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UNBOUNDED MULTIVALUED NEMY TSKII
OPERATORS IN SOBOLEV SPACES AND THEIR
APPLICATIONS TO DISCONTINUOUS NONLINEARITY

TOMASZ KACZYNSKI

Introduction. The aim of this paper is to provide tools for solving
boundary value problems for partial differential inclusions of the type

Lu € F(z,u, Du,...), x €,

where the order of a linear operator L exceeds the order of a Carathéo-
dory multifunction F' with convex values in RM. Such inclusions may
be used for dealing with partial differential equations with discontin-
uous nonlinearities, as we illustrate by an example at the end of this
paper.

In all publications on that topic known to the author, F’ was assumed
as either bounded or growing at most linearly in function variables
(cf. [4, 5, 13, 15]). However, if dim{2 = 1, such assumptions can
be relaxed, as shown, e.g., in [9] or [11]. We establish here results
(Theorem 1 and Corollary 1) showing that the linear growth need not
be assumed with respect to those partial derivatives of u which, due to
the Sobolev imbedding theorem, imbed to C.

The next presented results (Lemma 2 and Theorem 3) show how
solutions of differential inclusions can be approximated by solutions of
equations

Lu = f.(z,u, Du,...), x €,

where f. is a Carathéodory function whose graph approximates the
graph of F. The consequences of Theorem 3 are twofold; on one
hand, it provides a theoretical interpretation of a common practice
of ignoring continuity assumptions while using numerical methods in
differential equations. On the other hand, we hope to use Theorem 3
for directly deriving existence results for partial differential inclusions
from the corresponding results for partial differential equations without
repeating the same arguments for multivalued operators.
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As an example, we generalize a result due to Brézis and Turner [2]
concerning a nonlinear elliptic Dirichlet boundary value problem, to
the case of an equation with a discontinuous nonlinear right-hand side.

Main results. The class of all nonempty closed convex subsets of a
normed space X is denoted by CX. Given a bounded subset B C X,
we use the notation ||B|| := sup{||u|| |u € B}. If X = RN, with the
Euclidean norm, we shall use the modulus notation |B|, |ul, instead.
By R™ we mean the interval [0, 00).

Let us recall that a multifunction F : Q x RE — CRM | where Q is a
domain in RY, is called a Carathéodory multifunction if it satisfies the
following two conditions:

Cl. For each u € R¥ | the multifunction F(-,u) is measurable;
C2. For a.e. z € Q, the map F(z,-) is upper semicontinuous.

By measurable functions we mean those Lebesgue measurable (for
the definition and properties of measurable multifunctions, see [3]). It
is known (cf. [14]) that C1 and C2 together imply the following

Cl'. For each measurable u : Q — RE the map F(-,u(-)) has
measurable single-valued selections.

In fact, it is C1’ with C2 which is used in applications. To any
Carathéodory multifunction F we assign the multivalued Nemytskii
operator F* : X — CY defined by

Fru(z) :={v e Y|v(z) € F(z,u(x)), a.e. z}, u € X,

where X and Y are normed function spaces, to be decided, containing
functions u : @ — RX v : Q — RM respectively.

A mapping F' : X — CY is called weakly compact if it sends
bounded sets to relatively weakly sequentially compacts sets. F' is
called demi-continuous if, for each pair of sequences u, — u € X
(norm convergence) and v,—v € Y (weak convergence) with v, € Fu,,
n=1,2,..., we have v € Fu.

Lemma 1. If F : X — CY is a weakly compact demi-continuous
map and T :' Y — X s a compact linear operator, then the composition
TF : X — CX is upper semicontinuous and compact.
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Proof. Since TF sends bounded sets to relatively compact sets, we
must only show that the graph of T'F is closed in X xY. For, let u,, = u
and Tv, = w, where v, € Fu,,n =1,2,... . We need to show that
w € TFu. Since {v,} C F({u,}) is relatively weakly compact, there is
a subsequence v, —v. Hence, v € Fu. Any continuous linear operator
is weakly continuous, so Tv,, — Tv. Consequently, w = Tv € TFu.
]

Theorem 1. Let Q be a bounded domain in R, letp > 1,q > 1, and
let F: Qx RETL — CRM be a Carathéodory multifunction of variables
r € Q and u = (y,z) € RX x RE satisfying the following condition.
For any bounded set B C RE | there is a function pp € LI(Q, R") and
a constant ¢ > 0 such that

(1) |F(z,y,2)| < pn(x) +c|2]

for all y € B, z € RY, and a.e. x € Q. Then the corresponding
Nemytskii operator F* : C(Q, RX) x L?(Q, RY) — CL1(Q, RM) is well
defined, weakly compact and demi-continuous. Moreover, we may allow
q =1 if we assume c = 0.

Proof. Tt is clear from (1) that F* is well defined with nonempty
closed convex values and that it sends bounded sets to bounded sets.
Consequently, F* is weakly compact; indeed, this is clear if ¢ > 1 since
then the space LY is reflexive. In the case ¢ = 1, ¢ = 0, the conclusion
follows from the Dunford-Pettis theorem [7, Corollary IV.8.11] and
from (1). We now show that F* is demi-continuous. Let u, and u be
functions from Q to RE+% v, and v from Q to RM | ||u,, —u||cxr» — 0,

vp,—v (weakly in L?) and v, € F*u,, forn =1,2,.... We need to show
that v € F*u. By the Mazur theorem [8], for any k = 1,2,..., there is
a sequence {w*} C w{vy,vks1,...} which is norm-convergent to v, as

n — 00. The convergence in C' implies pointwise convergence and, since
Q is bounded, the convergence in LP or L? norm implies the convergence
almost everywhere of a subsequence. By passing to subsequences, we
may assume that u, (z) — u(z) and wk(z) — v(z) for all k and a.e. z.

Let A be the set of those = for which the above sequences converge,
F(z,-) is us.c., and v,(z) € F(z,u,(x)) for all n. It follows that
the complement of A in ) has measure zero. Now let x € A. Then
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wk(z) — v(z), for all k, and u,(z) — u(z). Since F(z,-) is us.c.,

therefore, for each € > 0, there is m with

vp(z) € C; := F(z,u(z)) + Be

for all n > m, where B, is the closed e-ball about the origin. Since
the set C. is closed and convex, w/™(z) belongs to it for all n and,
consequently, v(z) € C.. That holds for all € and all z € A; therefore,
v € F*u, and the proof is complete. a

Now let Q be a bounded domain in RY with a smooth boundary, let
p > 1, and let integers k,n, N be related by

k.= [nﬂ} >0,
p

where [-] stands for an integer part. Then, by the imbedding theorem
[12, Theorem 7.26], the Sobolev space W™P(Q, RM) is continuously
imbedded into C*(Q2, RM). We let

2) K= <N2k>M, L:= <N:">M—K,

so that K is the dimension of a vector (D*u(z))o<|a|<k, and L is the
dimension of (D®u(z))o<a<k, where u € W™P(Q, RM) and z € Q (un-
der the identification of mixed partial derivatives). Since W™?(Q, RM)
is isometric to the product of K + L copies of L?(2, R), we obtain the
continuous imbedding

(3) wmP(Q, RM) c C(Q, R®) x LY (Q, RY).

—

As a consequence of (3) and of Theorem 1 we have the following

Corollary 1. Let Q be a bounded domain in RN with a smooth
boundary, let K and L be defined by (2), and suppose that a multifunc-
tion F : Qx RE+L — CRM satisfies the hypothesis of Theorem 1. Then
the multivalued Nemytskii operator F* : W™P(Q, RM) — CLY(Q, RM)
1s well-defined, weakly compact and demi-continuous.
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For the reader’s convenience, we recall the following well-known result
[1, approximate selection theorem]:

Theorem 2. Let X be a subset of a normed space, Y, a normed
space, and let F': X — CY be a u.s.c. map. Then, for any € > 0, there
is a continuous map f. : X — co F(X) with the property that for each
u € X there exists 4 € X and 0 € Fi such that ||(u, feu) — (4, 0)]] <,
where || - || is the product norm on X x Y.

If F(z, u) is a Carathéodory multifunction, then, by f.(z,u), we mean
the e-approximation of the u.s.c. map F(z,-) in the sense of Theorem
2. Consequently, f.(z,-) is continuous for a.e. z. We will assume
throughout that one can find f.(z,u) for every e, which is measurable
in z for all w and that, given a measurable u(z), the functions 4(z) and
0(x) of a parameter z, as they appear in Theorem 4, are measurable.
Since such approximations f. are practically constructed for a given F,
there is not much loss of generality in making that assumption. Thus,
g-approximations of Carathéodory multifunctions, in the above sense,
are single-valued Carathéodory functions.

Lemma 2. Let Q be a bounded domain and suppose that a
Carathéodory multifunction F : Q x RE — CRM vyields a well-defined
multivalued Nemytskii operator F* : LP(Q, REK) — CL4(Q, RM), where
p,q > 1. Then there is a constant ¢ depending only on the measure of
Q such that the Nemytskii operator f for any c-approzimation f. of
F' is an ec-approzimation of F*, in the sense of Theorem 2.

Proof. For any u € LP(Q, RX), there exist measurable @(x) and
0(x) € F(z,u(x)) such that |u(z)—ud(z)| < € and | fe(z, u(z))—0(z)| < e
for a.e. x € Q. By integrating both sides of those inequalities with
exponents p and g, respectively, we get

lu~ille < elm(@)] and ||f7u~ 0l < clm(@)]7
where m() is the Lebesgue measure of €, and the conclusion follows.
]

Theorem 3. Suppose that F : Q x RETEL - CRM satisfies the
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hypothesis of Corollary 1, that T : L1(Q, RM) — W™P(Q, RM) is a
linear compact operator f.,, an g;-approzimation of F, and {u;} is a
sequence with u; = T fZ u;, where ¢; — 0. Then {u;} has a convergent
subsequence and a limit of any such subsequence is a fixed point of TF™*,
i.e., a point u € TF*u.

Proof. By Lemma 1, TF* is a u.s.c. compact map. For any u;, there
are 4; and 0; € TF*t; with |Ju; — @;]] < cg; and ||u; — 05| < ceil|T],
where ¢ is the constant from Lemma 2. Since {u;} is bounded and
TF*({u;}) is relatively compact, therefore, {0;} has a subsequence
{01} convergent to some limit . But ¢;, — 0, so {u;, } and {;,}
converge to the same limit 4. Since T'F*, as a u.s.c. map, has a closed
graph, we obtain © € TF*a. u]

Remark 1. For simplicity of presentation, we assumed in Lemma 1
and Theorem 3 that 7" is compact. However, it is enough to assume,
instead, that 7" sends weakly sequentially compact sets to compact sets.

Remark 2. The smoothness of §{2, in Corollary 1, can be relaxed to
a Lipschitz condition as in Theorem 7.26 in [12], whereas it can be
dropped if we consider the space W;"? instead of W™P.

Remark 3. The conclusion of Lemma 2 remains true if the space
LP(Q, RX) is replaced by C(Q, R¥), since the second space is contin-
uously imbedded into the first. Analogously, in Theorem 3 we may
replace W™?(Q, RM) by C"(Q, RM).

Example of application. We are concerned with the boundary
value problem

(4) Lu = g(u, Du), a.e. x € u =0, x € 682

where € is a smooth domain in RY, L is a linear uniformly elliptic
operator satisfying the strong maximum principle [12, Theorem 3.5]
and ¢ : RY x RV — R7T is a nonnegative function. Let \; be
the lowest eigenvalue of the adjoint operator L/, A\; > 0, and let
B8 = (N+1)/(N —1). We assume that g satisfies the following
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conditions, uniformly for p € RY:

(5) lim u™lg(u,p) > M
U—r 00

(6) uli}néo uPg(u,p) =0

(7) %uilg(u,p) < A1

In [2], the existence of solutions to (4) was proved under the assump-
tion that g = g(z, u,p) is continuous. We assume here that g does not
depend on z (see Remark 4 for a possible relaxation of this assump-
tion); however, g can be discontinuous in (u,p) with finite jumps, so
that

(8) 0 < g(u,p) < ¢(u,p)

for some continuous function ¢. For such a g, the problem (4) may
have no solutions. By an optimal solution of (4), or, solution in the
sense of Filippov [10], we mean a solution of the pair of inequalities

(9)  g(u,p) <Lu < g(u,p), a.e. T € () u =0, x € 682

where
g(u,p) == lim  g(v,q)
(v,q) = (u,p)
and L
g(u,p) = lim  g(v,q).
(v,q)—=(u,p)

Theorem 4. Let g : Rt x RV — Rt be a nonnegative, possibly
discontinuous function satisfying conditions (5), (6), (7) and (8). Then
the problem (4) has an optimal solution u € CY(Q, RT) such that
e WiNWy? for all ¢ > N.

Proof. We define F(u,p) := [g(u,p),g(u,p)] (a closed interval in
RT). Then F : Rt x RV — CR?' is u.s.c. Note that F satisfies the
assumptions of Theorem 1 with p =¢q¢, K =n+1, L =0, ¢c =0, and

¢p = max{d(u,p)|(u,p) € B}, where ¢ is a continuous function from
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(8). We let {fi} be a sequence of continuous ¢;-approximations of F’
with ¢; — 0, given by Theorem 2. We first verify that every f; satisfies
he same conditions as g does. The verification of (5) and (6), based
on standard epsilon-delta arguments, is routine. For (7), let us notice
that, in particular, lim,_,¢ g(u,p) = 0. Given an ¢;-approximation f; of
F', we may obtain a continuous 2¢;-approximation fz of F' by modifying
fi to a function which is identically zero for 0 < u < 4, for a sufficiently
small 6. Then (7) automatically holds for any such f;.

It now follows from [2, Theorem 3.1] that there is a sequence of
u; € W2an Wol’q with Lu; = fi(u;, Du;). Moreover, the analysis of
a priori norm estimates in the proofs of Lemma 2.3, Lemma 2.4 and
Theorem 3.1 [2] shows that bounds appearing there can be chosen
independently on ¢; so that {u;} is bounded in C*.

We now consider L as a bijective operator from W27 N WO1 7 to LY
and F* as a mapping from C' to CL?. Since ¢ > N, the inclusion
i:W?%? — O is compact. The conclusion now follows from Theorem
3 and Remark 3 applied for F* and for 7' = iL 1. o

Remark 4. The right-hand side of equation (4) may be allowed to
depend on z provided we can separate the variable x from the “discon-
tinuity” in (u, Du), in some sense. More explicitly, the conclusion of
Theorem 4 will remain true for an z-dependent g if g can be written as

g(z,u, Du) = g1(z, u, Du) + a(z)gs(u, Du),
where g; and a are continuous, « is bounded, and g only may

be discontinuous with finite jumps. In this case, we would be only
approximating

F(u,p) = [gz(u,p),gz(u,p)]

by continuous functions f,, and letting

fi($7u,p) = gl(xauap) + oz(ac)fei(u,p).
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