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A BASIC CONSTRUCTION IN DUALS OF
SEPARABLE BANACH SPACES

ELIZABETH M. BATOR

ABSTRACT. A basic construction of the Cantor set A
in the dual of a separable Banach space X is presented.
If X* is nonseparable, a modification of this construction
yields bounded e-trees in X* (Stegall). A continuous linear
surjection from X to C(A) is obtained if ¢! embeds in X
(Pelczynski) by a further modification of this construction.
Through it the delicate nature of the difference between the
cases (i) X* is nonseparable and (ii) ¢! embeds in X is
highlighted.

A. Introduction. Let A® denote the usual Cantor set with dyadic
partitions (C°, : i = 1,...,2")%, and Haar measure \° (where
AO(CY,) =27" for all i and n). Let A9.(-) = 2"A%((-) N CY,).

Now let A denote the natural copy of A® in C'(A°)*, the points of
A corresponding to point-masses on C(A°). Let \,; denote A, as a
measure on A. We think of A, in C(A%)* as the barycenter of the
measure \,; on A. Note that the A\%.’s form a bounded e-tree, with
e=2,as A\, = (1/2) (\)j12i 1 +A0y1,2:) and [[XD g0 1 = A0 oill =
2.

Now suppose X is a separable Banach space and X* is nonseparable.
Then it is easy (see Corollary 2 below) to construct a topological copy of
A in (B*, weak*) which is norm discrete (and conversely the existence
of such a set obviously implies X* is nonseparable). C. Stegall [7]
showed how to construct such a A and corresponding dyadic partitions
(Chns), with Haar measure A, so that the barycenters 7, of the measures
Ani(5) = 27A((-) N Cp;i) on A form a bounded e-tree in X*.

On the other hand, the Pelczynski-Hagler theorem states that ¢!
embeds in a separable Banach space X if and only if there exists a
continuous linear surjection from X to C(A°) [3, 4]. In this paper
a basic construction is presented which obtains these two results and
highlights the delicate differences between them.
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Basically our notation follows that of [2]. Throughout, X is a
separable Banach space and X*, X** ... the successive duals of X.
Let B,B*,... be the closed unit ball of X, X*,... . We say that
a Banach space Y embeds in a Banach space X (or equivalently X
contains a copy of Y') if there exists an isomorphism from Y into X.

A sequence (z,;)5 fll in X is called a tree if zn; = (1/2)(2n41,2i—1+
Tpt1,2;) for all n,i. If we also have that ||Zpi12i 1 — Tni1,2i]] > €

for some positive ¢ and for all n,i, then (z,;)5, %21 is called an
e-tree. An e-Rademacher tree (Riddle, Uhl [5]) is a tree such that

|22 (=1)izy|| > 27 for every n.

B. The basic construction. The following is a standard result
from topology. Its proof is the core of the constructions in this paper.

Lemma 1. Let A be an uncountable subset of a compact metric space
M. Then A, the closure of A in M, contains a subset A homeomorphic
to A°.

Proof. Let p be the metric on M and B(z,a) = {y € M : p(z,y) <
a}. As M is second countable, all but countably many points of any
uncountable subset are condensation points. We build by induction on
n, a sequence (A,;)°%, 2_,, of subsets of A with the following properties
forn=1,2,...,i=1,...,2™

(1) Ant1,2i-1 U Au41,2iCA, ;.

(ii) For fixed n, A,; N A,; = ¢ if i # j.
(iii) The diameter of A,; < 27"
(iv) Each A,; is uncountable.

Then having done so it is clear that A = N3 U?" | A,,; is homeomorphic
to A® with Cp; = AN A,; homeomorphic to the dyadic intervals.

Let zg; be a condensation point of A and let Agy = AN B(zo1,1).

Now suppose the construction has been made for all n,¢ for n =
0,...,m. Choose Tm41,2i—1, Tm+1,2; to be weak® condensation points
of A,;. As M is a metric space we can easily find neighborhoods
Un+1,2i-1 of Trmg1,2i—1 and Upyq1,2; of Tppy12 50 that Upygg2i-1 N
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Um+1,2i = ¢ Then define

Ami12i-1 = Ani N B@mi1,2i-1,27" ) N Upt12i1
Apmit12i = Ami 0 B(@m41,2i,2" ™) N Upgr 2

It is clear that these subsets indeed satisfy (i) through (iv) above. o

An immediate consequence of the above lemma is that B* contains
a subset weak* homeomorphic to the Cantor set whenever X is a
separable Banach space. In fact, the main results of this chapter are
obtained by judiciously selecting an uncountable set A in B* and more
carefully constructing copies of A in A as in Lemma 1. For instance,
one can easily show the following. (We prove a stronger result in the
next section.)

Corollary 2. If X is a separable Banach space such that X* is
nonseparable, then there is a norm discrete subset A of B* that is
weak* homeomorphic to A°.

Notation. Let W(z*;z,e) = {y* € X* : [z*(z) — y*(z)| < e} If
A is a subset of X*, let A denote the weak® closure of A. Clearly, if
A CW(z*;z,e) and z* € A, then |z*(z) — z*(z)| < e.

C. The case when X* is nonseparable. In this section we
considerably simplify the published proofs of Stegall’s theorem [7, 2].
We still need the following lemma from [7].

Lemma 3. Let Y be a nonseparable Banach space and let wy be the
first uncountable ordinal number. Then for every € > 0, there exist
sets {yo @ < wi} inY and {y% : o < wi} in Y* such that for all
a,B <wy, [lyall =1, [lyall <1+e€ and

. 0 ifa<p

Proof. Choose y; € Y and y; € Y™ such that [|[y1]] = ||lyf]| =
yi(y1) = 1. Let 8 < wy. Assume that we have made the construction
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for all @ < B. Since {y, : @ < B} spans a separable subspace of the
nonseparable space Y, there exists a y5 € Y* such that yg(ya) =0
for all @ < B and |[yz|| = 1+ ¢/2. Then choose ys € Y such that

llysll =1 =yz(ys)- O

Theorem 4. (Stegall [7]). Let X be a separable Banach space such
that X* is nonseparable. Then for every € > 0, there exists a subset
A of B* which is weak* homeomorphic to the Cantor set, along with
subsets (Cpni)>o 2=, of A weak* homeomorphic to the dyadic intervals,
and a sequence {x,;}2 o 2, in X such that ||z,;|| < 1 +¢ for all n,i
and

|2* (i) — Xc,, ()] < 27" for all z* € A.

Proof. Let € > 0 be given. Use Lemma 3 to find sets A = {z¥ : a <
wi}in X* and {5 : @ < wy} in X** such that ||z%|| = 1, ||z3*]| < 1+

and
“(gt) = 0 ifa<p
T\ T\ ifa=8.
Claim. 1If A,,...,A, are uncountable disjoint subsets of A and

1 < j < n, then for every n > 0 there exist uncountable sets A, C A;
(¢=1,...,n) and a point z; in X with ||z;|| < 1+ ¢ and such that

* * * !
|z (:vj)fXA;_(ac )| <n forall z* e QAZ

To prove the claim, fix j and for ¢ = 1,... ,n, let zj be a weak"
condensation point of A;, such that 8; > §; if ¢ # j. Then ||m2§’;|\ <l+e
and xz’: (zj,) = dij. By the weak™ density of B in B**, choose z; in X
with ||lz;|| <1+e and |z;(z5,) — 257 (x5,) <n/2 (i =1,...,n). Let

Al =A;N W(wlgi;mj,n/Q).

This proves the claim.

To prove the theorem, apply the construction of Lemma 1 to A with
the following change. At each stage, where A,1,...,A,o» have been
chosen, inductively apply the above claim 2™ times to choose z,; and
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uncountable Bp; C A, (1 = 1,...,2") with ||zn:]| < 1 + ¢ and such
that for each ¢

2'”
|z* (zni) — XB,,(z*)| <e2™™ for all z* in U B,;.
j=1
Then replace each A,,; by B,; and continue the construction. a

Let A and (C,;)%%, 2_, be as constructed in the above theorem (for
a given g, 0 < € < 1/4). Since A is weak* homeomorphic to A, the
natural evaluation map 7' : X — C(A?) given by T'(z)(z*) = z*(z) is
a continuous linear operator. Also, having a sequence (z,;)%%, -, in
X which approximates (X¢,,)%%, 2=, it is easy to see that 7 maps X
onto a dense subspace of C'(A°). In general, however, 7' cannot map X
onto all of C(A?), for this would imply X contains ¢! as the remarks
at the beginning of this chapter indicated. We would like to be able to
say that this evaluation mapping has some property that characterizes
separable spaces X with nonseparable duals. Of course, the first thing
that comes to mind is that 7" maps X onto a dense subspace of C'(A?),
However, this does not characterize separable spaces with nonseparable
duals as the following example shows.

Example 5. Define T': ¢ — C(A°) by T((a)) = >, (1/n)ant™.
As the range of T clearly contains the polynomials, it is dense in C'(A?).
Clearly though, (¢?)* = ¢? is separable.

Now consider the adjoint of T', T* : C(A")* — X*. Let A2, be defined
as before (A\2,(-) = 2"X\%((-) N C,;) where \° is then Haar measure on
A%). Let ¥, = T*(\%,). Clearly, (z},) forms a bounded tree in X*.
In fact, since 0 < & < 1/4, (z,) forms a bounded 2/5-tree in X*. We
have

fozﬂ,z@'il - $Z+1,2i” = Slelg |$Z+1,2i71($) - $;+1,2i($)|
T

4
= g|$:+1,2i—1($n+1,2i—1) — Ty 11,2 (Tnt1,2i-1))
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4 *
= g|T ()‘?14-1,22'—1 - )‘?1+1,2i)($n+172i—1)‘
4 *
=3 " (Trt1,2i-1) dAnt1,2i-1
A

- / " (Trt1,2i-1) dAnt1,2i
A

4
> 2|2z
— 5
Let us summarize as follows.

Theorem 6. Let X be a separable Banach space. Then the following
are equivalent:

(i) X* is nonseparable.

(ii) For every € > 0, there exists a subset A of B* that is weak*
homeomorphic to A° and a sequence ()%, 2=, in X with ||zn|| <
1+ € such that

2" (zni) — X, (27)] < €27 for all 2" € A,

where the Cy;’s are homeomorphic to the dyadic intervals. Hence, there
ezists a § > 0 and a continuous linear operator T : X — C(A®) such
that T*(C(A®)*) contains a bounded -tree.

(iii) There exists for every € > 0 a subset A of B*, weak* homeo-
morphic to A such that for every x* € A, there is an x** in X** with
[|lz**|| < 1+ e such that **(z*) =1 and **(y*) = 0 for all y* in A,
yr#

(iv) There exists a subset A of B* that is weak* homeomorphic to
A°, but is discrete in the weak topology.

Proof. (i) = (ii). See Theorem 4 and the remarks following its proof.

(i) = (iii). Let ¢ > 0 and let A be the copy of A satisfying
the conditions of (ii). Let z* be in A, and let (i,) be the unique
sequence such that z* € A,; . Let z** be any weak® cluster point
in X** of the sequence {z,; }. Then ||z**||] < 1 + ¢ and, since
|z* (2ns, ) — 1] < 27", the sequence z*(z,;, ) converges to 1 but clusters
at **(z*). Consequently, z**(z*) = 1. Now if y* € A but y* # z*,
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then, for some N, if n > N then y* is not in A,; . Therefore,
|y* (2ni, )| < €27™ for n > N and clearly z**(y*) = 0.

(iii) = (iv). For any fixed z* € A, let ** be as in (iii). Then
{z*} =An{y*: 2" (y*) > 0}, so {*} is weak open in A.

(iv) = (i). As A is uncountable and weak discrete it is also norm
discrete and, consequently, X* is nonseparable. ]

D. The case when ¢! embeds in X. The Pelczynski-Hagler
theorem states that a separable Banach space X contains a copy of ¢!
if and only if there is a continuous linear surjection from X to C'(AY).
The standard proof of this uses the following fact [4].

Theorem (Pelczynski). If a separable Banach space Z contains a
subspace Zy isomorphic to C(A), then there is a subspace Zs C Zy such
that Zy is isomorphic to C(A) and complemented in Z.

Here we obtain the Pelczynski-Hagler theorem directly by modifying
the construction of Lemma 1.

For each n and dyadic partition Cpy,...,Cnon of A, there are 22"
different continuous functions (ganj)?il, ¢nj : A® — {—1,1} that are

constant on Cp;, 4 =1,...,2". Let (U(j))?il be an enumeration of all

possible choices of o = (01,...,02n), where o; = £1. We can identify
each ¢,,; with a ¢(9) as follows:

on
Pnj = Z O—z(J)XCm' .
i=1

These functions are called Rademacher-type functions. Recall that
Theorem 4 loosely says that if X* is nonseparable, then we can
construct a copy of A° in (B*, weak*), and a bounded sequence
(ni)22, fil in X such that for all n,i, x,; as a function on A°
approximates Xc,,. Consequently, the point w,; = 212: Z(])
approximates ¢,; on A, However, we have no control over the norm
of wy;. The idea in the following is that we can approximate the ¢y,;’s
by a bounded sequence in X whenever ¢! embeds in X.
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Lemma 7 [4]. If X is a separable Banach space containing ¢*, then
L (R) embeds in X*.

Proof. We first show that ¢!(R) embeds in > isometrically. Let D
denote the collection of all ((I;,¢;) : ¢ € F'), where F is finite, (I;);cr
are disjoint intervals in R with rational endpoints and €; = £1. Hence,
D is countable and (> = (> (D). Define T : /*(R) — ¢>°(D) by

T.((Li,e;):i € F) = Zsi Z z(a).

i€eF a€l;

|T:((Liyei)) : 4 € F| < ||z|]1, and, if 2 has finite support, ||T%||lcc =
||z||1. Hence, T is an isometry.

Let €) be the unit basis vector at A in /!(R), and let z) € (> be
such that T'(ey) = zx. Let S : ¢ — X be an isomorphic embedding
such that ||S|| < 1. Then S* : X* — ¢ is onto and hence open.
Thus, there exists a constant M and z} € X* such that S*(z}) = 2z
and ||z}|| < M. We will show that (z})aer is isomorphic to the unit
vector basis of /1(R).

Let z3},,...,2},, and scalars a1,...,®\, be given. Let §, denote
the pth unit vector basis of £1. Then

S {2 S(5,)) \
=1
ZOWZM
=1
(Sl
=1

i=1

n n
MZ laxi| > || Zaximiill 2 sup
i=1 1=1 P

= sup
p o)

D ani (2aiy Op) | =
i=1

Theorem 8. Let X be a separable Banach space such that £ embeds
in X. Then, for every € > 0, there exists a subset A of B* that is weak*
homeomorphic to the Cantor set along with subsets (Cpi)S 321 of A
that are weak®™ homeomorphic to the dyadic intervals and a bounded
sequence {(wy;) :j=1,...,2%"}2 , in X such that

|z* (Wnj) — @nj(z*)| <27  for all z* € A.
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Proof. Use Lemma 7 to find a norm 1 isomorphism 7" : /}(R) — X*.
Hence, T* : X** — (*°(R) is onto and open. So there exists M < oo
such that T*(M B**) covers the unit ball of £*°(R). Let (e))rer be
the usual basis for £!(R), 2} = T'(e)) and A = (z})rcR-

Claim. If Ay,..., A, are uncountable disjoint subsets of A and if
o = (o) is such that o; = 1 for each i, then for every n > 0 there
exist uncountable sets A, C A; (i =1,...,n) and a point w, in X such
that ||ws|| < M and

ZQXAI ‘<77 for all z* EUA'
i=1

To prove the claim, fix ¢ = (0;)!"_; and define z € £*°(R) by

izt e A
Zy = {0’1 1z e. i
0 otherwise.

Clearly, ||z|| = 1 and so there exists ** in X** with |[z**|| < M such
that T™(z**) = 2. Hence, if =} € A;,

™ (xz}) = 2" (T(er)) = T"(x™")(ea) = 2(exr) = 0i.
Choose z; to be weak™ condensation points of A;, and by weak*
density of B in B**, choose w, in X such that ||w,|| < M and
|27 (wo) — 03] = |2} (we) — &™*(x7)[ <n/2 (i =1,...,n). Let
Al = A; UW (2}, ws,n/2).

This proves the claim.

To prove the theorem, apply the construction of Lemma 1 to A

with the following change. At each stage, when A,i,...,A,on have
been chosen, inductively apply the above claim 22" times to choose
wy; and uncountable B,; C A,; (1 =1,...,2%j =1,... ,2%") with

||wnj|| < M and such that for each of the 22" choices of o),

gn
*(wny) ZU(] XBni(z*)| <e2™" for all z* € U B,,;.
i=1
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Then replace each A,; by B,; and continue the construction. O

Let p € C(A%)*. Tt is clear that ||u|| = sup, , |u(@no)|. Let A
be the copy of the Cantor set constructed in Theorem 8, and let
T : X — C(A) be the evaluation map given by T(z) = z*(x) for
all z* € A. Again, as A is weak* homeomorphic to the Cantor set, T'
is a continuous linear operator. Let 7% : C'(A%)* — X* be the adjoint
of T. If p € C(A%)*, then

1T = sup [T ()@)] > - sup T 1))

[ ) d
A
> 1 H/ (a*)d ‘ 52”]
Z — sup PnjlL 1

m nj A !

1
= —ljull

= —sup
m n,j

Hence, T* is an isomorphism of C'(A%)* into X* and, consequently, 7'
is an onto map. This yields the following.

Corollary 9. If X is a separable Banach space such that {* embeds
in X, then there exists a continuous linear surjection from X to C(AV).

We conclude this paper with

Theorem 10. Let X be a separable Banach space. Then the
following are equivalent:

(i) ¢ embeds in X.
(ii) ¢*(T) embeds in X*, where I is some uncountable set.

(i) For every € > 0, there exists a subset A of B*, weak* home-
omorphic to the Cantor set and a bounded sequence {(wn;) : j =
1,...,2%" 12 in X such that for every Rademacher-type function ¢, ;,
|z* (wnj) — @nj(x*)| < e27™ for all x* in A.

(iv) There erists a continuous linear surjection from X to C(AY).
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(v) There exists an isomorphism from C(A®)* into X*. Conse-
quently, X* contains a bounded c-Rademacher tree.

Proof. (i) = (ii). See Lemma 7.

(ii) = (iii). The proof of Theorem 8 will clearly work if A =
(T'(ex))aer, where (ey)y is the usual basis for ¢1(I') and 7 is a norm 1
isomorphism of ¢!(T) into X*.

(i) = (i). Let A, (wnj), (pn;) be as in statement (iii). A natural
subsequence of the Rademacher type functions (¢,,;) is the sequence of
Rademacher functions (r,,)%%, defined by r, = 32 (—1)i*1xg,, for
all n. Let (2,)n; be the subsequence of (w,,;) that approximates the
Tn’s, L.e., such that |2*(2,) — rn(z*)| < €27 " for all * € A. It suffices
to show that (2,)3; is isomorphic to the usual ¢!-basis.

Let M be such that ||z,|] < M < oo, and let (a;)%_, be a finite
sequence of scalars. Then

Zaw (zi)]-

=1

E QT Zz

> sup
T*EA

i2i|| = sup

r*€B*

k
MY o] 2
i=1

Choose z* in the appropriate Cf; to ensure z*(z;)o; > |a;|/2 for all 3.
k k k
Hence, M i |ai| = || 2052y cuzil| > (1/2) 3052 lel.

(i) = (iv). See Corollary 9.

(iv) = (v). It is easy to see that (A\n;)%%, 2_, defined at the beginning
of this paper forms a bounded 1-Rademacher tree in C'(A%)*. If T is a
surjection from X to C(A?), then T* is an isomorphism from C(A%)*
into X*. Clearly, isomorphic images of e-Rademacher trees are &’-
Rademacher trees and, hence, X* contains a bounded &-Rademacher
tree.

(v) = (ii). Since /(A) embeds in C(A%)*, it must also embed in X*.
O
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