s)), then Dg = €*(Bn, L") where B, = w=(n). Moreover,
Di = DKLfoc(T) where T = UpI™ and K : (2(Bp, L') — L} (T) is
continuous.

We notice that in the special case when ¢; = ¢ = 0, j > 0, and
w is locally absolutely continuous, Theorem 3.3 can be obtained by a
change of variables from the known characterization of the extended
domain of the Fourier transform as the amalgam ¢?(L%).

We next explain how Theorem 3.3 implies Theorems 3.1 and 3.2.

Since ¢g(t) in (3.1) is a nonconstant polynomial, ¢ (t) is monotone on
each connected component of R\{roots of ¢}. In this case w(s) = s™,
p =1/m and ¥(¢,s) = 0. For each of the components I of 7', M may
be taken to be 0; ¢;(t) has to be replaced by —¢;(t) when s™~7 < 0 to
reconcile (3.1) with (3.2).
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To accommodate Theorem 3.2 write I' = {[-M,M|;M = 1,2,...}
and for each M and [t| < M < |s],

L (e g (5) (§)é-

We get the representation (3.2) with ¢_1(s) = |s|*, do(t) = ¢,
w(s) = signs|s|*1, ¢; = (].j'r‘l)t‘j+1 when s > M and (—1)/+1 (ji‘l)tj*l
when 1 < M, p=1/(a—1) (if 1 < a < 2 then ¢; =0 for j > 0) and
¥(t, s) is the part of the series 3.4 for [ > [a]—the integer part of a.

4. Outline of proofs. We outline the proof of Theorem 3.1 with
some indications of changes needed to obtain Theorem 3.2. The idea
is quite similar to the corresponding result in [3].

To show that Dg C ¢2 (B, L) we take any u € Dg. Since D is solid
we may assume that exp(i¢(0, s))u(s) > 0 and hence that ¢(0,s) = 0.
Theorem 1.2 implies that v € L{ _ and it follows that the sequence

loc

{X8,.8n4114} € Fu, where X stands for the characteristic function. It
follows now from Theorem 1.1 that

2

Bﬂ+1
(4.1) S(t) = Z‘ / k(t, s)u(s) ds| < oo ace.
For s € [Bn, Bn+1] we write ¢(¢, s) in the form
$(t,5) = po(t)(s™ — B') + B (t)(s7 = BL) + (¢, Bn)

and we factor k(t, s) = exp[i@(t, s)] accordingly.

The term exp[i¢ (¢, 8,)] can be taken out of the integral sign. In the
remaining terms we use the estimates

s"— B < (n+1)—n=1, S%*ﬂ% < (n+1)j/minj/m < pd/m-1,

We also recall that ¢o(0) = 0. It follows that it is possible to choose
d > 0 and ng such that for |¢| < ¢ and for |n| > no,

<

(4.2) Go(t)(s™ — By') + Z_ ¢i(0)(s" — B7) %
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and, consequently,
Brt1
‘ / k(t, s)u(s)

It follows that for every t € [—4, d],

> ([ is) < 150y

[n|>no

Br+1 1 [Br+
2/ Rek(t,s)u(s)ds > 5/ u(s) ds.

n

n

(4.1) implies that the last sum is finite for some t € [—4, ], and it
follows that u € £2(83,, L).

In the proof of Theorem 3.3 the assumption (3.3) is used to arrive at
the estimate (4.2).

_The reverse inclusion will be established in a stronger form (B, LYC

Dk 2 C Dk, where L} stands for L2 (T) as explained in the re-

oc loc
marks after Theorem 3.3.

Let u € (?(B,,L') and let 0 = {I} be any sequence of closed
nonoverlapping intervals. Let

(4.3) S(t,o) =Y |K(xu)(t).

Ico

Let g > 0 be a C§° function with a connected support in 7" (i.e., in one
of the intervals on which ¢¢(¢) is monotone). We will show now that

(4.4) / 9(B)S(t, o) dt < o0,

which according to Theorem 1.3 suffices to establish the desired inclu-
sion.

To get (4.4) we denote by J,, the intervals [B,, Bn+1] occurring in the
definition of ¢?(f3,, L'). Clearly then

(4.5) S(t,{Tn}) < lullez(g,,L1)-

Next let 0 = o’ Uo"” where o/ ={I € 0 : I C J,, U Jp41 for some n}.
Then
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< ZZ{\KXW 1 CJyUdpi}
< Z (KX, 004 [u]())? < 4S5 ({0}, 8)

which by (4.5) is bounded.

For each I € ¢" = o\o', we let T = U{J, : J, N I"™ # &},
& = {I}1con. Note that no more than two intervals of & may overlap
at a time and then the intersection is one of the intervals J,. Also
I=U{J,:J, CI}foreveryIE€s.

It is easy to check the inequality
S(5,t) < 28(0",t) + 4llull2 g, 1)

and also the same inequality with & and ¢’ reversed.

In conclusion, to check (4.4) for a function in ¢%(3,, L') it suffices to
do it with o replaced by &.

S(0,t) can be written in the form

Z/kts

JnCI

Ico

2
dt

and
Z/kts ds

froseo-x ol
ZUZ{/ /Jl/ k(t,r) dt u(s)u (T)dsdr}
Z{al” /Jl [ /Jn lul : Ty, I C I}

where a;, = max{| [ g(t)k(t, s)k(t,r)dt| : s € Ji, r € J,}.

The proof is now concluded by checking that the (symmetric) matrix
ain, defines a bounded operator in ¢%(Z).
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This is accomplished by showing that
(4.6) dam <C

with C independent of [.

The first estimate of a;,, is obtained by repeated use of integration by
parts. We change the variable of integration 7 = ¢¢(¢) and denote
g(t(r))dt/dt by g(r) and ¢;(t(r)) by ¢;(7). We can then write,
integrating by parts,

/ 9O k(t, s)R(E,T) dt
=i(s™ — ™)t /g'(r)k(r, s)k(r,r)dr

m—1
£ |60 =) [ a1kt G ar|
j=1
m71 . . —
=(sm —rm)7 1 /(g(T) + Z (s7 — rj)gj(r)>k(7', s)k(r,r)dr,
j=1
where g; = —g¢/, go = ig’ are all in C§° and have supports in T'.

The integration by parts is now performed again resulting in a sum
of terms of the form

(4.7) —(s™ - rm)fz/g"(r)k(r,s)k(r, r)dr

and
(4.8)

(8™ — M) IR (Tt _pdt) L (g0m — pdm) /gj1 covj (T)E(T, 8)k(T,7) dT

where 1 < j1,...,5, <m—1, jo=0o0r 1, and g;, ...g;, € C5° are

supported in T

n

The integration by parts is repeated in all terms where —m(jy +
p) +ji+ -+ ju = —m and the procedure ends after at most
m + 1 repetitions, resulting in a sum of terms as in (4.7) or (4.8) with
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# < m+1 and degree of homogeneity of the factors in front of integrals
at most —m — 1.

Clearly all the integrals are bounded functions of s, r.

We now estimate a;, by a sum of terms denoted by bl(fz ), each obtained
from an estimate of (4.7) or (4.8).

Since |k(t,s)| = 1 we have the obvious estimate a;, < ||g||r: and

atn < min(lglz1, Y af?) < min(([g|lz:,07) = 3 af?).
j j J

J J

It follows that it suffices to check (4.6) separately for each term of
the last sum.
(0)

in

The term a;,’ corresponding to (4.7) is estimated by

min(||g||z1, const dist (J5", J™) %)

where J™ = {s™ : s € J} and dist denotes the minimal distance. This
(0)

in

In the remaining terms al(fb) corresponding to (4.8) we estimate each
factor (s — r7)(s™ — r™)~! using the inequalities

is sufficient to get (4.6) for a

(7 = r)(s™ = ™) < (Is 4 ) (s 4 ™) i s <0
and

(=) (s™ = ) < jamax(fsl )7 (s )

if s™r™ > 0.

The factor (s™ — r™)~! is estimated as in al(g) and in each of the

above two estimates maximum is taken over |s|, |r|, s € J;, 7 € J,.
This combined with a\?) < llg||z1 yields (4.6) for each al(fl). We omit

in
the straightforward if somewhat tedious details. The last statement

concerning continuity of K follows using the closed graph theorem.

The same proof remains valid in the case described in Theorem
3.3—the differentiability assumptions on ¢g, ¢; and ¥ allow for m + 1



EXTENDED DOMAINS 403

integration by parts when needed. The condition (3.3) is not needed
here but boundedness of ¢ derivatives of ¥ (¢, s) is used.

5. Concluding remarks. The condition in Theorem 3.3, of
piecewise monotonicity of ¢g, cannot be dispensed with—it suffices for
o to be constant on any interval (or a set of positive measure) for Dg
to become smaller (e.g., shrink to L%).

It is not clear to what extent the regularity of ¢ is needed for validity
of Theorem 3.3.

It would be interesting to obtain a characterization of Dg similar to
that in Theorems 3.1-3.3 in the case when k(t, s) = b(¢, s) exp(id(t, s))
where ¢(t, s) is as before and b(t,s) > 0. If b(t, s) is independent of ¢,
then D is an amalgam of ¢? with L' with weight b—the latter space
is the domain Dpg corresponding to the kernel b.

Another question is that of describing the extended domains corre-
sponding to kernels of the form dealt with above, in the case when
T=R% and S = R? with d > 1.

It follows from the general set up (the closed graph theorem) that
K :Dgrz (1) — L2 (T) is continuous. It would be of interest to find

a proof of Theorem 3.3 giving an explicit bound of the seminorms of Ku
in L2 (T) in terms of the norm of w in ¢?(3™, L'). This would avoid the

loc

use of Theorem 1.3 in the proof of the inclusion £2(8,, L") C Dy ;2 .

’“loc
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