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SHOCK LAYER BEHAVIOR FOR A
QUASILINEAR BOUNDARY VALUE PROBLEM

STEPHEN J. KIRSCHVINK

ABSTRACT. We provide sufficient conditions for both the
existence and detailed approximations of shock layer solutions
of the quasilinear problem

ey’ = f(t,y)y' +9(t,y)

y=4, yb)=3B,
subject to relatively weak regularity requirements on the data
(¢ > 0 is a small positive parameter). Our approach is new
and is based upon previous studies of this problem where
detailed approximations have been given for solutions with
boundary layer behavior at either the left- or right-hand
endpoints. By joining boundary layer solutions together in
an appropriate fashion, we are able to obtain the existence

of solutions with shock layer behavior. Problems of this type
arise in fluid dynamics.

1. Introduction. We consider here the singularly perturbed scalar
boundary value problem

ey’ = f(t,y)y' +9(t,y), a<t<b,

(1 y@)=A and y(b) =B,

where ¢ > 0 is a small positive parameter, and where y, f, g, A, and B
are real-valued quantities. Our goal is to provide sufficient conditions
on the data so that there exists a solution of problem (1.1) exhibiting
interior (shock) layer behavior at ¢ = T as ¢ — 0, where T is a fixed
constant in the interval a < T" < b to be determined below. Detailed
approximations of solutions to (1.1) will also be obtained.

We approach this problem by considering the following two problems
which have, under appropriate conditions such as those given below,
boundary layer behavior at t = 7, where 7 = T + O(e):

eyl = f(t,y)yy +9t,yr), a<t<r,

(12) yr(a) = A and yr(r)=p,
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and

Eygl% = f(tvyR)ygi + g(tayR)v T<tE< b7

(13) yr(t)=p and ygr(b) = B.

p is a real valued constant to be discussed below. The idea is to let
7 be a free parameter and to join the left solution, yr,(¢,¢), with the
right solution, yg(t, ), at some value of 7, say 7 = 19, so that yr, () =
yr(70) and y7,(70) = yr(70). Once this has been accomplished, we see
from (1.2) and (1.3) that y} (70) = y%(70), and hence that the function

t,e <t<
y(t,E): yL( ) )7 ax>txTo,
yR(tvg)v 70 S t S b7

is a solution of (1.1) with interior layer behavior. In Figure 1.1 the
function passing through the point (79, p) has a continuous derivative
at that point and is a solution of (1.1). The functions passing through
the points (71,p) and (72,p) do not have continuous derivatives at
these points and consequently are not solutions to problem (1.1). As
discussed below in our proof, it will be sufficient to vary the parameter
T in an interval [r1,T2], where 75 — 71 = O(g), enabling detailed
approximations for shock layer solutions to be obtained.

A number of papers have appeared in the literature throughout the
last 30 years dealing with a wide variety of interior layer phenomena,
such as in Haber and Levinson [4], Vasileva [12], O’Malley [10],
Boglaev [1], Fife [3], Howes [5], Lutz and Sari [8], Smith [11], and
Jeffries [6]. It appears, however, that much remains that is unknown
concerning interior layer behavior, for both the scalar as well as the
vector boundary value problems. Most of the results to date have
used rather strong assumptions on the data, or have not provided
the detailed information, quantitatively speaking, for the solutions
inside the interior layers. The work we present here has been highly
motivated by the work of Howes [5] and O’Donnell [9]. Howes [5]
provided shock layer results for the scalar problem (1.1), but neglected
to include the appropriate “interior layer stability conditions,” as they
are automatically satisfied by certain types of problems, an example of
which will be discussed in Section 4. O’Donnell [9] dealt with a vector
analog of problem (1.1) and also did not include the necessary interior
layer stability conditions. Using an asymptotic expansion and Green
function technique of Smith [11], Jeffries [6] obtained an existence
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FIGURE 1.1. The solid curves represent solutions to problem (1.3) and the dashed
curves represent solutions to problem (1.2) for 7 = 71, 709, and 2. 72 — 71 = O(e).

result providing detailed approximations of solutions of shock layer
type for problem (1.1), although he required the functions f and g to
satisfy strong smoothness conditions (f, g, € C® w.r.t. y). The results
in this section provide existence and fairly detailed approximations of
solutions to (1.1) throughout the interval [a,b], with the only lack of
detailed information occurring inside the interior layer. Here our shock
layer correction terms are just O(e) translations in the independent
variable t away from providing uniformly valid detailed approximations
(ya) of the exact solutions (y), i.e., |y(t,e) — ya(t,€)| = O(e) for t in
[a, b]; these results are obtained under relatively weak conditions.
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2. Preliminary results. In order to obtain our results, we make
use of the following two theorems which provide existence and detailed
approximations of solutions with boundary layer behavior at either the
left or right endpoints. They are equivalent to Theorems 3.3.1 and 3.3.2
of Kirschvink [7] and are extensions of the results of Coddington and
Levinson [2] and Howes [5]; the latter two papers do not provide the
detailed approximation of solutions inside the boundary layers, which
is crucial in obtaining the existence of shock layer solutions as is done in
this paper. The two domains referred to in the theorems are defined in
terms of lower and upper solutions as is done in Kirschvink [7], namely,

Dp={(ty):a<t <7, ar(te) <y < Br(te)}

and
DR = {(t7 y) - T S t S b7 O‘R(tvg) S Yy S BR(t,E)},

where (ar,Br) and (ag,Bgr) are appropriate bounding pairs corre-
sponding to problems (1.2) and (1.3), respectively. A clear discussion
of the domains used for the shock layer results will be discussed below.

Theorem 2.1. Assume

(1) the reduced problem 0 = f(t,u)u’ + g(t,u), u(a) = A, has a
solution uy, = ur(t) of class C®|a,];

(2) f and g are of class CV) with respect to t and y for all (t,y) in
Dy;

(3) the reduced solution uy, = wur(t) is globally stable, that is,
ft,ur(t)) > k>0 fort in [a,7];

)

(4) the inequality

ur (1)

(UL(T)—p)'/ f(r,8)ds >0

holds for p < n < ur(r) if p < ur(r), or for up(r) < n < p if
ur(r) <p.

Then there exists a solution yr, = yr(t,€) of problem (1.2) for each
sufficiently small € > 0 such that, fort in [a,T],

(2.1) yr(t,e) = ur(t) + wr(t,e) + O(e)
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and

a1 (t—7)

(22)  yplte) =up(t) +wilt,e) + 0 (X7 ) +0(e),

where wy,(t,€) is the unique solution of the equation
(2.3) ewy, = f(r,ur(r) + wr)wy

satisfying wr (1) = p — ur(7) and lime_,owr,(t,e) = 0 for each fized
t < T. q 15 a positive constant.

Theorem 2.2. Assume that

(1) the reduced problem 0 = f(t,u)u’ + g(t,u), u(b) = B, has a
solution ur = ug(t) of class C|[r,b);

(2) f and g are of class CV) with respect to t and y for (t,y) in Dg;

(3) the reduced solution ur = wug(t) is globally stable, that is,
f(t,ur(t)) < —k <0 fort in [1,b];
(4) the inequality

uR(T)
(ur(r) — p) - / F(r5)ds < 0

holds for p < n < ur(T) if p < ugr(7), or for ug(r) < n < p if
ug(T) < p.

Then there exists a solution y = y(t,c) of problem (1.3) for each
sufficiently small € > 0 such that, for t in [r,b],

(2.4) yr(t,e) = ur(t) + wr(t,e) + O(g)
and
(25)  Yr(t,e) = up(t) + wh(t,e) + O (e—_%(:_T)) +0(e),

where wgr(t,€) is the unique solution of the equation

(2.6) ewp = f(T,ur(T) + wr)wy
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satisfying wgr(r,€) = p — ur(7) and lim._,g wg(t,e) = 0 for each fized
t > T. q2 18 a positive constant.

3. Shock layer theory. In this section we present conditions that
ensure the existence of solutions to problem (1.1) exhibiting shock layer
behavior at some point t =T, a < T < b. A major assumption will be
that the reduced equation

(3.1) 0= f(t,y)y' +g(t,y)

has two solutions u;, = uz(t) and ug = ug(t) of class C® on [a, ;]
and [tg,b], respectively, with a < tg < t; < b; moreover, ur(a) = A
and ug(b) = B. Another condition of importance will be that there
exists a point 7" in (tg,tr) such that J(T') = 0 and J'(T") # 0, where

uR(t)
(3.2) J(t) = / f(t,s)ds fortp<t<tr.
ur(t)

We also assume that ur,(T) # ugr(T), since equality would preclude the
possibility of a shock layer. If ur(T) = ug(T), our results would still
imply the existence of a solution, but the “shock layer jump” would
either be nonexistent or extremely small in magnitude, i.e., O(¢).

It will be necessary to impose smoothness requirements on the func-
tions f(¢,y) and g(t,y) in certain regions, so we now define a domain
D which will be referred to in Theorem 3.1 below. We first mention
that the domain D can have two basic shapes, depending on whether
ur,(T) > ur(T) or ur(T) < ug(T). Assuming ur(T) > ug(T), we
define the domain D as follows. Let

Dy ={(t,y) : ly —ur(t)| < O(¢), a <t <tr},
Dy = {(t,y) : ur(t) + O(e) <y <up(t) + O(e), tr <t <tr},

and
D3 ={(t,y) : ly —ur(t)| < O(e), tp <t <b}.
Then D is defined as the union of these three domains, namely,

D =D, UDy U Ds.
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FIGURE 3.1. The domain D for the case ur(T) > ur(T) is shown. tgr —t; =
O(elne).

If ur,(T) < ur(T), one only interchanges the placement of ug(t) and
ur,(t) in Dy to define D. A diagram of D for the case ur(T) > ug(T)
is shown in Figure 3.1. The position of tg and ¢ty may be chosen such
that tg — t, = O(elne). We note that with this choice of tg and tp,
and sufficiently small ¢, ur,(T) > ugr(T) implies that ur,(¢) > ug(t) for
t in the interval [tg,t1]. Reducing the size of D seems to be difficult,
since having ¢, — tg smaller than O(elne) would not ensure that the
exponentially decaying left and right solutions, y;, and ygr, defined by
(1.2) and (1.3), respectively, would lie entirely in the domain D, which
is crucial in the proof of Theorem 3.1 given below.
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Theorem 3.1. Assume that

(1) the reduced equation (3.1) has two solutions ur, = ur(t) and
ur = ug(t) as described above;

(2) the functions f and g are of class C ) with respect to t and y in
the domain D;

(3) the function ur(t) is stable on [a,tr], that is, f(t,ur(t)) > 0,
and ug is stable on [tg,b], that is, f(t,ur(t)) < 0;

(4) there is a point T in (tg,tr) such that J(T) =0 and J'(T) # 0,
where J(t) is defined in (3.2);

(5) the inequality

uR(T)
(unlT) = un(@)- [ F(T5)ds <0
holds for p < n < ur(T) if ur(T) < ur(T), or for ug(T) < n < p
if up (T) > ur(T), where p is an appropriately chosen number between
ur(T) and ur(T);
(6) the inequality

3

(unlT) = un(@)- [ f(T5)ds>0
uL(T)
holds for ur,(T) < n < p if ur(T) < ur(T), or forp <n < ur(T) if
ur(T) > ug(T), where p is as defined in assumption (5).

Then there exists a solution y = y(t,c) of problem (1.1) for each
sufficiently small € > 0 such that

ur(t) +wr(t+0(g),e) + O(e) fora<t<T,

(3.3) y(t’s):{uR(t)+wR(t+O(s),s)+O(6) for T <t<b,

and

(3.4)
'(t,e) = { uy (t) +wh (te) + O(er=T)) + O(e) fora<t<T,
VA=V (t) + wha(t €) + O(e=2=D) £ O(e)  for T <t < b,

where wy, and wg are the solutions to problems (2.3) and (2.6), respec-
tively, for 7 =T. q1 and g2 are positive constants.
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Before proving this theorem, we note that the estimates in (3.3) do
not provide the O(e) accuracy for y(¢,¢) as in the estimates (2.1) and
(2.4), even though the estimates for y' (¢, ¢) given in (3.4) are essentially
the same as the estimates of (2.2) and (2.5). This difficulty arises
because of our inability to precisely pin down the position of points on
the solution inside the shock layer. Since the derivative of the solution,
y'(t,€), is O(1/¢) inside the shock layer, we would need to know the
t-coordinates of points inside the shock layer to within O(£2) in order
to obtain O(e) accuracy in the solution. However, useful information
is contained in (3.3) since wr,(t + O(e),¢) and wg(t + O(e),€) are just
O(e) translations away from wy,(¢,¢) and wg(t, ), respectively.

Proof. We let T be a free parameter in problems (1.2) and (1.3) as
discussed in Section 1. In order that problems (1.2) and (1.3) have
solutions exhibiting boundary layer behavior at ¢ = 7, condition (4)
in each of Theorems 2.1 and 2.2 must be satisfied. The first three
conditions in Theorems 2.1 and 2.2 follow directly from the conditions
as stated in Theorem 3.1. Since f is a continuous function, however,
conditions (3), (5), and (6) of Theorem 3.1 imply the validity of
condition (4) in each of the Theorems 2.1 and 2.2 provided that 7
is sufficiently close to T'. In this analysis we set 7 = T + re, where r is
an O(1) parameter, and, hence, for sufficiently small £, problems (1.2)
and (1.3) have solutions with boundary layer behavior at ¢t = 7 for r in
any interval [ry, 3], where 71 and ro are fixed constants. The constants
g1 and @2 in estimates (2.2) and (2.5) actually become functions of 7,
namely, ¢1 = ¢1(7) and g2 = ¢2(7), if 7 is allowed to vary. We thus
hasten to mention that the quantities

ay (1) (t—7)
O(e1 c ) fora<t<r

and —qa(7)(t—7)
O(e E ) for 7 <t <b,

found in equations (2.2) and (2.5), respectively, are bounded above and
below by suitable constants for r in the interval [rq, ro].

Integrating equation (2.3) for wr, from —oo to ¢ and equation (2.6)
for wg from oo to t, we obtain, after appropriate integral substitutions,

wr (7)+wg (t,e)
(3.5) ew’ (t,e) = / f(r,8)ds
wr (7)
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and

ur(T)+wr(t,e)
(3.6) ewq(t,e) = / f(r,s)ds.

Rr(T)

Evaluating (3.5) and (3.6) at ¢ = 7 and subtracting, we have

elwy (T€) — wi(7:€)]

upr(T)
[ swas+ [T s as

(3.7) () »

wr(T)
:/ f(r,s)ds = J(7).
ur(T)

Expanding J(7) in a Taylor series about T', we have J(7) = J(T+re) =
J(T) + J'(n) - re, where n =T + fre for 0 < § < 1. But J(T') =0, so
that we get, from (3.7),

(3.8) wh(r,e) — wi(r,e) = J'(n) - r.

Since J'(T) # 0, we must have, for some positive constant ¢, either
J'(n) > cor J'(n) < —c for each sufficiently small £ with 7 in [rq, ro].
We write yr, = yr(t,&,7) and ygr(t,e,r) to emphasize the dependence
of yr, and yg on the parameter r. One can see from equations (2.2),
(2.5) and (3.8) that there exist two values of r, namely rs and 74, such
that

ylL (7—37 g, T'3) > y%(T?,, €, 7'3)

and
y,L (7—47 g, T4) < y;{(’r‘l: g, T4)7

where r3 and 74 both lie in [r, 73] and where 753 and 74 are the respective
values of 7 corresponding to r3 and r4. It follows by standard arguments
that the solutions y;, and yg are continuous functions of r, and we may
conclude that there must be an r = rg such that

yr.(10,€6,70) = yr(70,6,70), Where 7o =T + ery,

and, hence, the problem (1.1) has a solution with shock layer behavior.
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The estimates (3.3) and (3.4) for a < ¢ < T can be obtained by
showing that the solutions of the two problems

ew] = f(T,ur(T) + wp)wy, a<t<T,

3.9

(8.9) wp(T)=p—ur(T) and wr(—00)=0

and

(3 10) swgl = f(To,uL(To) + le)wlLU a<t<T,

le(T) =P UL(T()) and le(—oo) =0,

where 79 = T + ery, satisfy |wr(t) — wri1(t)| = O(e) and
wy, —wp,; =0 (eq(t;T)>

for t in [a,T]. Equation (3.9) is obtained by setting 7 = T in equation
(2.3), that is, wy is as given in the conclusions of Theorem 3.1.
Equation (3.10) is obtained by setting 7 = 7y in equation (2.3) and
translating the independent variable by ¢’ = ¢t + (T' — 79) and then
rewriting ¢’ as t. Similar results hold on the interval T < ¢ < b for
the solutions involving the right-hand equations. The details are very
similar to the analysis (Gronwall-type arguments) given in Chapter 3
of Kirschvink [7] and are therefore omitted. o

4. Examples and remarks. We begin here with an example
illustrating the use of Theorem 3.1 in predicting shock layer behavior
and approximating the solutions.

Example 4.1. Consider the following problem

-y +y%, 0<t<l,
(4.1)

which is of the form of the quasilinear problem (1.1) with f = —¢%/3
and g = y°/3. The functions f and g are only of class C'!) with respect
to y since f”y and ¢g"y approach infinity as y — 0, and to the author’s
knowledge, there is no result in the literature to date that will provide
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the existence of a shock layer solution to (4.1) as well as the detailed
approximations given below. The left and right reduced solutions turn
out to be ur(t) =t — 2 and ug(t) = t 4+ 1/2, respectively, which can be
used to obtain the function J(¢), namely,

t+3 5 8
J(t):/t —sﬁds:%[(t—Q)E—(t—i-%) .

-2

wloo

Since J(t) has a zero at T' = 3/4, and all the conditions of Theorem 3.1
are satisfied, problem (4.1) has a solution with a shock layer at T = 3/4
as shown in Figure 4.1. The estimates given in (3.3) provide us with
the approximate solution

t—2+4wr(t,e) for0<t<3,
t+ 1 +wp(te) for2<t<l,

(42) yaltye) = {

where wr,(t,¢) and wg(t, €) are the respective solutions of the boundary
value problems

5
ewy = —(~5 +wr)f w)
(4.3)
Cy=p+2 (—00) =0
wr, 1 =p 1’ wr(—00) =
and
Ewg'zz—(g—i—w}g)%-w}z
(4.4)
Gy=p-2 (00) = 0
WR 2 =p 4’ WR(O0) =

A convenient choice of p in this example is p = 0. Although problems
(4.3) and (4.4) appear rather complicated, they are much easier to deal
with than the original boundary value problem (4.1); in fact, with the
boundary conditions at infinity, they can be integrated and reduced
to first order initial value problems which are much easier to solve
numerically on a computer than problem (4.1).

Example 4.1 is a special case of a general class of problems which
automatically satisfy conditions (5) and (6) of Theorem 3.1, provided
that assumptions (1) through (4) are satisfied. For example, functions
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FIGURE 4.1. A solution y = y(t, €) of problem (4.1) with interior layer behavior at
T = 3/4 is shown.

f(t,y) such that f(T,y) has a unique zero between ur(T) and ug(T)
automatically satisfy the shock layer stability conditions (5) and (6).
This can be easily seen by choosing the number p described in Theorem
3.1 to be the unique root of f(T,y), namely, f(T,p) = 0, and then
observing a sketch of f(T',y) such as in Figure 4.2, where for definiteness
we have assumed up(7) < ur(T’). One can easily see that

/ f(T,s)ds >0 forur(T)<n<p,
uL(T)
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FIGURE 4.2. The function f(T,y) has a unique zero between ur (T) and ug(T)
and the shock layer stability conditions of Theorem 3.1 are satisfied.

and also that

uR(T)
/ f(T,s)ds <0 forp<n<ug(T).

The following problem is similar to an interesting example of Smith
[11].

Example 4.2. Consider the problem

ey’ = (L+t)yy' — (& +)y°
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FIGURE 4.3. The graph of f(T,y) is symmetric about the point (yo,0) for
ur(T) <y <ugr(T).

where the function

2
Up = ———
B= 734
J(t):/(l+t)sds
B 2
YT e

has a zero at T' = 1/\/5 ~ 0.71. One can show that all the conditions
of Theorem 3.1 are satisfied, and we are guaranteed the existence of a
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solution with a shock layer at 7' = 1/v/2. The estimates given in (3.3),
with p = 0, can be used to write this solution as

(t,e) = 2z +wr(t+0(e),e) + O(e) fOfOStS%’
Yz, - %+WR(t+O(€),€)+O(5) fOI-LStSl’

V2
where wy, (¢, €) and wg(t, ) are the respective solutions of the problems
1 4
ewy = (1+ E) : [7 +wrjwy
(4.5) . )
wr(—z)=-7,  wr(-00)=0
and 2 7
" 1 —4 !
ewp = (1+ ﬁ) : [7 + wr|wg
(4.6) 1 4

wR(ﬁ) = wg(o0) =0,

which can be solved exactly using elementary techniques. We note in
passing that Theorems 2.1 and 2.2 imply that this example has at least
two other solutions, one with a boundary layer at ¢ = 0 and one with
a boundary layer at t = 1.

The shock layer solutions of Examples 4.1 and 4.2 each have an
inflection point midway between wr(T) and ugr(7T), namely, y = 0
in each case, and their graphs have a symmetric appearance near the
shock layer. This will usually be the case when the graph of f(T,y)
is symmetric about a point (yo,0) such that f(T,yo) =0, i.e., f(T,y)
must satisfy f(T,yo +¢) = —f(T,yo — ¢), where ¢ is any number such
that both yo — ¢ and yo + ¢ lie between up(T) and ug(T). This is
illustrated in Figure 4.3 where the function f(T,y) has three zeros
between ur(T") and ug(T). It seems that f(T,y) must have an odd
number of zeros between ur(T) and ug(T) for the possibility of a
solution to exist with a symmetric shock layer.

Finally, we discuss an example which has a solution with asymmetric
shock layer behavior.

Example 4.3. Consider the problem
ey’ =yly+4)y —yly+4)
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where up(t) =t + 1, ug(t) = ¢t — 3, and J(t) = :_;135(5 + 4)ds.

One can readily show that the conditions of Theorem 3.1 are satisfied,
and we are guaranteed the existence of a solution with a shock layer
at the following root of J(t), namely, T = 2v/6/3 — 1 ~ 0.633. Note
that ur(T) =~ 1.63 and ugr(T) ~ —2.37, while the inflection point
occurs at y = 0, which is not midway between wy,(T) and ug(T). This
asymmetry should not be surprising since the graph of f(y) = y(y +4)
is not symmetric about the point (0, 0).
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