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ON EXTENDED WALLMAN TYPE SPACES

PANAGIOTIS D. STRATIGOS

ABSTRACT. In this paper the usual construction of the
Wallman topology on the set of all (0 — 1)-valued, lattice
regular measures is extended to the set of all nontrivial,
nonnegative, bounded, lattice regular measures. Furthermore,
the notion of repleteness is extended to this more general
situation.

0. Introduction. In the usual Wallman construction of a compact
T space associated with an arbitrary set X and an arbitrary disjunctive
lattice of subsets of X, £, one considers the pair (IR(L), W(L)), where
IR(L) is the set of (0 — 1)-valued, L-regular measures on A(L), the
algebra of subsets of X generated by £, and W (L) is a certain lattice
of subsets of IR(L) (see below for definition). W(L) is then taken as a
base for the collection of closed sets of a topology on TR(L), and it turns
out that TR(L) with respect to this topology is compact and Tj. (See
[6].) It is T if and only if £ is normal. If, moreover, £ is separating
and X is given the topology with £ as the base for the closed sets,
then IR(L) is a compactification of X. Specific cases, where X is a
given topological space, give rise to such well-known compactifications
of X as wX, the Wallman compactification of X, 8X, the Stone-Cech
compactification of X, 8y X, the Banaschewski compactification of X,
etc.

Considering the set of o-smooth elements of IR(L), IR(o, L), and
the restriction of W(L) to IR(o, L), W,(L), in [2] it was shown that
W, (L) is replete, i.e., for every element of I R(c, L), v, the support of v
is nonempty. (See also the remark after Theorem 2.4.) If, moreover, L is
separating and X is given the topology mentioned above, then I R(c, L)
with the relative topology “contains” X densely, under a suitable
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identification. Specific cases, where X is a given topological space,
give rise to such well-known spaces as vX, the realcompactification of
X, voX, the N-compactification of X, etc.

In this paper we attempt to construct analogous spaces associated
with MTR(L) — {0}, the set of nontrivial, nonnegative, bounded, £-
regular measures on A(L) and with M+ R(o, L) — {0}, the set of o-
smooth elements of M R(L) — {0}.

In particular, we consider certain lattices of subsets of Mt R(L) —
{0} and Mt R(c,L) — {0}, H(L) and H,(L), respectively. However,
unlike W(L) and W, (L), these are not lattices with respect to the
usual set-theoretic operations N,U, but with respect to N,V, where
H(A)Vv H(B) = H(AU B). (See details below.) Nevertheless, when
restricted to TR(L) and IR(o, L), they yield, respectively, the lattices
W (L) and W, (L) with respect to the usual set-theoretic operations.

We prove (Theorem 2.4) that if £ is disjunctive, then H,(L) is
support-measure replete, i.e., for every element of Mt R(o, H,(L)) —
{0}, v, the support of v is nonempty. This gives a large category of
abstract, support-measure replete lattices. We then give conditions
under which the usual set-theoretic lattice generated by H,(L) is
support-measure replete. This in turn gives many topological examples
of support-measure replete lattices in the usual set-theoretic sense.

Below, we give the terminology and notation which will be used
throughout the paper and some basic facts.

1. Terminology and notation and some basic facts.

(A) Consider any set X and any lattice of subsets of X, L. Assume
@, X € L. The definitions of the following terms are found in [2]: £ is
separating, disjunctive, regular, normal, Lindel6f, compact, countably
compact. (See also [4].)

(B) For an arbitrary function f, the domain of f is denoted by Djy.

The set whose general element is the intersection of an arbitrary
subset of £ is denoted by tL£. The algebra of subsets of X generated
by L is denoted by A(L).

(C) Consider any algebra of subsets of X, A. A measure on A is
defined to be a function u, from A to R, such that p is finitely additive
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and bounded. (See [1, p. 567].) The set whose general element is a
measure on A(L) is denoted by M(L).

For an arbitrary element of M (L), u, the support of p is defined to
be N{L € L/|p|(L) = |u|(X)} and is denoted by S(p).

An element of M(L), u, is said to be L-regular if and only if, for
every element of A(L), E, for every positive number, &, there exists
an element of £, L, such that L C E and |u(E) — p(L)| < e. The
set whose general element is an element of M (L) which is £L-regular is
denoted by M R(L). An element of M (L), p, is said to be £-(o-smooth)
if and only if for every sequence in A(L), (A,), if (4,) is decreasing
and lim,, A,, = &, then lim,, u(A4,) = 0. The set whose general element
is an element of M (L) which is £-(c-smooth) is denoted by M (c, L).
An element of M (L), p, is said to be £-(7-smooth) if and only if, for
every net in £, (L,), if (L,) is decreasing and lim, L, = @, then
lim, p(Ly) = 0. The set whose general element is an element of M (L)
which is £-(7-smooth) is denoted by M(r, L).

The set whose general element is an element of M (L), u, such that
w(A(L)) = {0,1}, is denoted by I(L£). For an arbitrary element of
A(L), A, {p € IR(L)/u(A) = 1} is denoted by W(A) and {u €
IR(o,L)/(A) = 1} by W, (A). At this point, consider the topological
space (IR(L),tW(L)). tW(L) is called the Wallman topology.

(D) L is said to be replete if and only if whenever p € IR(o, L),
then S(u) # @. L is said to be support-measure replete if and only if
whenever p € M R(o, L) — {0}, then S(u) # @. L is said to be measure
replete if and only if MR(o, L) = MR(7,L). The following statement
is true:

If £ is separating and disjunctive, then £ is measure replete if and
only if £ is support-measure replete. (For a related result, see [5].)

Remarks. (1) Consider any topological space X such that X is T} 1
and denote its collection of zero sets by Z. Then the statement “Z is
support-measure replete” is equivalent to “X is measure compact.”

(2) Consider any topological space X such that X is 77 and denote
its collection of closed sets by F. Then the statement “F is support-
measure replete” is equivalent to “X is Borel measure compact.”
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(E) A premeasure on £ is defined to be a function 7, from £ to R,
such that (i) 7(£) = {0,1} and (@) = 0; (ii) For every two elements
of £,Ly, Lo, if L1 C Lo, then (L) < w(Ls); and (iii) For every two
elements of £, Ly, Ly, if 7(L1) = 1 and w(Ls) = 1, then w(LyNLy) = 1.
The set whose general element is a premeasure on £ is denoted by
II(L). An element of II(L), , is said to be £-(o-smooth) if and only if
for every sequence in L, (L,), if (L,) is decreasing and lim,, L,, = &,
then lim,, m(L,) = 0. The set whose general element is an element of
II(£) which is £-(o-smooth) is denoted by II(c, £). L is said to be an
I-lattice if and only if for every element of II(c, £), 7, there exists an
element of IR(o, L), p, such that 7 < p.

We note that there exists a one-to-one correspondence between II(L)
and the set of all L-filters, and there exists a one-to-one correspon-
dence between II(o, £) and the set of all L-filters with the Countable
Intersection Property (C.LP.). (Details can be found in [3].)

2. Topologize M+ R(L) as follows:

For every element of A(L), A, consider {p €
MTR(L) — {0}/pu(A) = u(X)} and denote it by
H(A).

Proposition 2.1. (a) H(9) = 0.
) For every element of A(L), A, H(A") c H(A)'.

For every two elements of A(L), A, B, if A C B, then H(A) C

)
H(B).
d

(

) If L is disjunctive, then for every two elements of A(L), A, B, if
H(A) Cc H(B), then A C B.
(e) For every two elements of A(L), A, B, H(A
(f) For every two elements of A(L), A, B, H(A
(Proof omitted.)
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Next, consider {H(L); L € L} and denote it by H(L).
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Note that the algebraic system (H(L),C,N) is a semi-lattice; how-
ever, the algebraic system (H(L),C,N,U) is not a lattice in the usual
set-theoretic sense, because the following statement is false: For ev-
ery two elements of £, Ly,Ls, H(Ly1) U H(Ly) = sup{H(L1), H(L2)}
relative to C. (See Proposition 2.1 (f).)

Consider the lattice of subsets of MTR(L) — {0} generated by H (L)
and denote it by H(L). (Note that the general element of H (L) is of
the form U?  H(L;), where L, € L for i =1,... ,n.)

Now, consider tH (L) and regard it as a topology on Mt R(L).

Proposition 2.2. The relativization of tH(L) to IR(L) is tW (L)
(the Wallman topology).

Proof. Show IR(L) NtH(L) = tW(L).

(a) Show IR(L) NtH(L) C tW(L). Consider any element of H(L),
U, H(L;). Note that TR(L) N U™, H(L;) = U™, TR(L) N H(L;) =
ur  Wi(L;) = W(U,L;) € tW(L). Consequently, IR(L) NtH(L) C
tW(L).

() Show tW (L) C IR(L) NtH(L). (Proof omitted.)

(v) Consequently, TR(L) NtH(L) = tW(L).

Now, topologize M R(L) as follows:

(a) Consider any net in MTR(L), (um), and any element of
M*R(L), v. {um) is said to converge to v if and only if

(i) For every element of £, L, lim,, y,,(L) < v(L) and

(ii) limgy, pm(X) = v(X).
The statement “(u,,) converges to v” is also expressed as lim,,, ., = v.

(B) Define an operator on P(MTR(L)) as follows: Consider any
element of P(M*R(L)), A. Now, consider the element of P(M* R(L)),
A, described by A = {v € M R(L)/ there exists a net in A, (p,,), such

that lim,, g, = v}. The following statement is true: The operator
“—7 is a closure operator. (Proof omitted.)

(7) Consider the topology on M R(L) associated with this closure
operator and denote it by 7. mi
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Proposition 2.3. The relativization of tH(L) to M+ R(L) — {0} is
contained in the relativization of T to M R(L) —{0}. (Proof omitted.)

The following discussion leads to a “lattice-theoretic” result on mea-
sure repleteness:

Note that the algebraic system (H(A(L)), C,N,U) is not a lattice for
the same reason for which (H(L£),C,N,U) is not a lattice.

Assume £ is disjunctive and define a lattice on H(A(L)) as follows:
(o) H(A(L)) is partially ordered by C. Denote C by <.

(8) For every two elements of A(L), A,B, H(A) N H(B) =
inf {H(A), H(B)} relative to <. Denote N by A.

(v) Show, for every two elements of A(L), A, B, that H(AU B) =
sup{H(A), H(B)} relative to <. Consider any two elements of A(L),
A, B. Note that H(A) ¢ H(AU B) and H(B) C H(AU B). Now,
consider any element of A(L), C, such that H(A) ¢ H(C) and H(B) C
H(C). Then, since L is disjunctive, by Proposition 2.1 (d), A C C
and B C C. Hence, AU B C C. Hence, by Proposition 2.1 (c),
H(AU B) C H(C). Consequently, H(AU B) = sup{H(A),H(B)}
relative to <. Set H(AU B) = H(A) vV H(B).

(Note, in connection with the pair (IR(L),W (L)), for every two
elements of A(L), A, B, that W(A) U W(B) = W(A U B). Hence,
in this case V = U.)

Consequently, the algebraic system (H(A(L)), <,A, V) is a lattice.
Further, this lattice is distributive and complemented.
Consequently, this lattice is a Boolean algebra.

Next, for every element of A(L), A, consider { € MTR(o,L) —
{0}/p(A) = u(X)} and denote it by H,(A).

OBSERVATION. If, in each statement of Proposition 2.1, the letter H
is replaced by H,, the resulting statement is true.

Next, consider H,(A(L)) and define a lattice on it in the same way
as for H(A(L)), thus obtaining the lattice (H,(A(L)),<,A, V). This
lattice is a Boolean algebra. Also, consider the lattice (H, (L), <, A, V).
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Now, assume L is disjunctive and consider any element of M (L), u.
For any two elements of A(L), A, B, if H,(A) = H,(B), then, since
L is disjunctive, A = B. Consider the function p’, which is such
that D,y = H,(A(L)) and, for every element of H,(A(L)), Hs(A),
p'(Hy(A)) = p(A). Note p' € M(H,(L)). Conversely, consider
any element of M(H,(L)),p, and the function g which is such that
D, = A(L) and, for every element of A(L), A, u(A) = p(H,(4)).
Note p € M(L) and p = p'. Further, note p € MR(L) if and
only if ¢/ € MR(H,(L)). Finally, note p € MR(c, L) if and only
if Y € MR(o,H,(L)).

Theorem 2.4. If L is disjunctive, then the lattice (Hy (L), <, A, V)
s support-measure replete.

Proof. Assume L is disjunctive. Consider any element of M T R(c,

H, (L)) — {0}, p, and show S(p) # @. By the definition of support,
S(p) =N{H,(L)/L € L and p(H,(L)) = p(MTR(c, L) — {0})}. Since
p € MR(0,H,(L)), there exists an element of M R(c, L), u, such that
p = ¢’ and p is unique. Then S(p) = N{H,(L)/L € L and p'(H,(L)) =
W (Mt R(o,L) —{0})}. Now, consider any element of H, (L), H,(L),
such that p/'(H,(L)) = @' (M*R(o, L) —{0}). Then, since u’'(H,(L)) =
p(L) and p'(M*R(0, L) — {0}) = p/(Hy (X)) = u(X), (L) = p(X).
Moreover, since p' = p and p # 0, pu # 0. Consequently, u € H,(L).
Consequently, S(p) # @. Hence, (Hy(L),<,A, V) is support-measure
replete. a

Remark . When (H, (L), <, A, V) is restricted to the case of (0 — 1)-
valued measures, the following well-known result is obtained: If £ is
disjunctive, then W, (L) is replete.

Proposition 2.5. H(L) is compact.

Proof. Consider any subset of H(L), {H(Ly); € A} such that
N{H(Lq); € A} = @ and show there exists a subset of A, A*, such
that N{H(Ly);« € A*} = @ and A* is finite. Assume the contrary.
Then {H(Ly);a € A} has the F.ILP. Now, consider {Ly;a € A}
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and show it has the F.I.P. (Proof omitted.) Hence, there exists an
element of Ir(L), i, such that, for every a, u(Ly) = 1 and p is unique.
Consequently, for every o, € H(L,). Hence, N{H(L,);x € A} # .
Thus, a contradiction has been reached. Consequently, there exists a
subset of A, A*, such that N{H(L,);a € A*} = @ and A* is finite.
Hence, H(L) is compact. O

Corollary 2.6. H(L) is compact.

Proof. Since H(L) is the lattice of subsets of M+ R(£) {0} generated
by H(L) and H(L) is compact (Proposition 2.5), it follows readily that
H(L) is compact. o

OBSERVATIONS. (1) tH(L) is compact.

(2) H(L) is measure replete.

Another result on measure repleteness is given by the following
theorem.

_Theorem 2.7. If L is disjunctive and W,(L) is an I-lattice, then
H, (L) is support-measure replete.

Proof. Assume L is disjunctive and W, (L) is an I-lattice. To
show fL,(E) is support-measure replete, consider any element of
MR(o, H,(L))—{0}, p, and show S(p) # @. Assume S(p) = @. By the
definition of support, S(p) = N{E € H,(L)/p(E) = p(M*R(0,L) —
{0})}. Set {E € H,(£)/p(E) = p(M*R(0, L) = {0})} = {Sa; € A}.
Note, for every a, p(Sq) = p(M T R(0, L) —{0}) and N{Ss;a € A} = @.
For every «, since S, € ﬁg(ﬁ), So = U{H,(Auni); Aui € L for
i =1,...,nq}; then Sy C Hy(U{Auni;i = 1,...,n4}) with U{Ay;
i =1,...,na} € L; set U{Ani;i = 1,...,nq} = Ly; then S, =
H,(L,). Consequently, for every a, p(H,(Ly)) = p(M*R(o, L) — {0})
and ¢ = IR(0,L) N N{Se;a € A} = N{IR(0,L) N Sy;a € A} =
N{Wsy(La);a € A}

Now consider {W,(Ly);a € A}. Show {W,(L,);a € A} has
the C.I.LP. Assume the contrary. Then there exists a sequence in
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{Wy(La);o € A}, (W,(L;)), such that N{W,(L;
and (W, (L;)) is decreasing. Consider any such (W(7
since N{W,(L;);i € N} = W,(N{Li;i € N}), W,(n{
@. Hence, N{L;;i € N} = @. Then Hy(N N{Li;i
Hence, since H,(N{Li;i € N}) = n{H,(L;);i € N}, Nn{Hy(L;
N} = @. Consequently, (H,(L;)) is decreasing and lim; H, (L) =
Hence, since p € MR(o, H,(L)), lim; p(H,(L;)) = 0. Further, note,
since (H,(L;)) is in {H,(Ly);a € A}, for every i, p(Hy,(L;)) =
p(MtR(o,L) — {0}) # 0. Hence, lim; p(H,(L;)) # 0. Thus, a
contradiction has been reached. Consequently, {W,(Ly,); « € A} has
the C.LP.

Hence, there exists an element of IT, (W, (L)), 7, such that, for every
a,m™(Ws(Ly)) = 1 and  is unique. Hence, since W, (L) is an I-lattice,
there exists an element of IR(o, W, (L)), T, such that 7 < 7 on W,(L).
Consider any such 7. Then, since 7 < 7 on W, (L), S(7) C S(m). Since
L is disjunctive, W, (L) is replete. (See [2].)

Hence, since 7 € IR(0, W, (L)), S(7) # @. Consequently, S(w) # @.
Since for every a, m(Wy(Ly)) = 1, S(m) € N{W,(Ly);a € A}.
Consequently, "{W,(Ly); « € A} # @. Thus, a contradiction has been
reached. Consequently, S(p) # @. Hence, H,(L) is support-measure
replete. a

Proposition 2.8. If L is disjunctive and Lindeldf, then L is an
I-lattice. (Known.)

Proposition 2.9. If L is an I-lattice, then W,(L) is Lindeldf.
(Known.)

Corollary 2.10. If L is an I-lattice, then W, (L) is an I-lattice.

Proof. Assume L is an I-lattice. Then, by Proposition 2.9, W, (L) is
Lindel6f. Hence, since W, (L) is disjunctive, by Proposition 2.8, W, (L)
is an I-lattice. O

Corollary 2.11. If £ is disjunctive and Lindeldf, then H,(L) is
support-measure replete.
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Proof. Assume L is disjunctive and Lindel6f. Then, by Proposition
2.8 and Corollary 2.10, W, (£) is an I-lattice. Hence, by Theorem 2.7,
H, (L) is support-measure replete.
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