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ON THE DIOPHANTINE EQUATION 1+ x+y =12
LEO J. ALEX AND LORRAINE L. FOSTER

ABSTRACT. In this paper all solutions to the equation
1+ 2z +y = z, where z,y and z are positive integers such
that zyz has the form 273°5!, with r,s and ¢t nonnegative
integers, are determined. This work extends earlier work
of the authors and J.L. Brenner in the field of exponential
Diophantine equations.

1. Introduction. In this paper we consider the equation
(1.1) l+z+y=-z,

where z, y and z are positive integers such that zyz has the form 2"3°5¢,
for nonnegative integers r, s and ¢t. This equation has the form

(12) in = 0,

where the primes dividing Ilz; are specified.

There has been little work done in general to solve such Diophantine
equations. Some of these equations have an infinite number of trivial
solutions. For example, the still-unsolved equation

1+ 23 = 5° 4 293¢5/

has infinitely many solutions of the foom ¢ = f =0,a =d, b=e. It
is unknown whether such equations must have only a finite number of
nontrivial solutions.

It follows from the work of Dubois and Rhin [7] and Schlickewei [8]
that the related equation p® £ ¢® £ r¢ £ s = 0 has only finitely many
solutions when p, g, r and s are distinct primes. However, their methods
do not seem to apply when the terms in the equation are not powers
of distinct primes.

The authors and J.L. Brenner [1, 2, 4-6] have recently developed
techniques which solve such equations in some cases. These techniques
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involve careful consideration of the equation modulo a series of prime,
prime power, and certain other moduli. These sequences of moduli can
often be chosen so that conclusions or contradictions arise naturally
immediately, that is, without calculation.

Such equations arise quite naturally in the character theory of finite
groups. For, if G is a finite simple group and p is a prime dividing the
order of G to the first power only, then the degrees z1,z2,... ,z, of
the ordinary irreducible characters in the principal p-block of G satisfy
an equation of the form »§;x; = 0, §; = +1, where the primes dividing
IIz; are those in |G|/p. Much information concerning the group G can
be obtained from the solutions to this degree equation. For example,
one of the authors in [3] has used the solutions to the equation

1+ 2% = 3%5° + 243°5f

to characterize the simple groups L(2,7),U(3,3), L(3,4) and As.

In Section 2, below, all solutions to equation (1.1) are found such that
xyz is divisible by at most two of the primes 2, 3 and 5. In Section
3 the solution of (1.1), where zyz has the form 2"3°5', with r, s and ¢
nonnegative integers, is completed. In Appendix A a complete list of
solutions (z,y, z) to (1.1) is given. Appendix B is an order and smallest
primitive root table for all of the moduli greater than 10 used in this
paper.

We will use the symbol }t to denote a contradiction. Also, all
exponents appearing in this paper are assumed to be nonnegative
integers.

Remark . We will be making extensive use of [1] in which the solutions
to the equation = + y = z, where xzyz has the form 273°5!7“, are
obtained. We have found that there is an error in the proof of Lemma
3.4 of [1] which we will correct with the following lemma.

Lemma 1.1. The solutions to 3 +7° = 2°5% in positive integers are
(a,b,¢,d) = (1,1,1,1) and (5,1,1,3).

Proof. Let (a,b,c,d) be another solution. Consideration of our
equation modulo 3 and modulo 7 produces the congruences ¢ = d
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(mod 2) and a = 2¢+5d (mod 6). Hence, from mod 4 and mod 5, ¢ = 1,
d and a are odd, d = 2—a (mod 6) and (a,b) = (1,1) or (3,3) (mod 4).
From mod 16 and mod 13 we conclude that (a,b,d) = (1,1,1) or (5,1, 3)
(mod 12). In the first case, from mod 9, a = 1 and immediately from
mod 43 and mod 49, b = 1, a contradiction. In the second case, from
mod 43 and mod 49, b = 1(a > 5), and we thus have a contradiction
mod 729 and mod 1459. |

The following lemma follows immediately from Lemma 1.1 and Theo-
rem 3.5 of [1]. Note that a primitive solution to the equation z +y = z
is one such that g.c.d.{z,y} = 1.

Lemma 1.2. There exist no primitive solutions to x +y = 2¢375F,
where zy = 223574 (z,y > 0), for which i > 8, j > 4, or k > 4.

Lemma 1.3. There are no solutions to the equation 1+ 2% +27 = 3*
with k > 4.

Proof. This result follows immediately from Comment 8.035 on page
298 of [6]. O

2. The two prime case. In this section we determine all solutions
of (1.1) for which zyz is divisible by at most two of the primes 2, 3 and
5. There are three natural cases to consider: zyz = 23", zyz = 25"
and zyz = 3“5Y. In each of these cases, since zyz has the form p"g°,
p,q prime, p < ¢, it follows from (1.1) that at least one of z,y,z is a
power of p, and at least one of x,y, z is a power of q. Thus each of the
above cases has three subcases of the forms

1+p" +p"¢° = ¢,
1+q*+p°¢ =p*,
1+p*+¢" =p°¢?,  cd#0.
Observe that the exponents of the prime 2 in any of these equations
must either both be zero or both be nonzero.

In each case the solutions to the above equations with all exponents
on the right-hand side less than or equal to 10 were determined by
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computer. (These are precisely the solutions given below.) We now
consider the three cases.

Case A. zyz = 2“3". (We have three theorems.)
Theorem 2.A.1. The solutions to
(2.A.1) 14 2% 4+ 2°3° = 3¢

are given in Table 2.A.1.

TABLE 2.A.1. The solutions (a, b, c,d) to (2.A.1).

o

© O O W W N == O
W B OO W N W= O

W O = O NN O == OO0
SRR R R WD W NN -

Proof. Let (a,b,c,d) be another solution. (Then d > 10.)

Lemma 2.A.1. (a) a >4 (and hence b # 0).
(b) ¢<3.
(¢) Min{a,b} <4.

Proof of Lemma . Part (a) follows from Lemma 1.2. For, ifa = 0,1, 2
or 3, (2.A.1) becomes (after cancellation) a primitive equation of the
form of Lemma 1.2 for which j > 8. Define s = c—d, t = b — a.
Suppose that (b) is false. Then 1+ 2% = 0 (mod 81), so that a = 27
(mod 54). Thus 2°3° =1 (mod p), where p = 19 or 87211. Using the
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primitive roots 3 and 13 modulo the primes 19 and 87211, respectively,
we have 7b+s =0 (mod 18), 791356+ 281555 = 0 (mod 87210). Thus
Tb+s=0,7b+3s=0 (mod 9). It follows immediately that b= s =0
(mod 9). Thus 2 + 3° = +3° (mod 7), so that (¢,d) = (3,0) (mod 6).
Hence 2 4+ 3% = +1 (mod 73). }f. To prove (c), assume the contrary.
Then, from mod 32, d = 0 (mod 8), 2¢3¢ = —1 (mod p), p = 5 or 41.
Using primitive roots 2 and 7 for the moduli 5 and 41, respectively, we
have the system:

(2.A.1.1) t—c=2 (mod 4);

(2.A.1.2) 14t +25¢ =20 (mod 40).

Considering this system modulo 4 we conclude that (t,¢) = (2,0)
(mod 4). Thus, by (b), ¢ = 0. If d = 0 (mod 16), then, from
mod 17, ¢t = 4 (mod 8), 4 | t. }. Hence, d = 8 (mod 16), and,
considering cases, we find that (2.A.1) is false mod 17. o

To prove the theorem, observe that, by Lemma 1.3, ¢ # 0. Hence,
considering (2.A.1) mod 3, we conclude that a is odd, so that a > 4
and b < 5. If ¢ = 1, then 1 + 2% +3.2% = 39, and, by Lemma 1.2,
b = 2, which produces a contradiction when we consider our equation
mod 8. If ¢ = 2, then 1422 +9-2° = 3¢ and we have a contradiction in
each case using mod 16 and mod 5. (For, if we consider our equation
mod 16, we conclude that either b =1 and d =1 (mod 4), b = 3 and
d=2 (mod4),orb=4and d =0 (mod 4). In the first case we have
19+ 2% = 3¢ = 3 (mod 5) so that @ = 2 (mod 4). J. Similarly,
in the next two cases we have a = 0 (mod 4). }.) Thus ¢ = 3,
14 2% +27-2% = 39 Using mod 8 we conclude that b = 3 or 4.
From mod 9 and mod 7, b # 4. Thus, 217 + 2 = 3% and we have
a final contradiction using mod 1024 and mod 257. For, from Table
2.A.1, a > 9 (or, alternately, since d > 10, certainly a > 10), so that
3¢ = 217 (mod 1024), d = 134 (mod 256), 217 + 2¢ = 313 = 42,
2% =82 (mod 257). 4. o

Theorem 2.A.2. The solutions to
(2.A.2) 14 3% +2°3° = 24

are given in Table 2.A.2.
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TABLE 2.A.2. The solutions (a,b,c,d) to (2.A.2).

a b ¢ d
01 0 2
01 1 3
1 2 0 3
1 2 1 4
2 1 1 4
2 1 3 6
3 2 0 5
3 2 2 6
5 2 1 8

Proof. Let (a,b,c,d) be another solution. (Then d > 10 and hence
b#0.)

Lemma 2.A.2. (a) a > 3. (b) Ifa is even, then b =1 and c is
odd; if a is odd, thenb=2. (¢) ¢ <2.

Proof of Lemma . Part (a) follows from Lemma 1.2 and part (b)
from mod 8. If ¢ > 3, then, from mod 27, d = 0 (mod 18). Thus, for
s=c—a, 2°3* = —1 (mod p), p =7 or 19. Using the primitive root 3
for mod 7 and mod 19, we conclude that 2b+s =3 (mod 6), Tb+s =9
(mod 18), so that b =0 (mod 6). }f. Hence, (c) is true. o

To prove the theorem, observe that if a is even, then b = 1 and
¢ = 1, an impossibility by Lemma 1.2. Hence, a is odd, b = 2,
14+3%+4-3° =29 By Lemma 1.2, ¢ = 1 or 2. In either case we have a
contradiction (considering our equation) mod 1024 and mod 257. O

Theorem 2.A.3. The solutions to
(2.A.3) 14+2% 43" =23 ¢cd#£0,

are given in Table 2.A.3.
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TABLE 2.A.3. The solutions (a, b, c,d) to (2.A.3).

o

T W W W N = =
= O W N = O N =

N = NN =N =N =[O
N NN N === =

Proof. Let (a,b,c,d) be another solution. (Then c or d > 10.)

Lemma 2.A.3. (a) a >3,b>3.
(b) Ifb is odd, then ¢ = 2; if b is even, then ¢ =1 and d is even.
(¢) a=9 (mod 18).

Proof of Lemma . Part (a) follows from Lemma 1.2. Part (b) follows
from mod 8. Part (c) follows from (a) and (b) using mod 27 (since
d > 10). O

To prove the theorem, observe that 3 = 2°3¢ (mod 19) so that
b= 7c+d (mod 18). Thus, (from (b)) ¢ = 2 and b and d are odd,
so that we have a contradiction from mod 16 and mod 5. m|

Case B. xyz = 2"5".

Theorem 2.B.1. The solutions to
(2.B.1) 1429 + 2b5¢ = 54
are (a,b,c,d) = (1,1,0,1),(2,2,1,2),(3,4,0,2) and (4, 3,0,2).

Proof. Let (a,b,c,d) be another solution. By Lemma 1.2, a > 3
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b= 0). Also, from mod 8, b # 1. Further, if b > 4, then, from mod 16,

= 0 (mod 4) and, hence, 2°77% = —1 (mod 39). }f. Hence b = 2
or 3, and thus, by Lemma 1.2, ¢ # 0, so that, from mod 5, a = 2
(mod 4). If b = 2, we have a contradiction from mod 8 and mod 3.
Thus, b = 3 and we have a contradiction from mod 16, mod 3 and
mod 13. u]

Theorem 2.B.2. The solutions to
(2.B.2) 14 5% 4 2b5° = 24
are (al, b’ C7 d) = (O’ 17 07 2)’ (17 ]‘7 O’ 3)7 (]" 17 17 4)’ (17 ]‘7 3’ 8) and (3’ 17 07 7)'

Proof. Let (a,b,c,d) be another solution. (Then d > 10, b # 0.)
From mod 4, b =1, 1+ 5% +2-5° = 2%, Also, from Lemma 1.2, a > 1.
If ¢ > 2, then, from mod 25, d = 0 (mod 20), and, using the primitive
root 3 for mod 31, we have 20(a — ¢) — 24 = 15 (mod 30). }f. Hence,
by Lemma 1.2, ¢ = 1, 11 4+ 5% = 2¢, so that, using mod 25 and mod 31
we have a contradiction. o

Theorem 2.B.3. The solutions to
(2.B.3) 142% 45" =254 ¢cd #£0,

are (a,b,c,d) = (2,1,1,1) and (3,0,1,1).

Proof. Let (a,b,c,d) be another solution. By Lemma 1.2, a > 2 and
b > 0, and we have a contradiction considering our equation modulo 8,
5 and 3. a

Case C. xyz = 3“5°.

Theorem 2.C.1. The solutions to
(2.C.1) 1+ 3%+ 3b5¢ = 54

are (a,b,¢c,d) = (0,1,0,1),(1,0,0,1) and (2,1,1,2).
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Proof. Let (a,b,c,d) be another solution. By Lemma 1.2, a > 1.
Also, if ¢ = 0, by Lemma 1.2, b # 0 and we have a contradiction mod 3
and mod 8. Thus, ¢ # 0, so that, from mod 5, a =2 (mod 4). Ifb > 2,
using the moduli 9, 8 and 7 we produce a contradiction. If b = 0,
we have a contradiction mod 4. Thus, b = 1, 1 + 3% + 3. 5° = 5%,
From Lemma 1.2, ¢ > 1. Counsidering our equation mod 25 we
have a = 10 (mod 20), whence, using the primitive root 7 mod 1181,
177+ 914(c — d) =0 (mod 1180). }. u]

Theorem 2.C.2. The solutions to
(2.C.2) 1+ 5%+ 3b5¢ = 34
are (a,b,¢,d)=(0,0,0,1),(0,0,2,3),(1,1,0,2), (1,1, 2,4) and (2,0,0, 3).

Proof. Let (a,b,c,d) be another solution. By Lemma 1.2, a > 1 so
that, if ¢ > 1, from mod 25 and mod 11 (using the primitive root 2 for
mod 11), d = 0 (mod 20), 4(c —a) +8b = 5 (mod 10). }. If ¢ = 0,
by Lemma 1.2, b > 1, and considerations modulo 9, 7 and 13 yield a
contradiction. Thus, ¢ = 1, so that, again from Lemma 1.2, b # 0, and
we have a contradiction mod 3, mod 5 and mod 8. o

Theorem 2.C.3. The solutions to
(2.C.3) 14+3%+5°=3%%  cd#£0,
are (a,b,c,d) =(2,1,1,1) and (2,3,3,1).

Proof. Let (a,b,c,d) be another solution. By Lemma 1.2, a > 2 and
b > 1. From mod 3, mod 5 and mod 8, a is even while b, c and d are
odd. If d > 1, then, from mod 25 and mod 1181, a = 10 (mod 20),
914(d — b) + 177¢ = 0 (mod 1180) (using primitive root 7 mod 1181),
an impossibility mod 2. Thus, d = 1, 1 + 3% + 5* = 5.3° (¢ > 10).
From mod 27, b =9 (mod 18). From mod 7, ¢ —a+ 5 = 0 (mod 6).
Thus, from mod 13 we have (a,c¢) = (2,3) (mod 6). This produces a
final contradiction mod 19 and, thus, the theorem is proven. u]

3. The general case. In this section we complete the solution of
(1.1). Since, in Section 2, we have determined all such solutions with
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zyz divisible by at most two of the primes 2, 3 and 5, we need only
(from mod 2) consider the following 12 forms of (1.1):

(3.A)

1+ 395° 4 2¢35° = 2f ef #0, b+e#0, a+d#0;
(3.B)

1+ 295° 4 2¢395¢ = 37, acf #0, b+e#0;
(3.C)

1+ 293 4 2°395¢ = 57, acf #0, b+d#0;
(3.D)

1+ 5% 4 203°5% = 2¢3F, bef #0, a+d #0;
(3.E)

1+ 295° 4 3¢5 = 2¢37, acef #0, b+d # 0;
(3.F)

1+ 3%+ 2395 = 2¢57, bef #0, a+c#0;
(3.G)

1+ 293 + 3°5¢ = 2°57, adef #0, b+ c # 0;
(3.H)

1+ 2% 4+ 2°3°5¢ = 3°57, abef # 0;
(3.0)

1+ 293 + 2°5¢ = 3°57, abedef # 0;
(3.J)

1+ 3% +2°5¢ = 293°5f, bdef # 0;
(3.K)

1+ 5% +2°3° = 293°5f, bdef # 0;
(3.L)

1+ 2% + 35¢ = 293°5f, abedef # 0.

The solutions to these 12 equations are determined in the 12 theorems
below. In each case we first prove a lemma giving elementary properties
of the equation, including (except in case E, G and I) bounds on some of
the exponents. Then we examine the equation with computer assistance
modulo several moduli to reduce the number of possibilities to sextuples
(a,b,c,d,e, f) (mod (my,ma, ms, mg, ms,mg)), where m; = 5400 or
10800 for each i. There are four main programs used, which we refer to
as AHL, BFJ, CDK and EGI. Each of these programs is used for the
three forms of (1.1) designated in its title (with the exception of (3.L),
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which is trivial). Each program has 16 major sections which consider
solutions of (1.1) relative to the moduli in the set M = {217, 671, 13,
41,241, 17, 73, 181, 703, 601, 151, 401, 101, 271, 109, 433} (in the given
order). Further, various sections of these programs refer to conditions
involving the moduli in the set N = {2, 4, 8, 16, 32, 64, 3, 9, 27, 81,
5, 25, 125}. The sets M and N were chosen in such a fashion that the
sextuples resulting from consideration of (1.1) relative to these moduli
all correspond to actual solutions to the equation. Some of the solutions
to (1.1) are completely determined by the moduli in M and N. For the
other solutions, some of the exponents a,b,c,d,e, f are determined.
These are denoted by an adjacent asterisk (x). The undetermined
exponents are then established with modest (or no) calculation, using
the moduli listed in the order table (Appendix B).

Theorem 3.A. The solutions to (3.A) are given in Table 3.A.1.
TABLE 3.A.1. The solutions (a,b,c,d,e, f) to (3.A).

a b c d e f
0 01 1 1 5
0 21 1 0 5
0 215 0 9
1 0 2 1 1 6
11 4 0 0 5
1 1 41 0 6
11 4 1 1 8
1 2 2 2 1 8
1 3 3 4 0 10
2 1 1 2 0 6
2 1 1 4 2 12
2 2 1 1 1 8
3 02 0 2 7
31 3 1 1 8
3 3 4 2 1 12
5 1 6 2 1 12
6 1 1 2 2 12
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Proof. Let (a,b,c,d,e, f) be another solution. From a computer
search, f > 12.

Lemma 3.A. (a) (i) Ifc=1 and d is odd, then a and b are even.
(i) If c=1 and d is even, then a is even and b is odd.

(iii) If ¢ =2, then a is odd and b is even.

(iv) If ¢ > 3, then a and b are odd.

(v) Ifc>4,thena=b=1 or3 (mod 4).

(vi) Ifc > 5, then (a,b) = (1,5),(5,1),(3,7) or (7,3) (mod 8).

(vil) Ifc > 6, then (a,b)=(1,13), (3,7), (5,1), (7,11), (9,5), (11,15),
(13,9), or (15,3) (mod 16).

(b) Ifb,e > 1, then f =0 (mod 4).

(¢) Min{b,e} <1.

(d) Min{a,d} <2.

Proof of Lemma . Part (a) follows easily from the moduli 8, 16,
32 and 64. (b) follows from mod 5. Define u = d —a, v = e — b.
Suppose that (c) is false. Then, from mod 25, f =0 (mod 20), so that
2/ =1 (mod p), p = 31 or 41. Hence, 2°3%5” = —1 (mod p). Using
the primitive roots 3 and 6 for the moduli 31 and 41, respectively, we
conclude that 24c + u + 20v = 15 (mod 30), 26¢ + 15u + 22v = 20
(mod 40), which is absurd mod 2. Thus, (c) is true. If (d) is false,
then consideration of (3.A) mod 27 yields f = 0 (mod 18). Thus,
2/ =1 (mod q), where ¢ = 7, 19 or 73. Using the primitive roots 2, 3
and 5 for the moduli 19, 7 and 73, respectively, we have the following
congruences:

(3.A.1) c+13u+16v =9 (mod 18),
(3.A.2) 2c+u+5v =3 (mod 6),
(3.A.3) 8¢+ 6u+v =36 (mod 72).

If we consider the system (3.A.1)—(3.A.3) modulo 6, we find v =c=0
and v = 3 (mod 6). In particular, ¢ > 5. From (a), a and b are odd,
so that e is also odd. Thus, from (b), f = 0 (mod 4) so that in fact
f =0 (mod 36), 2/ =1 (mod q), ¢ = 13 or 37. Using the primitive
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root 2 mod 13 and mod 37 we obtain the system c¢ + 26u + 23v = 18
(mod 36), ¢+ 4u + 9v = 6 (mod 12). Thus 2(u + v) = 0 (mod 4) so
that u = v (mod 2). }f. This proves (d). o

From Program AHL, the lemma, and the moduli in N, we have
six cases, which are listed in Table 3.A.2. We consider these cases
separately.

TABLE 3.A.2. (a,b,c,d,e, f) (mod (10800,10800, 5400, 10800, 10800, 5400)).

a b c d e
0* 2 1* 5 0* 9
13 34 0% 10
2* 1% 1* 4 2* 12
3* 3 4* 2* 1* 12
5 1* 6 2* 1* 12
1* 1* 2% 2* 12

A S

Case 1. 13 + 3% = 29 where ¢ = f — 1, (d,g9) = (5,8)
(mod (10800, 5400)) (g > 8). Here we have a contradiction mod 1024
and mod 257.

Case 2. 1+3-5°+8-31 = 2f (b, d, f) = (3,4,10) (mod (10800, 10800,
5400)). From mod 163, (d, f) = (4,10) (mod 162). Immediately from
mod 243, d = 4, 649 + 3 - 5° = 2/, Hence, from mod 625 and mod 751,

we have contradiction.

Case 3. 23+25-3¢ =29 g=f—1, (d,g) = (4,11) (mod (10800, 5400)).
Without calculation, from the moduli 811, 163 and 243, d = 4. }.

Case 4. 721 +27-5% = 2f (b, f) = (3,12) (mod (10800,5400)). Here
we have a contradiction mod 625 and mod 751.

Case 5. 1+5-3%+45-2° = 27 (a,c, f) = (5,6,12) (mod (10800, 5400,
5400)). From mod 577, (c, f) = (6,12) (mod 144), so that, immedi-
ately, from mod 257 and mod 128, ¢ = 6, 2881 + 5 - 3% = 2. Hence,
immediately from the moduli 1621, 9721, 487 and 729, we conclude
that a = 5. }.
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Case 6. 451 +5-3% = 2f, (a,f) = (6,12) (mod (10800, 5400)).
Without calculation, from the moduli 729, 1459, 17497 and 2187, we
conclude that a = 6. Jt. Thus, the proof of Theorem 3.A is complete.
O

Theorem 3.B. The solutions to (3.B) are given in Table 3.B.1.

TABLE 3.B.1. The solutions (a,b,c,d,e, f) to (3.B).

a b ¢ d e f
1 0 4 11 5
1 1 4 0 0 3
1 2 1 1 1 4
1 2 6 1 0 5
1 4 11 2 0 9
2 1 1 1 0 3
2 1 2 1 1 4
3 0 4 2 1 6
3 1 3 01 4
4 0 1 0 1 3
4 1 1 4 0 5
4 1 3 4 0 6
4 1 4 4 1 8
5 1 8 0 2 8
5 2 7 2 1 8
5 3 9 0 1 8
7 0 3 1 2 6
8 2 5 0 1 8
9 1 5 0 3 8
10 1 5 2 1 8
12 3 4 5 1 12

Proof. Let (a,b,c,d,e, f) be another solution. From a computer
search, f > 12.
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Lemma 3.B. (a) (i) Ifd =0, then a+b is odd.
(ii) Ifd > 2, thena —b=3 (mod 6).
(i) Ifd >3, then a+5b =9 (mod 18).
(iv) Ifd > 4, then a+ 23b =27 (mod 54).
(b) be # 0 if and only if f =0 (mod 4).
(¢) If aye > 3, then f = 0 (mod 4); Thus if be = 0, then
min{a, c} < 3.
(d) Min{b, e} <1.
(e) Min{a,c} <5.

Proof of Lemma . Part (a) follows from consideration of (3.B) modulo
3,9, 27 and 81. Parts (b) and (c) follow from mod 5 and mod 16. Define
s =c—aand t = e—b. To prove (d), suppose the contrary so that, from
mod 25, f = 0 (mod 20). Thus, 2°395! = —1 (mod p), where p = 11
or 61. Using the primitive root 2 for mod 11 and mod 61, we have
s+8d+4t =5 (mod 10), s+ 6d + 22t = 30 (mod 60), a contradiction
mod 2. To prove (e), let a, ¢ > 6 so that, from mod 64, f =0 (mod 16),
2°395 = —1 (mod p), p = 17, 41 or 193. Using primitive roots 3, 7
and 5 modulo 17, 41 and 193, respectively, we have

(3.B.1) 14s +d + 5t = 8 (mod 16),
(3.B.2) 145 + 25d + 18t = 20 (mod 40),
(3.B.3) 345+ 84d + ¢t = 96 (mod 192).

We consider the system (3.B.1)—(3.B.3) mod 8 and obtain (s,d,t) =
(2,0,4) (mod (4,8,8)). Hence, by (c) and (d), b =e =1 (mod 4), b
ore=1,c=a+2 (mod4). Also, from (3.B.3), we have

(3.B.4) t=2s (mod 12).

Observe that if 3| f, then, from mod 7 (using primitive root 3),
2s+d+5t =3 (mod 6), a contradiction mod 2. Hence, 3 { f. Suppose
that d # 0. Then a is even, say a = 2k. Writec =4j+a+2, r = j+d.
Then 4¥5(1+4-3") =2 or 8 (mod 13), an absurdity since 5(1+4-3") €
(4) U {0}, 2, 8 ¢ (4). Thus, d = 0 and a is odd. Easily, (a,c, f) =
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(7,9,1), (9,7,1), (9,11,2) or (11,9,2) (mod (12,12,3)). Thus, using
mod 7 we conclude that (a,b,c,e, f) = (7,9,9,1*,4), (9,1%,7,9,4),
(9,1%,11,9,2) or (11,9,9,1*,2) (mod (12,12,12,12,6)). In the first
two cases we have an absurdity mod 9; in the last two cases (3.B.4)
does not hold. O

From Program BFJ, the lemma and the moduli in N we determine
13 cases, which are listed in Table 3.B.2.

TABLE 3.B.2. (a,b,c,d,e, f) (mod (5400, 10800, 5400, 10800, 10800, 10800)).

a b ¢ d e
™ 2 6 1* 0%
1* 4 11 2* 0*
4* 1* 1* 4 0*
4* 1* 3* 4 0O*
4* 1* 4* 4 1*
5 1* 8 0* 2*
b* 2% 7 2% 1*
53 9 0 1*
7 0% 3% 1* 2*
8 2% 5 0* 1*
9 1* 5 0* 3
10 1* 5* 2* 1*
12 3 4* 5 1*
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We dispense with these quickly.

Case 1. 1742 =39, (¢,g9) = (6,4) (mod (5400,10800)), g = f — 1
(g > 4). Here we are finished by Lemma 1.3.

Case 2. 1+2-5°+9-2° = 3, (b, ¢, f) = (4,11,9) (mod (10800, 5400,
10800)). Without calculation, from the moduli 251, 625 and 751
we have (b,¢, f) = (4,11,9) (mod 4500). Thus, from mod 3125 and
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mod 22501 we have b =4 and 139+ 2°¢ = 39 (g = f —2). This produces
a contradiction mod 6561 and mod 17497.

Cases 3, 4 and 5. Here 81 + 2°395¢ = 37 (f >> 12), which is clearly
a contradiction by Lemma 1.2.

Cases 6 and 10. 161+25-2% = 37, (z, f)=(8,8) (mod (5400, 10800)),
z = aor c (x # 8). Here, mod 1024 and mod 257 produce a
contradiction.

Case 7. 89+5-2° =39, (c,g) = (7,6) (mod (5400, 10800)), g = f—2
(c # 7). Here also we have a contradiction from mod 1024 and mod 257.

Cases 8 and 11. 1+ 32-5" +5-2¢Y = 3f, (z,9,f) = (3,9,8)
(mod (10800, 5400, 10800)), (z,y) = (b,c) or (e,a). Without cal-
culation, from mod 251 and mod 625, we conclude that x = 3,
4001 +5-2Y = 3 (y # 9), which produces a contradiction mod 1024
and mod 257.

Case 9. 601 + 2% = 3/, (a, f) = (7,6) (mod (5400,10800)) (a # 7).
Again, we have a contradiction from mod 1024 and mod 257.

Case 12. 1441 +5-2° = 3/, (a, f) = (10,8) (mod (5400, 10800))
(a # 10). Here we have a contradiction from mod 32768 and mod 40961.

Case 13. 1+ 295° + 80 -3¢ = 3/, (a,b,d,f) = (12,3,5,12)
(mod (5400, 10800, 10800, 10800)). Using mod 251 and mod 625, we
conclude that b =3, 1 +125-2%480-3% = 3/, If d > 5, from mod 729
and mod 487, we have an absurdity. Hence, 19441 + 125 - 2¢ = 37
(a # 12) and a final contradiction is produced from mod 32768 and
mod 40961. Thus, Theorem 3.B is proven. ]
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Theorem 3.C. The solutions to (3.C) are given in Table 3.C.1.

TABLE 3.C.1. The solutions (a,b,c,d,e, f) to (3.C).
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Proof. Let (a,b,c,d, e, f) be another solution. From computer data,
f>6.

Lemma 3.C. (a) Ife >0, thena —b =2 (mod 4); ife > 1, then
a+7b=10 (mod 20); if e > 2, then a + 7b = 50 (mod 100).

(b) Min{b,d} < 2.
(¢) Min{a,c} <4.
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Proof of Lemma . Part (a) follows easily from the moduli 5, 25 and
125. Define s = ¢ —a, t = d — b. To prove (b), assume the contrary,
so that, from mod 27, f =0 (mod 18). Hence, 5/ =1 (mod p), where
p =19, 829 or 5167, so that 23!5¢ = —1 (mod p). Using the primitive
roots 2, 2 and 6 for the moduli 19, 829 and 5167, respectively, we have
the following system:

(3.C.1) s+13t+16e=9 (mod 18),
(3.C.2) s+ 376t + 92e =414 (mod 828),
(3.0.3) 10865 + 4081¢ + 3157¢ = 2583 (mod 5166).

Considering this system mod 18, we easily conclude that (s,t,e) =
(0,9,0) (mod 18). Further, from (3.C.2), s = 2 (mod 4). Thus
¢ = a + 18 (mod 36). We now have an absurdity from mod 37 and
mod 13. To prove (c), assume the contrary, so that, from mod 32, f =0
(mod 8), 2°3'5¢ = —1 (mod p), p = 13 or 313. Using primitive roots 2
and 10 we have s + 4t + 9¢ = 6 (mod 12) and 274s + 56t + 39¢ = 156
(mod 312). Considering this system mod 4 and mod 3, we conclude
that

(3.C4) e=0 (mod 4), s=6 (mod 12), t=0 (mod 3).

From mod 3, bd # 0. Further, b =1 or d = 1. For, if b,d > 2, then,
from mod 9, we conclude that f = 0 (mod 12), 5/ = 1 (mod 601),
and, using primitive root 7, 432s + 304t + 550e = 300 (mod 600), a
contradiction mod 8 (by (3.C.4)). Note that, from mod 64 and mod 17,

(3.C.5) t=0 (mod12), fora,c > 6.

For, in this case, f = 0 (mod 16), and, using the primitive root
3 mod 17 we have 14s+t + 5e = 8 (mod 16), t =0 (mod 4). Suppose
that e = 0, 1 + 203° + 2¢3% = 5/. If a,c > 6, from (3.C.5), (3.C.4),
we have an immediate contradiction mod 5. Hence, w.l.o.g., let a = 5.
Then ¢ = 3 (mod 4), and, from mod 5, b = 1, d = 0 (mod 4), which
provides a contradiction mod 9 and mod 7. Hence, e # 0, and from part
(a), a+7b =10 (mod 20). Suppose that b=1. Then a = 3 (mod 20).
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If d > 1, then, from mod 9, f = 2 (mod 6), an easy contradiction
mod 31. If d = 1, from mod 9, f =4 (mod 6), and, with a little effort
we have a contradiction from the moduli 31, 7, 61 and 41. Hence, b > 1,
d=1. If a,c > 6, then, from (3.C.5), b =1 (mod 12), (a,c) = (3,1)
(mod 4). From the moduli 9, 7, 13, 27 and 37 we then have another
contradiction. Thus, a or ¢ = 5. In the first case (b, ¢) = (3,3) (mod 4),
which yields a contradiction mod 41. In the second case, a, and hence
b, are odd, b = 1 (mod 6), and we have a final contradiction mod 9
and mod 31. o

From Program CDK, the lemma, and the moduli in N, we determine
11 cases, which are listed in Table 3.C.2.

TABLE 3.C.2. (a,b,c,d,e, f) (mod (5400, 10800, 5400, 10800, 10800, 10800)).

a b ¢ d e
17 1* 2* 4
2% 4 2% 1* 2*
3*2*6 5 0O
4* 1* 6 2* 0*
3* 6 1* 0O*
6 0* 2* 1* 1*
6 1* 4* 3* 0*
6 2% 4* 1* 0*
6 5 3* 2* 0*
7

9
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Case 1. 1+2-3%+18.5° = 5%, (bye, f) = (7,4,6) (mod 10800).
From mod 625 and mod 751, we conclude that (b,e, f) = (7,4,6)
(mod 54000). If e # 4, we have an absurdity from mod 3125 and
mod 22501. Hence, 11251 + 2 - 3° = 5. Without calculation, from the
moduli 2187, 58321, 17497 and 6561, b ="7. }}.
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Case 2. 301 +4-3* =5/ (b, f) = (4,4) (mod 10800). Immediately
from mod 1621 and mod 243, b = 4. }.

Cases 3 and 9. 73+2%3Y = 5%, (z,y, f) = (6,5,6) (mod (5400, 10800,
10800)), (z,y) = (a,b) or (¢,d). If z # 6, we have a contradiction from
mod 256 and mod 577. Hence, 73 + 64 - 3Y = 5 (y # 5) and, without
calculation, we have a contradiction from the moduli 487, 9721 and
729.

Cases 4 and 8. 49 +9-2° =57 (z, f) = (6,4) (mod (5400, 10800)),
z=aorc (f>4). By Lemma 1.2, we have an absurdity.

Cases 5 and 7. 433+3-2% =57 (x, f) = (6,4) (mod (5400, 10800)),
z =aorc(z # 6). Easily from mod 128, mod 97, we have an absurdity.

Case 6. 61 + 2% = 5/, (a, f) = (6,3) (mod (5400,10800)) (a # 6).
Here again we have a contradiction from mod 128, mod 97.

Case 10. 241+3-2% =57, (a, f) = (7,4) (mod (5400, 10800)) (a # 7).
From mod 1024 and mod 257, we have a contradiction.

Case 11. 1801 + 27 -2% = 5%, (a, f) = (9,6) (mod (5400, 10800))
(@ > 9). From mod 1024 and mod 257, we have a final contradiction.
Thus, Theorem 3.C is proven. u]

Theorem 3.D. The solutions to (3.D) are given in Table 3.D.



32 L.J. ALEX AND L.L. FOSTER

TABLE 3.D. The solutions (a, b, ¢c,d, e, f) to (3.D).

a b c d e f
01 01 21
0 5011 4
111 0 2 1
1 111 2 2
11 2 0 3 1
1 1 2 1 5 1
1 21 01 2
1 41 01 3
1 51 1 15
21 01 2 2
31 2 0 4 2
31 21 3 3
31 2 2 6 2
31 40 5 2
3 2 2 01 4
33 2 1 15

Proof. Let (a,b,c,d,e, f) be another solution. From computer data,
either e > 9 or f > 6.

Lemma 3.D. (a) a#0, 1 or 3.

(b) Ifd #0, thene = f (mod 4); if d > 2, thene+7f =0 (mod 20);
if a,d > 3, then e+ 7f =0 (mod 100).

(c) b=1ore=1.

(d) Min{c, f} <2.

Proof of Lemma . Part (a) follows from Lemma 1.2. (For, in each
of these cases, after cancellation, we have a primitive equation of the
form z +y = 293", where g > 8 or h > 4.) Part (b) follows from (a)
and the moduli 5, 25 and 125, while part (c) follows from mod 4. To
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prove (d), assume the contrary. Define s =b— e, t = ¢ — f. Suppose
first that ¢, f > 4, so that, from mod 81, a = 27 (mod 54), 1+ 5% =0
(mod p), 2¢3'5% = 1 (mod p), where p = 7, 163, 487 or 5167. Using
the primitive roots 3, 2, 3 and 6 for these primes (in order) we obtain

(3.D.1) 2s+t—d=0 (mod 6);
(3.D.2) s+ 101t + 15d = 0 (mod 162);
(3.D.3) 2385 + ¢+ 99d = 0 (mod 486);
(3.D.4) 10865 + 4081t + 3157d = 0 (mod 5166).

In particular, from (3.D.2)—(3.D.4), we obtain the system s+11t+15d =
0, 4s+t4+9d = 0, 65+ 13t + 7d = 0 (mod 18). It follows easily
that s =0,t =d =0o0r 9 (mod 18). In the first case we have an
immediate contradiction mod 19. In the second case, from (c) and
mod 19, (¢, f) = (2,11) (mod 18), so that we have a contradiction
from mod 13 and mod 37. Thus either c or f is equal to 3, and, from
mod 27, a =9 (mod 18). From (3.D.4), (3.D.1), we have

(3.D.5) t+d=0 (mod 6), s+t=0 (mod 3).

Clearly (e, f) # (1, 3) and there thus remain three cases: (b,c) = (1, 3),
(c,e) =(3,1) and (b, f) = (1, 3), which we consider separately.

Case 1. 1+ 5%+ 5457 = 2237, Clearly, d # 0, e = f (mod 2),
and, from (3.D.5), d # f (mod 2) and e+ f =1 (mod 3). Hence, from
mod 16, ¢ = 2, f = 2 (mod 6), d is odd and @ = 1 (mod 4). Easily
then we have a contradiction mod 13.

Case 2. 1+ 5% +27-2°5¢ = 2.3/, From (3.D.5),b— f =1 (mod 3),
d—f =3 (mod6). Thus,if d =0, f =3 (mod 6), b =1 (mod 3),
and we have a contradiction mod 5 and mod 13. Hence, d # 0, f =1
(mod 4) and, from mod 13, mod 16, we conclude that (b,d, f) = (0, 2,5)
(mod 6), a contradiction mod 19.

Case 3. 1+ 5% +2-3°% = 27.2° Here, from (3.D.5), c+d =3
(mod 6), e=c+1 (mod 3). If d =0, then (c,e) = (3,1) (mod (6,3)),
which produces a contradiction mod 5 and mod 13. Thus, d # 0, e = 3
(mod 4), e = 4c+7 (mod 12) (¢ £ d (mod 2)). Clearly, e > 4, so that,
from mod 16, a =1 (mod 4), c is even and d is odd. Thus, we have an
easy contradiction mod 13. ]
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From Program CDK, the lemma, and the moduli in N, we determine
three cases: (a,b,c,d,e, f) = (3,1%,2%,2%,6,2*), (3,2*,2*,0%,1%,4) or
(3,3%,2*,1*,1*,5) (mod (10800, 5400, 10800, 10800, 5400,10800)). In
the first case 4514+ 5% = 9-2¢ (e # 6), and we have a contradiction from
mod 1024 and mod 257. In the second case 37 + 5% = 2 -3/ (f # 4)
and the moduli 243 and 1621 produce a contradiction. In the last case,
361 + 5% = 2. 37 so that immediately from mod 251 and mod 625,
a = 3. J. Thus, Theorem 3.D is proven. ]

Theorem 3.E. The solutions to (3.E) are given in Table 3.E.1.

TABLE 3.E.1. The solutions (a, b, c,d, e, f) to (3.E).
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TABLE 3.E.1. (Continued)
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a b cd e f
4 1 3 0 2 3
4 1 31 3 3
4 1 3 3 7 3
4 1 4 0 1 4
4 1 41 1 5
4 1 5 0 2 4
4 1 51 4 4
5 01 1 4 1
5 01 2 2 3
6 1 1 0 2 4
6 1 5 1 9 1
6 3 5 1 10 2
7 0 1 1 4 2
8 1 1 1 4 4
9 0 31 3 4
9 0 3 3 4 5
9 0 51 6 3

Proof. Let (a,b,c,d, e, f) be another solution. From computer data,
e>10or f > 5.

Lemma 3.E. (a) If a,e > 2, then ¢ is odd; if a,e > 3, then c
and d are odd; if a,e > 4, then ¢ = d =1 or 3 (mod 4); if a,e > 5,
then (c,d) = (1,5), (3,7), (5.1) or (7.3) (mod 8); if a,e > 6, then
(e,d) = (1,13), (3,7), (5,1), (7,11), (9,5), (13,9) or (15,3) (mod 16).

(b) If b,d > 1, then e = f (mod 4); if b,d > 2, thene+T7f =0
(mod 20); if b,d >3, then e+ 7f =0 (mod 100).

(c) a+bisodd;ife,f>2, thena—b=3 (mod6); ifc, f > 3, then
a+5b=9 (mod 18); if ¢, f > 4, then a + 23b = 27 (mod 54).
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Proof of Lemma . These assertions follow easily from the moduli 4,
8, 16, 32, 64, 5, 25, 125, 3, 9, 27, 81. O

From Program EGI, the lemma, and the moduli in N, we find
that there are 19 possibilities. In the following ten cases (since e or
f > 5400) we are clearly finished by Lemma 1.2: (a,b,c,d e, f) =
(3*7 0*7 ]‘*737 77 1*)7 (4*7 ]‘*7 17 1*7 5*7 ]')7 (4*7 1*7370*7 2*7 3)’ (4*7 1*7 37 ]‘*7
3%,3), (4*,1%,3,3,7,3), (4%,1%,4,0%, 1*,4), (4*,1%, 4, 1*, 1%, 5), (4*, 1*, 5,
0*,2*,4), (6,1*,1*,0*%,2*,4) or (8,1*,1*,1*,4* 4). The remaining pos-
sibilities are listed in Table 3.E.2 and are considered separately below.

TABLE 3.E.2. (a,b,c,d,e, f) (mod (5400, 10800, 10800, 10800, 5400, 10800)).

a b c d e f
1* 4 2% 1* 4* 4
2* 3 1* 2 6 2*
3* 2 1*3 6 2*
1*5 1 4 4
15 1* 9 1*
3 5 1* 10 2*
0* 3* 1* 3* 4
0* 3* 3 4* 5
0*5 1* 6 3*
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Case 1. 23 +5° = 8-3/, (b,f) = (4,4) (mod (10800)) (f > 5).
Immediately from mod 1621, b = 4 (mod 1620), so that, from mod 243,
f=4.l

Case 2. 19+5* =929 g =e—2, (b,g) = (3,4) (mod (10800, 5400))
(9 > 4). Here we have an immediate contradiction mod 32.

Case 3. 67 +5% =3.2° (d,e) = (3,6) (mod (10800,5400)) (e > 6).
Without calculation, from mod 1601, mod 97 and mod 128 we have

e=06. }.
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Case 4. 1+ 5-2% +5.3° = 223, (a,c,e, f) = (4,5,4,4)
(mod (5400, 10800, 5400, 10800)). From mod 97, (a,e)=(4,4) (mod 48).
From mod 1601, (¢, f) = (5,4) (mod 1600), (mod 64), so that, from
mod 128, a = e = 4, and hence 1 +5-39 = 16 - 3*, where g = ¢ — 4,
h=f—4 >0, a contradiction mod 3.

Case 5. 14+5-294+5-3¢ = 3-2°, (a,c,e) = (6,5,9) (mod (5400, 10800,
5400)). From mod 97, (a,e) = (6,9) (mod 48), so that immediately,
from mod 1601, ¢ = 5 (mod 1600), and, from mod 128, a = 6,
1074+ 539 = 2°) g = e — 1, an immediate contradiction mod 1621
and mod 243.

Case 6. 1+ 2% +5.3° = 9.2° (a,b,c,e) = (6,3,5,10)
(mod (5400, 10800, 10800, 5400)) (e > 10). Suppose that a # 6. Then,
from mod 256, we conclude that ¢ = 1205 (mod 1600) so that we have
a contradiction mod 1601. Thus, 1+ 64-5° +5-3° = 9-2°, Immedi-
ately from mod 243, mod 811 and mod 163, b = 3 (mod 162), c = 5
(mod 810), (mod 1620), e =10 (mod 162). Thus, if ¢ # 5, we have a
contradiction mod 729 and mod 9721. Hence, 19+5° = 9-29, g = ¢ —6,
which forces g = 4, from mod 32. }.

Case 7. 17+29 = 3/ (f > 5), g = a—3. Here we have a contradiction
by Lemma 1.3.

Case 8. 142°4+27-5¢ = 16.37, (a,d, f) = (9,3,5) (mod (5400, 10800,
10800)) (f > 5). Immediately, from mod 243 and mod 163, (a, f) =
(9,5) (mod 162). Also, from mod 729, a = 171 (mod 486). Thus, we
have a contradiction mod 487.

Case 9. 14+2%+5-3°=27-2¢, (a,c,e) = (9,5,6) (mod (5400, 10800,
5400)), (e > 6). From mod 97, (a,e) = (9,6) (mod 48), (mod 400),
so that, with no effort, from mod 1601 and mod 128 we have a final
contradiction. Thus, Theorem 3.E is proven. u]

Theorem 3.F. The solutions to (3.F) are given in Table 3.F.1.
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TABLE 3.F.1. The solutions (a,b,c,d,e, f) to (3.F).
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Proof. Let (a,b,c,d, e, f) be another solution. From computer data,
e>10or f > 7.

Lemma 3.F. (a) a > 4.
(b) (i) Ifc¢>1, then e = f (mod 2).
(ii) Ifc>2, thene= f (mod 6).
(i) Ifc> 3, thene+5f =0 (mod 18).
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(iv) Ifc> 4, then e+23f =0 (mod 54).
(¢) Ifbye> 2, then d = 0.
(d) Min{b,e} < 2.
(e) Min{d, f} < 2.

Proof of Lemma . Part (a) follows from Lemma 1.2. (For, in
each of the cases a = 0,1,2 or 3, after all possible cancellations we
obtain an equation of the form x + y = 295" where either g > 8
or h > 6.) Part (b) then follows from the moduli 3, 9, 27 and 81.
Part (c) follows from mod 4 and mod 5, and part (d) from mod 8.
To prove (e), assume the contrary, so that, from mod 125, a = 50
(mod 100). Define s = b—e¢, t = d — f. Then 2°3°5* = 1 (mod p),
where p = 101, 1811 or 394201. Using primitive roots 2, 7 and 7
for the moduli 101, 1811, 394201, respectively, we have the system:
s+ 69c+ 24t =0 (mod 100), 835s + 177c + 914t = 0 (mod 1180) and
173174s + 287766¢ + 126172t = 0 (mod 394200). Thus, we have the
system: s+ 9c +4¢t = 0,55 + 3¢+ 6t =0, 7s + 3¢ + 6t = 0 (mod 20).
We easily conclude that s,c,t = 0 (mod 10), so that 2 + 2°5¢ = 2054
(mod 11). }. O

From Program BFJ, the lemma, and the moduli in N, we determine
six cases, which are listed in Table 3.F.2.

TABLE 3.F.2. (a,b,c,d,e, f) (mod (10800, 5400, 10800, 10800, 5400, 10800)).

a b ¢ d e f
1. 3* 25 0* 3* 3
2. 1* 1* 0* 1* 3
3. 8 0* 0* 2* 3
4. 1* 3 1* 3* 3
5 6 7 5 1 1*7
6. 10 45 2* 1* 7
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Cases 1 and 2. 7+ 3% =2-5/ (z,f) = (5,3) (mod (10800, 5400)),
x = cor a. Here Lemma 1.1 produces a contradiction.

Case 3. 1+ 3%+ 20 = 4.5/, (a,b,f) = (5,8,3) (mod (10800, 5400,
10800)). From mod 251, mod 751 and 625, f = 3. }.

Case 4. 271 + 3% = 8-5%, (a,f) = (6,3) (mod 10800). Without
calculation, from mod 251 and mod 625, f = 3. }.

Case 5. 1+ 3% +5 .23 = 2.5f (a,b,c,f) = (6,7,5,7)
(mod (10800, 5400, 10800, 10800)) (f > 7). Immediately from mod 243
and mod 1621, (b, f) = (7,7) (mod 162), so that, from mod 163,
(a,¢) = (6,5) (mod 162). If ¢ > 5, then, from mod 729, f = 169
(mod 486), a contradiction mod 9721. Hence, 1+3?+1215-2° = 2.5/,
Without calculation, from the sequence of moduli 729, 9721, 4861, 1459,
2917 and 2187, a = 6, 73 + 243 -2° = 5, where s = b — 1, t = f — 1.
Thus, we have a contradiction mod 128 and mod 97.

Case 6. 1+3%+400-3°=2-5%, (a,c, f) = (10,5,7) (mod 10800).
From mod 243 and mod 163, (a,c, f) = (10,5,7) (mod 162). If
¢ # 5, we thus have a contradiction mod 729 and mod 9721. Hence,
97201 + 3% = 2-5f (a > 10). We conclude from mod 177147 that
f =157471 (mod 472392). Thus we have a contradiction mod 472393.
Thus, Theorem 3.F is proven. o

Theorem 3.G. The solutions to (3.G) are given in Table 3.G.1.

Proof. Let (a,b,c,d, e, f) be another solution. From computer data,
e>1lor f>T.
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TABLE 3.G.1. The solutions (a, b, c,d, e, f) to (3.G).

4

7T 0 4 3

1

7T 2 4 4 4

1

2
3
2

4
3
8

4 1 2
4 3 2
4 5 2

2

2
2

31 5 11 1

5

2

4 5 1 8

6

1

10 0 2 2
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Lemma 3.G. (a) If a,e > 2, then ¢ is odd; if a,e > 3, then c
and d are odd; if a,e > 4, then ¢ =d =1 or 3 (mod 4); if a,e > 5,
then (¢,d) = (1,5), (3,7), (5,1) or (7,3) (mod 8); if a,e > 6, then
(e,d) = (1,13), (3,7), (5,1), (7,11), (9,5), (11,15), (13,9) or (15,3)
(mod 16).

(b) b,c > 1 if and only if e+ f is even; ifb,c > 2, thene = f (mod 6);
if byc > 3, then e +5f = 0 (mod 18); if b,c > 4, then e +23f = 0
(mod 54).

(¢) a—b=2 (mod4); ifd, f > 2, then a+ 7b = 10 (mod 20); if
d,f >3, then a+ 7b =50 (mod 100).

Proof of Lemma . These results follow routinely from the moduli 4,
8, 16, 32, 64, 3, 9, 27, 81, 5, 25 and 125. O

From Program EGI, the lemma, and the moduli in N, we have the
13 cases listed in Table 3.G.2, which we now consider.

TABLE 3.G.2. (a,b,c,d,e, f) (mod (5400,10800, 10800,10800, 5400, 10800)).

a b c d e f
1. 1* 7 04 3 4
2. 1* 7 06 b5 4
3. 17 14 1* b5
4. 1 7 2% 4 4* 4
5. 1 7 4 2 8 2
6. 1* 7 5 4 17
7. 2 4 3 2* 3* 3
8. 2 4 5 2 8 2*
9. 5 3*1*5 11 1*
0. 6 05 1* 8 1*
11. 6 4 5 1* 8 2*
12. 15 1* 2*
13. 10 0* 2* 2* 1* 4
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Case 1. 14+2-3°+5% = 8.5%, (b,d, f) = (7,4,4) (mod 10800) (f > 4).
Immediately, from mod 625, b = 7 (mod 500), (mod 5400). Hence,
using mod 751, we deduce that (d,f) = (4,4) (mod 5400). From
mod 3125, we conclude that b = 2257 or 9007 (mod 11250), according
to whether d > 4 or d = 4. In either case, we have a contradiction
mod 22501.

Case 2. 14+2-3°+5% = 32-5/ (b,d, f) = (7,6,4) (mod 10800) (f > 4).
As in the previous case, from mod 625 and mod 751, (b,d, f) = (7,6, 4)
(mod 54000). Also, from mod 3125, b = 2257 (mod 11250), yielding
an absurdity mod 22501.

Case 3. 1+2-3*+3.5¢=2.5/ (bd, f) = (7,4,5) (mod 10800)
(f >5). Again, b =7 (mod 54000) and, from mod 751, (d, f) = (4,5)
(mod 54000). As above, if d # 4, then b = 2257 (mod 11250), which
produces an absurdity mod 22501. Hence, 938 + 3* = 5/. From
mod 15625, we conclude that b = 5007 (mod 12500), an impossibility
mod 37501.

Case 4. 1 +2-3"4+9-5% =16-57, (b,d, f) = (7,4,4) (mod 10800)
(f > 4). As in the previous cases, (b,d, f) = (7,4,4) (mod 54000).
From mod 3125, b = 2257 or 6757 (mod 11250), according as d > 4 or
d = 4. In either case, mod 22501 yields a contradiction.

Case 5. 1+ 2-3% 4 354 = 2°5f (b,c,de, f) = (7,4,2,8,2)
(mod (10800, 10800, 10800, 5400, 10800)). Immediately, from mod 125,
either d = f = 2 or d,f # 2. In either case, from mod 625,
b = 7 (mod 500), (mod 54000). Thus, from mod 251, ¢ 4
(mod 54000). Since 216 = 5 (mod 751), it follows that d = 2
(mod 375), (mod 54000), and e + 146f = 300 (mod 375). Thus,
since 2™ = 5 (mod 3001), it follows immediately that e + 798f =
104 (mod 1500), (mod 375), so that (e,f) = (8,2) (mod 375),
(mod 54000). If d,f # 2, then, as above, b = 2257 (mod 11250),
an absurdity mod 22501. Hence, d = f = 2, 1+2-3% +25-3¢ = 25.2¢.
Immediately from mod 1621 and mod 243, ¢ = 4, 1013 + 3° = 25 - 29,
g =e—1> 7, so that, from mod 1024 and mod 257, we are finished.

Case 6. 1+2-3°+3°5¢ =2.5% (b,c,d, f) = (7,5,4,7) (mod 10800).
Easily, from mod 243 and mod 1621, we conclude that (d,f) =
(4,7) (mod 32400). Thus, from mod 163, (b,c) = (7,5) (mod 162),
(mod 32400). Also, from mod 487 and mod 9721, f = 7 (mod 4860)
so that, from mod 729, ¢ = 5, 1 +2- 34243 .57 = 2.57, Clearly, from
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mod 625, b = 7 (mod 54000), so that, from mod 751, (d, f) = (4,7)
(mod 54000). If d # 4, then, as above, b = 2257 (mod 11250), an
absurdity mod 22501. Hence, 75938 + 3* = 5. Without calculation,
using the moduli 2187, 58321, 17497, we have f = 7 (mod 1458),
(mod 3645), b="7 (mod 729), f =7 (mod 17496), b =17. }.

Case 7. 169 + 3% = 2.5/ (b, f) = (4,3) (mod 10800). Immediately
from the moduli 487, 811 and 243, we have b =4. }f.

Case 8. 14+4-304+25-3¢ = 25.2¢, (b, ¢,e)=(4,5,8) (mod (10800, 10800,
5400)). Without calculation, from mod 1621 and mod 243, e = 8
(mod 1620), b = 4, 1+223+3° = 2¢, so that, by Theorem 2.A.2, ¢ = 8.
1.

Case 9. 173 +3-59 = 2¢, g = d—1 > 4, (g,e) = (4,11)
(mod (10800, 5400)). Clearly, from mod 625, e = 11 (mod 500),
(mod 27000), and, from mod 751, g = 4 (mod 375), (mod 54000).
Hence, from mod 22501, (g,¢e) = (4,11) (mod (5625, 22500)), an obvi-
ous contradiction mod 3125.

Case 10. 14+2°+5-3¢ = 5-2¢ (a,c,e) = (6,5,8) (mod (5400, 10800,
5400)). Suppose that a > 6. Then, from mod 1024, ¢ = 245
(mod 256), which produces a contradiction mod 257. Hence, a = 6,
14+223+3°=2°¢e=8. [

Case 11. 1+ 2%3° +5.3° = 25.2° (a,b,ce) = (6,4,5,8)
(mod (5400, 10800, 10800, 5400)) (e # 8). Using mod 97, (a,e) = (6, 8)
(mod 48). From mod 1024, we conclude that ¢ = 245 or 69 (mod 256),
according as a > 6 or @ = 6. In either case we have a contradiction
mod 257.

Case 12. 1+3-2945-3° = 25.2°, (a,c,e) = (7,5,6) (mod (5400, 10800,
5400)) (e # 6). From mod 97, (a,e) = (7,6) (mod 48), so that, imme-
diately from mod 257, ¢ =5 (mod 256), an absurdity mod 1024.

Case 13. 113+ 29 = 5/, g = a -1 > 9, (g9,f) = (9,4)
(mod (5400,10800)). Here mod 1024 and mod 257 produce a contra-
diction. Thus, Theorem 3.G is proven. |

Theorem 3.H. The solutions to (3.H) are given in Table 3.H.
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TABLE 3.H. The solutions (a,b,c,d, e, f) to (3.H).

a b c¢c d e f
1 21 011
1 3 2 0 1 2
2 1 01 11
2 3 01 21
2 4 0 2 41
3 1 1 0 11
3 2 2 0 21
3 33 0 2 2
5 2 1 0 2 1
5 6 1 0 2 2
6 1 0 1 1 2
6 5 0 1 2 2
7T 1 1 0 3 1
7 5 1 0 2 2
9 1 4 0 3 2
10 2 0 2 2 3
10 3 0 3 4 2
15 2 2 0 8 1

Proof. Let (a,b,c,d,e, f) be another solution. From computer data,
either e > 9 or f > 5.

Lemma 3.H. (a) a > 4.
(b) Either (i) ¢=0,d#0,a=2 (mod 4) and b=d (mod 2), o
(i) d=0,c#0, (a,b—¢c) =(1,1) or (3,0) (mod 4).

(¢) If b > 2, then e is even; if b > 3, then e and f are even; if b >
then e = f =0 or 2 (mod 4); if a,b > 5, thene = f = 0,2,4 07“6
(mod 8); if a,b > 6, then (e, f) = (0,0), (2,10), (4,4), (6,14), (8,8),
(10,2), (12,12) or (14,6) (mod 16).
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(d) Min{d, f} <2
(e) Min{c,e} < 3.

Proof of Lemma . Part (a) follows easily from Lemma 1.2 while part
(b) follows easily from mod 15. Part (c) follows from the moduli 4, 8,
16, 32 and 64. Define u = c—e, v = d — f. Assume that (d) is false
so that ¢ = 0 and, from mod 125, @ = 50 (mod 100). Thus 2°3“5” = 1
(mod p), where p = 41, 101 or 8101. Using primitive roots 7, 2 and 6
modulo the primes 41, 101 and 8101, respectively, we have the system

(3.H.1) 14b+25u + 180 =0 (mod 40),
(3.H.2) b+69u+24v =0 (mod 100),
(3.H.3) 4131b + 3970u + 2104v =0 (mod 8100).

Considering the system (3.H.1)—(3.H.3) modulo 10 we conclude that
(b,u,v) = (0,0,0) (mod (10,10,5)). Thus, we have an easy contradic-
tion mod 11. To prove (e), assume the contrary. Then alternative (ii) of
(b) is true. We suppose first that ¢, e > 5, so that, from mod 243, a = 81
(mod 162). Thus, 2°3“5" = 1 (mod q), where ¢ = 19,163, 135433 or
87211. Using the primitive roots 2, 2, 5 and 13 for these primes we
have

(3.H.4) b+13u—16f =0 (mod 18),
(3.H.5) b+10lu—15f =0 (mod 162),
(3.H.6) 91124b 4 132322u — f =0 (mod 135432),

(3.H.7) 79135b + 28155u — 53732f =0 (mod 87210).
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Considering the system (3.H.4)—(3.H.6) mod 18, we have (b,u, f) =
(0,0,0) or (9,9,0) (mod 18). In the first case, there is a contradiction
mod 7. In the second, from mod 7, (c,e) = (3,0) (mod 6), and,
hence, (a,b —¢) = (3,0) (mod 4), so that a = 27 (mod 36). From
(3.H.6), f = 2 (mod 4), so that f = 18 (mod 36). Thus, we have a
contradiction mod 37. Hence, either ¢ = 4 or e = 4. Also, a = 27
(mod 54) so that (3.H.4) and (3.H.7) hold.

Case 1. ¢ =4, 1+ 2% +81-2° = 3°5/. From (3.H.4) and (3.H.7),

b—13e —16f = 2, 7Tb — 3e — 2f = 6 (mod 18), so that e = 4 — b
(mod 6), f = —b (mod 3). Also, from (b), (a,b) = (1,1) or (3,0)
(mod 4) and either b =1 or b > 3. In the former case, (e, f) = (0,5)

(mod 9), 2¢ = 3°5 (mod 163), and (using the primitive root 2)
a—10le —15f = 0 (mod 162) so that 7e+3f =0 (mod 9). }t. In the
latter case, from mod 8, e, f and, hence b, are even, so that f = —b
(mod 6) and we have an easy contradiction mod 7 and mod 13.

Case 2. e = 4, 1+ 2% 4+ 2°3¢ = 81-5/. From (3.H.4) and (3.H.7),
b+c+2f=-2,b+3c—2f =0 (mod 6), so that c=b+4 (mod 6).
Further, (a,b —¢) = (3,0) (mod 4) so that a = 3 (mod 12). If b = 2,
then ¢ = 0 (mod 3) and we have an easy contradiction modulo 13.
Thus, from mod 8, b > 3 and f is even, so that we have another easy
contradiction from mod 7, and the lemma is proven. o

From Program AHL, the lemma, and the moduli in N, we determine
three possibilities: (a, b, ¢, d, e, f) = (10,2*,0%,2*,2* 3), (10, 3*,0%, 3,4,
2*)  or  (15,2*,2* 0% 8,1*) (mod (5400, 5400, 10800, 10800, 10800,

10800)). In the first case, 101 + 2% = 9 -5/ (f > 3), and we
have a contradiction mod 625 and mod 751. In the second case,
14+22+8.57 = 25.3° and, if d > 3, we have a contradiction mod 625 and
mod 751. Thus, 1001 + 2% = 25 - 3¢ in this case, and immediately, from
the moduli 1621 and 243, we have e = 4. }f. Finally, in the third case,
37+2% =5-3° (e > 8). Here 2 = 19646 (mod 19683) so that a = 8763
(mod 13122), a contradiction from mod 52489. Thus, Theorem 3.H is
proven. o



48 L.J. ALEX AND L.L. FOSTER

Theorem 3.1. The solutions to (3.I) are given in Table 3.I.1.

TABLE 3.I. The solutions (a,b,c,d,e, f) to (3.1).

a b c d e f
1 3 2 1 1 2
1 3 41 31
1 3 6 1 1 3
1 71 4 2 4
1 7 2 5 3 4
1 7 3 415
1 7 7 4 35
2 41 2 1 3
2 4 41 41
2 4 5 2 2 3
3 1 1 2 1 2
31 21 21
31 3 2 2 2
31 4 3 4 2
3 5 4 1 4 2
4 2 41 2 2
71 2 1 41

Proof. Let (a,b,c,d, e, f) be another solution. From computer data,
e>4or f>5.

Lemma 3.I. (a) Ifa,c > 2, then e is even; if a,c > 3, then e and
f are even; if a,c > 4, thene = f =0 or 2 (mod 4); if a,c > 5, then
e=f=0,2,4 or6 (mod 8); if a,c > 6, then (e, f) = (0,0), (2,10),
(4,4), (6,14), (8,8), (10,2), (12,12) or (14,6) (mod 16).

(b) c¢+d is odd; if b,e > 2, then c —d =3 (mod 6); if b,e > 3, then
c+5d =9 (mod 18); if b,e > 4, then ¢+ 23d = 27 (mod 54).
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(¢) a—b=2 (mod 4); ifd,f > 2, then a + 7b = 10 (mod 20); if
d,f >3, then a + 7b = 50 (mod 100).

Proof of Lemma . These assertions follow routinely from the moduli
4, 8, 16, 32, 64, 3, 9, 27, 81, 5, 25 and 125. mi

From Program EGI, the lemma, and the moduli in N, we identify
13 cases. The following six cases are immediately eliminated by
Lemma 1.2 (since e or f > 10800): (a,b,c,d, e, f) = (1*,3,4*,1%,3,1%),
(2*7 4’ 4*7 ]‘*7 47 l*)7 (3*7 ]‘*7 4*’ 37 4’ 2*)7 (3*7 5’ 4*7 ]‘*7 4’ 2*)’ (4*7 27 4*’ ]‘*7
2,2*) and (7,1%,2*% /1*,4,1*). The remaining seven cases are listed in
Table 3.1.2. We consider these separately.

TABLE 3.1.2. (a,b,c,d,e, f) (mod (5400, 10800, 5400, 10800, 10800, 10800)).

a b c d e f
1. 136 1* 1* 3
2. 17 14 2% 4
3. 1*7 25 34
4, 1*7 3*4 1* 5
5. 1*7 7 4 3*5
6. 24 1* 2* 1* 3
7. 2% 4 5% 2% 2% 3

6,2) (mod (5400,10800)), g = f—1.

Case 1. 11+2° = 3-59, (¢,9) = (
=24

Immediately from mod 125, g

Case 2. 1+2-3°+2.5¢ = 9.5/ (b,d, f) = (7,4,4) (mod 10800)
(f > 4). Immediately, from mod 625, b = 7 (mod 500). Thus, from
mod 751, (d,f) = (4,4) (mod 375), (mod 1125). If d # 4, then,
from mod 3125, b = 2257 (mod 11250) and we have a contradiction
mod 22501. Hence, 139 4+ 2 -39 = 5/ where g = b—2 > 5. Thus, we
have a contradiction mod 729 and mod 1459. }.
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Case 3. 1+2-3°+4.5¢=27.57 (b,d, f) = (7,5,4) (mod 10800),
(f > 4). From mod 625 and mod 751 we conclude that (b,d, f) =
(7,5,4) (mod 54000). Thus, from mod 3125, mod 22501, we have an
impossibility. }.

Case 4. 1 +2-3*+8.5¢=3.5/ (b,d,f) = (7,4,5) (mod 10800)
(f > 5). From mod 625 and mod 751, we conclude that (b,d, f) =
(7,4,5) (mod 54000). If d # 4, we have a contradiction mod 3125 and
mod 22501. Hence, 1667 +2-39 = 5/, g = b — 1. Without calculation,
from the moduli 729, 1459, 58321 and 2187, g = 6. }.

Case 5. 1+ 2.3 4 2054 = 27.5/ (be,d,f) =
(mod (10800, 5400, 10800, 10800)). From mod 625, b = 7 (mod 500)
so that, from mod 751 (since 2146 = 5), we have

(3.11) ¢+ 146d = 216 (mod 375),

f =5 (mod 375). Thus, immediately from mod 3001 (since 27 = 5),
we have

(3.1.2) c+798d =199 (mod 1500), (mod 375).

Easily, from (3.1.1), (3.1.2), we have (¢,d) = (7,4) (mod 375). If d > 4,
we have a contradiction mod 3125 and 22501. Hence, 142-3°+625.2¢ =
27 - 5. Without calculation, from the moduli 128, 97, 577, 1601 and
256, we conclude that ¢ = 7, 2963 + 2 -39 = 57, g = b — 3. Thus,
immediately from mod 487, mod 811 and mod 243, we have g = 4. }.

Case 6. 17+ 4-39 = 5%, (g,f) = (3,3) (mod 10800), g = b — 1.
Immediately from mod 81, g = 3. }.

Case 7. 89 +4-39 = 5%, (g,f) = (2,3) (mod 10800), g = b — 2.
Immediately, from mod 27, g = 2. }f. Thus, Theorem 3.I is proven.
O
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Theorem 3.J. The solutions to (3.J) are given in Table 3.J.

TABLE 3.J. The solutions (a,b,c,d,e, f) to (3.J).

N = = = N N = = = = N

N O O kW W W NN NN
O© N WO U= O RN =T
O = B O O O O N = = N|O
W B =N W R RN ==
N W R R R R e | s

Proof. Let (a,b,c,d, e, f) be another solution. From computer data,
either d > 10, e >4 or f > 5.

Lemma 3.J. (a) a > 4. It trivially follows from mod 5 and mod 15
that in fact a # 0, 1 for all solutions of (3.J).

(b) b+c=1 (mod 2); ife > 2, then b—c =3 (mod 6); if e > 3,
then b+5c =9 (mod 18); if e > 4, then b+ 23c = 27 (mod 54).

(¢) Ifb,d > 2, then c=0.

(d) Min{b,d} <2.

(e) Min{c, f} <1.

Proof of Lemma . Part (a) follows easily from Lemma 1.2. Part (b)
follows from part (a) and the moduli 3, 9, 27 and 81. Part (c) follows
from mod 4 and mod 5, while part (d) follows from mod 8. Define
s=d—b,t=f —c. To prove (e), let us first note that min{e, f} < 2.
For, if not, then, as in the proof of Lemma 3.F, we have a system of
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congruences: s +9% + 4t =0, 5s+3e+ 6t =0, 7s+3e+ 6t = 0
(mod 20), which implies that (s, e, t) = (0,0,0) (mod 10), which yields
a contradiction mod 11. Suppose now that min{c, f} > 1, so that,
either c=2, f >2or f =2, ¢ > 2, and, from mod 25 and mod 1181,
we have a = 10, 5s + 3e + 6t = 0 (mod 20), and, in particular,

(3.J.1) c=3e+f (mod5).

Suppose that ¢ = 2. From part (b) and mod 16, either (b,d,e) =
(1,2,1) or b = 5 (mod 6), d = 1, e is even, and f is odd. In the
former case, from (3.J.1) and mod 11, we have an easy contradiction.
In the latter case, 2+ 3-2° = 6-9° (mod 11), and we conclude that
(bye, f) = (11,4,5) or (5,6,9) (mod (30,10,10)), which produces a
contradiction mod 61. Hence, f = 2, ¢ = 3e + 2 (mod 5). From
mod 16, (b,d) = (1,2) or (3,1). Thus, from (3.J.1), 2+ 6 -4° = 3° or
2+2-4°=6-3° (mod 11), again a contradiction. O

From Program BFJ, the lemma, and the moduli in N, we con-
clude that (a,b,c,d,e, f) = (2,4*,1%,1*%,2,1%), (6,2*,1*,1*,1*%,3) or
(6,4*,1*,1*,4,1*) (mod (10800, 5400, 10800, 5400, 10800, 10800)). In
the first and last cases, 81 + 3% = 10-3% e > 4. }t. In the second
case, 7+ 3*"! = 2.5 a contradiction by Lemma 1.1. Thus, Theorem
3.J is proven. a

Theorem 3.K. The solutions to (3.K) are given in Table 3.K.

Proof. Let (a,b,c,d, e, f) be another solution. From computer data,
either d >9,e>6or f > 4.

Lemma 3.K. (a) a # 0,1 or 3.

(b) b—c=2 (mod4); ifa,f > 2, then b+ 7c = 10 (mod 20); if
a, f >3, then b+ 7c = 50 (mod 100).
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TABLE 3.K. The solutions (a,b,¢c,d, e, f) to (3.K).

a b c d e f
11 3 2 11
1 3 1 111
1 4 2 1 1 2
2 2 01 11
2 6 01 21
31 3 2 21
3 1.7 2 2 3
3 2 41 2 2
33 1 1 1 2
3 4 2 1 3 1
3 8 2 1 5 1
5 1 7 2 1 4

(¢c) b=1lord=1;ifb=1, thend =2, c=3 (mod 4) and a is odd.

(d) Min{ec, e} < 2. It easily follows from mod 3, mod 15, that a # 0
for all solutions of (3.K). Thus (b)—(d) are also true for such solutions.

Proof of Lemma . Part (a) follows from Lemma 1.2. Part (b) follows
from part (a) and the moduli 5, 25 and 125. To prove (c), note that,
from mod 4, b or d is one. If b = 1, from (b), ¢ = 3 (mod 4), so that
from mod 3 and mod 8, a is odd and d = 2. To prove (d), define
s =d—>b,t =e—c and assume the contrary. First, let c,e > 4,
so that, from mod 81, a = 27 (mod 54), 2°3¢5f = 1 (mod p), p = 7,
163, 487 or 5167. As in the proof of Lemma 3.D (with f replacing d
in (3.D.1)-(3.D.4)), we have s = 0, ¢t = f = 0 or 9 (mod 18). From
mod 19 (since b=d =1 (mod 18) and c is odd, from parts (b) and (c),
in either case we have a contradiction. Thus, either ¢ or e is equal to
3, a =9 (mod 18), and, again as in the proof of Lemma 3.D, we have

(3.K.1) t+f=0 (mod 6), s+t=0 (mod 3).

There are four cases: (d,e) = (1,3), (d,¢) = (1,3), (b,¢) = (1,3) or
(b,e) = (1,3). In the first case, 14+5%+2°3¢ = 5457 and, from (3.K.1),
b+4c=b+c=1 (mod 3), so that, from mod 13, part (c¢) and mod 16,
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we have a contradiction. In the second case, 1 + 5% + 2720 = 2. 35/,
b=1 (mod 4), and, from (3.K.1), e=b—1 (mod 3), e Z f (mod 2),
which yields a contradiction from mod 16 and mod 13. In the third
case, easily, 11459 =4-3°, g = a—1 =8 (mod 18), and, from (3.K.1),
e =2 (mod 6), so that we have an absurdity mod 19. In the last case,
1+5%+2-3°=108-57, an absurdity mod 13. a]

From Program CDK, the lemma and the moduli in N, we identify
three cases, which we now consider.

Case 1. 1+5%+2.3° = 36-57, (a,c,f) = (3,7,3) (mod 10800)
(f > 3). Here we have a contradiction from part (a) of the lemma and
the moduli 251, 751, 3125 and 22501.

Case 2. 1+5%+9-2° = 10-3°, (a,b,¢) = (3,8,5) (mod (10800, 5400,
10800)). Immediately from mod 243, mod 1621 and mod 163, we
conclude that (a,b,e) = (3,8,5) (mod 1620). From mod 9721, (a,e) =
(3,5) (mod 4860), which forces e = 5 from mod 729. }.

Case 3. 1+5%+2-3°=12-5/ (a,c,f) = (5,7,4) (mod 10800)
(f > 4). From the lemma (part (a)) and the moduli 625, 751, 3125 and
22105, we again have a contradiction. Thus, Theorem 3.K is proven.
]

Theorem 3.L. There are no solutions to (3.L).
Proof. This follows trivially from mod 15. u]

Acknowledgment. The authors are extremely grateful to James N.
Foster for devising and implementing several extremely clever programs
in Apple Pascal.



THE DIOPHANTINE EQUATION 1 +z +y =z 55

APPENDIX A.

The solutions to equation (1.1). Here we list all solutions to (1.1) in
order of increasing z, with z < y.

T Yy z| T y =z Y z
1 1 3} 9 20 30| 8 8 90
1 2 411 30 32| 9 8 90
1 3 5| 4 27 32|25 64 90
2 2 5| 6 25 32| 5 90 96
1 4 6]15 16 32|15 80 96
2 3 6| 3 32 36|20 75 96
1 6 8| 5 30 36|45 50 96
2 5 8 27 36| 3 96 100
3 4 8|10 25 36| 9 90 100
2 6 9|15 20 36|18 81 100
3 5 9| 3 36 40]24 75 100
4 4 9 30 40|27 72 100
1 8 10|12 27 40|45 54 100
3 6 10|15 24 40|27 80 108
4 5 10| 4 40 45|32 75 108
1 10 12| 8 36 45| 4 120 125
2 9 1212 32 45|16 108 125
3 8 12|20 24 45|24 100 125
5 6 12| 2 45 48 |60 64 125
2 12 15|15 32 48| 2 125 128
4 10 15|20 27 48 |27 100 128
5 9 15 48 50| 6 128 135
6 8 15| 4 45 50| 9 125 135
3 12 16| 9 40 50|54 80 135
5 10 16|24 25 50| 8 135 144
6 9 16| 3 50 54|15 128 144
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AppPENDIX A. (Continued)
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AppPENDIX A. (Continued)

Y z T Y z
9 240 250 | 375 648 1024
24 225 250 | 100 1024 1125
5 250 256 | 324 800 1125
12 243 256 | 225 1024 1250
15 240 256 64 1215 1280
30 225 256 15 1280 1296
75 180 256 45 1250 1296
120 135 256 80 1215 1296
125 144 270 | 320 1215 1536
125 162 288 | 384 1215 1600
3 320 324 | 512 1215 1728
80 243 324 24 2000 2025
50 324 375 80 1944 2025
54 320 375 | 1000 1024 2025
8 375 384 | 125 2304 2430
15 384 400 | 512 2187 2700
24 375 400 80 3375 3456
75 324 400 | 512 3375 3888
4 400 405 45 4050 4096
20 384 405 | 450 3645 4096
80 324 405 | 720 3375 4096
125 324 450 | 1215 2880 4096
5 480 486 | 125 4374 4500
80 405 486 | 625 4374 5000
125 360 486 | 1250 4374 5625
243 256 500 | 1875 4374 6250
25 486 512 | 324 6075 6400
27 512 540 | 1215 5184 6400
75 500 576 | 2025 4374 6400
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AppPENDIX A. (Continued)

T Yy z T Y z

125 450 576 80 6480 6561
200 375 576 160 6400 6561
24 600 625 800 5760 6561
48 576 625 | 1440 5120 6561
144 480 625 | 2560 4000 6561
192 432 625 | 3125 4374 7500
240 384 625 | 1215 8000 9216
300 324 625 | 4374 5000 9375
135 512 648 | 4374 5625 10000
162 512 675 864 9375 10240

8 720 729 72 15552 15625
80 648 729 | 1800 13824 15625
128 600 729 | 4374 11250 15625
216 512 729 | 4374 12500 16875
20 729 750 | 1250 18432 19683

9 800 810 | 4374 15625 20000
80 729 810 36 32768 32805
27 972 1000 | 4374 80000 84375
135 864 1000 729 155520 156250
270 729 1000 | 4374 151875 156250
324 675 1000 | 59049 97200 156250
19440 512000 531441
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APPENDIX B.

Orders and least positive primitive roots mod m. In this paper we have
considered equation 1.1 modulo m, where m, ord,,n, n = 2,3 and 5,
and the least positive primitive root (LPPR) mod m, for m > 10, are
listed below. An (i) to the left of m in the table indicates that either
m is a power of i or is especially useful in conjunction with powers of i.
For the sake of clarity and convenience, some larger numbers appearing
in the table are factored.

m ord,, 2 ord,;, 3 ord,;, 5 LPPR

(5) 11 10 5 5 2
13 12 3 4 2

15 4 - - -

(2) 16 - 4 4 -
(2) 17 8 16 16 3
(3) 19 18 18 9 2
(5) 25 20 20 - 2
(3) 27 18 - 18 2
(3),(5) 31 5 30 3 3
(2) 32 - 8 8 -
(3) 37 36 18 36 2
(2) 41 20 8 20 6
(7) 43 14 42 42 3
(7 49 21 42 42 3
(2),(3),(5) 61 60 10 30 2
(2) 64 - 16 16 -
(2),(3) 73 9 12 72 5
(3) 81 54 - 54 2
91 12 6 12 -

(2) 97 48 48 96 5
(5) 101 100 100 25 2
(3) 109 36 27 27 6
(5) 125 100 100 - 2
(2) 128 - 32 32 -
(5) 151 15 50 75 6
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ApPENDIX B. (Continued)

m ordm,2 ord;,3 ordm,5 LPPR
163 162(2 - 3%) 162(2 - 3%) 54
181 180 45 15
193 96 16 192
217 15 30 6 -
241 24 120 40 7
243 162(2 - 3%) - 162(2 - 34) 2
251 50 125 25 6
256 - 64 64 -
257 16 256 256 3
271 135(335) 30 27 6
313 156 39 8
(2),(5) 401 200(2352) 400(2452) 25 3
(2) 433 72 27 432(243%) 5
(3) 487 243(35) 486(2 - 3°) 54 3
(2) 512(29) - 128(27) 128(27)
(3) 541 540(22335) 135(335) 135(335) 2
(2) 577 144(2432) 48 576(2632) 5
(5) 601 25 75 12 7
(5) 625(54) 500(2253) 500(225%) - 2
(2) 641 64 640(275) 64 3
(5) 671 60 10 30
(3) 703 36 18 36
(3) 729(3) 486(2 - 35) - 486(2 - 35)
(5) 751 375(3 - 53) 750(2-3-53) 375(3 - 53)
(2) 769 384(273) 48 128(27)
(3) 811 270(2 - 335) 810(2 - 345) 405(3%5)
829 828 207 9
1024(219) - 256(28) 256(28)
1153 288(2532) 576(2632) 1152(273v2)
1181 236 20 590
1459 486(2 - 35) 1458(2 - 3%) 243(3%)
1601 400(2452) 1600(2652) 400(2452)
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ApPENDIX B. (Continued)

m ordm,2 ord;,3 ord;, 5 LPPR

(3) 1621 1620(22345) 45 405(345) 2
(2) 2048(211) - 512(29) 512(29) -
(3) 2187(37)  1458(2- 3%) - 1458(2 - 3%) 2
(5) 2251 750(2-3-5%)  250(2-5%) 1125(3253) 7
(3) 2917 972(223%) 1458(2 - 3%) 2916(223%) 5
(5) 3001 1500(223-5%)  500(2253) 250(2 - 53) 14
(5) 3125(5%)  2500(22%5%) 2500(225%) - 2
2),(3) 3457 576(2632) 1728(2633) 1152(2732) 7
2),(5) 4001 1000(2353) 4000(2°53) 200(2352) 3
(2) 4096(212) 1024(219) 1024(219) -
(3) 4861 972(2235) 1215(355) 81 11
5167 861 738 18 6

(3) 6561(3%)  4374(2-37) 4374(2- 37) 2
(3),(5) 8101 100 810(2 345) 2025(3452) 6
(5) 9001 2250(2 - 3253)  1500(223 - 53) 750(2-3-5%) 7
(3) 9721 810(2 - 345) 4860(22355) 4860(22355) 7
(5) 11251 2250(2 - 3253)  2250(2 - 3253) 1125(3253) 13
(5) 15625(55)  12500(225%) 12500(225°) 2
(3) 17497 4374(2 - 37) 729(3 ) 17496(2337) 5
(3) 19683(3%)  13122(2- 38%) 13122(2 - 3%) 2
(5) 22501 22500(223254)  11250(2 - 3254) 5625(3254) 2
(2) 32768(219) - 8192(213) 8192(213) -
(5) 37501 37500(223-55)  6250(2 - 5°) 18750(2-3-5%) 2
(2) 40961 10240(2115) 40960(2135) 10240(2115) 3
(3) 52489 13122(2- 3%) 2187(37) 8748(2237) 7
(3) 58321 29160(233%5) 729(3%) 3645(3%5) 11
87211 54 5814 2295 13
135433 162 67716 135432 5

(3)  177147(3'') 118098(2- 310) - 118098(2-310) 2
394201 197100 100 98550 7

(3) 472393 59049(319) 78732(223%) 472392(23310) 5
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