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Introduction. The notion of lifting compactness was introduced
in [3], that of strong lifting compactness in [1], both for completely
regular Hausdorff spaces. It turned out in [1] that the strong lifting
compactness of a Banach space X under its weak topology is equivalent
with each of the following strong properties.

(SL) For every Baire measure p on X any lifting of £°(u) is almost
strong, respectively there exists an almost strong lifting for £>°(u).

(SB) Every scalarly measurable function from a complete probability
space into X is Bochner measurable.

It is therefore natural to ask whether these equivalences hold also
for other locally convex topologies. In this paper, we check the
weak® topology on conjugates of Banach spaces. In Theorem 3.4
we give a characterization of such conjugate Banach spaces which
satisfy condition (SB), from which it becomes obvious that condition
(SB) is neither equivalent with condition (SL) nor with strong lifting
compactness of the conjugate under its weak* topology (see also the
examples in 3.8). We call Banach spaces which satisfy the equivalent
conditions of Theorem 3.4 SB*-spaces. These spaces form a strong
counterpart to the well-known class of Asplund spaces, since they are
definable by a strict equivalence instead of a weak equivalence for
measurable functions which characterizes Asplund spaces in the sense
of [20, 18]. As a preparation, this weak equivalence characterization
for Asplund spaces is derived in Theorem 2.4, and at the same time an
equivalent lifting invariance condition. We also introduce L*-spaces,
M*-spaces, and (strict) W*-spaces which are related to SB*-spaces
and to Banach spaces whose conjugate has the weak Radon Nikodym
property of [17]. Weak* strongly lifting compact spaces, i.e., such
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1058 W. STRAUSS

spaces whose conjugates are strongly lifting compact under their weak*
topologies, are characterized by a lifting condition for vector valued
functions in Theorem 3.1, and M*-spaces are as well in Theorem 2.10.
These characterizations are basic for the permanence properties which
are discussed in Section 4. The techniques of this paper rely on lifting
properties for vector valued functions. The classes of spaces considered
here may also have interesting geometrical properties, but here we are
only interested in measure theoretical problems and properties.

In [11] A. Bellow proved the powerful separation property for Banach
spaces, a property which is obviously related to lifting invariance. In
Section 2 we consider this property for the weak™ topology, and if this
property is fulfilled we call the Banach space a space with the weak*
separation property. A characterization of these spaces in terms of
lifting invariance conditions is given in Theorem 2.3. Any Banach
space with the weak* separation property is an Asplund space, and
the converse holds for separable spaces. This makes it easy to see that
the weak™ separation property does not hold in general in contrast to
the separation property of A. Bellow.

1. Preliminaries. Throughout, (2,3, x) denotes a complete
probability space, £°(u) is the space of all YX-measurable real valued
functions on Q, £>(u) is the space of all bounded X-measurable
functions on Q, £P(u) is the space of all p-integrable functions with
respect to (€2,%,u), and LP(u) denotes the space of all classes f of
functions f € £P(u) modulo null functions for 0 < p < oco. For a
Banach space Y we write £9(u) for the space of all Bochner measurable
functions from € into Y and £5°(u) for all v € £3(u) such that
[[Y]|o = sup{|[¢(w)|| : w € 2} < c0. For a separated duality (X,Y)
and 0 < p < o0, let £I(’va) (1) be the space of all functions ¢ from
Q into X such that (¢,y) € £P(u) for all y € Y. If Y is a Banach
space with dual space Y', then S?Y’Y,)(u) is the space of all scalarly
measurable functions from € into Y and £?Y’,Y) (u) is the set of all
weak* measurable functions from  into Y'. For f,g € S?ny)(,u) we
write f = g a.e. (p) if u({f # g}) = 0, and we define f = go(X,Y),
the weak equivalence of f and g, by means of (f,y) = (g,y) a.e. (1) for
ally € Y. If Y is a Banach space and I' a linear subspace of Y’ total
on Y, then By r)(u), the space of all I'-uniformly bounded functions,
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is the set of all ¢ € E?Y r) (1) for which there exists a constant M < co
such that |(¢,vy")| < M||y'|| a.e. (u) for every ¢/ € T.

All unexplained topological measure theoretic notions will be those
of [12, 15 and 22]. Those concerning lifting theory may be found in
[10], those concerning (strong) lifting compactness, Baire liftings, Baire
measurability, and Bochner measurability in [1]. We will frequently use
the following remark which is an immediate consequence of [21, 3-3-3].

Remark 1.1. If T is a linear subspace of Y’, total on the Banach space
Y, then for any ¢ € S?YI) () there exists a sequence of I'-uniformly
bounded functions ¢,, € B(y,ry(p) having pairwise disjoint supports
supp (¢n) ¢ = >_oo | ¢n, and moreover, there exist pairwise disjoint
S, € Y such that supp (¢,,) C S, for n € N, U2, S, = Q. Besides
the (multiplicative) lifting for £°°(u) in the sense of [10, Chapter III,
Definition 2] we need in addition a rather weak type of lifting for £°(u)
which we call vector lifting. This is defined to be a linear map A from
£9(w) into £°(p) such that A(f) = f a.e. (u) and A(f) = A(g)if f =g
a.e. (p) for f,g € £%u). Applying the axiom of choice, we get the
following result which implies the existence of vector liftings.

Lemma 1.2. If £ is a linear subspace of £°(u) and Qo € X such
that u(Qo) = 1, and f = g a.e. (u) implies f(w) = g(w) for w € Qp
and f,g € £, then there exists a vector lifting \ for £°(u) such that
Af)(w) = f(w) forw e Qg and f € L.

Proof. For § in the linear subspace S = {§ € L°(u) : LN § # @} of
L%(u) we define a map Ag from S into £°() unambiguously by means
of

Xo(9) = fxe, if feflng.

We then choose a Hamel basis (§;)ics for the linear complement C
of S in L°(u) and then h; € §; for i € I. For § € C we can write
J = Yicro;g; with o; € R for 7 € I and «; # 0 for at most finitely
many i € I. We then put A (§) = Sicraih; and A(h) = Ao(ho) + A1 ()
if h = ho + § uniquely for h € L(u) with hg € S and § € C. If r is the
canonical map of £°(x) onto L°(x), then put A = Aor. o
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Let Y be a Banach space. For a lifting p of £°(u), we define for
¢ € By y)y(p) amap p*¢ from Q into Y’ by means of

(y,p"0) =p(y,¢) for yevy,

and for ¢ € B(y,y (1) a map p'¢ from Q into Y by means of
(K'ey') =p(e,y')  for y €Y'

If X is a vector lifting for £%(u) then let A\*¢ for ¢ € E?y/,y)(#) be
defined in analogy with p*¢, accordingly \'¢ for ¢ € S((]xy,)(/,l,) in
analogy with p’'¢. Then A\*¢ is a map from Q into Y*, the linear dual
space of Y, and X ¢ is a map from 2 into Y'*, the linear dual space of
Y'.

For a topological space (€2, 7) with topology 7 we denote by Baire
(Q, 7) the Baire o-field, and by Borel (2, 7) the Borel o-field of  with
respect to the topology 7. We write (Q,%,pu)~ = (Q,f),ﬂ) for the
Carathéodory completion of the measure space (2,3, u).

2. The weak™* separation property. For a Banach space Y and a
complete probability space (2,3, u) we call a function ¢ € S?Y,Y')(“)
separating if there exists a set Q¢ € X with p(Q) = 1 such that
(9,y") = (4,2') a.e. (u) for all y', 2’ € Y’ implies (p(w),y") = (¢(w), ')
for all w € Q.

Lemma 2.1. Any ¢ € £%(u) is separating. If, in addition,
¢ € Bry,y)(n), then ¢ = p'¢ a.e.(u) for any lifting p of £°(u) and
|16’ ¢]loc < oo

Proof. Let us first assume that ¢ € B(yy/)(p) in addition. We
then may choose a sequence (¢,)nen of simple functions such that
lim,,_, 0 ¢, = ¢ a.e. (). By Egorov, there exists for any m € N a set
Q,, € ¥ such that p(Q\Q,,) < 1/m and lim,_,o ¢,, = ¢ uniformly on
Qn, and in addition Q,,, CQ,,41 for m € N. If ¢, = ngl YinXA;,
for yin, €Y, Ajp € ¥, we may assume A;, = p(Ai) for 1 < i < k,,
n € N, and a lifting p of £*°(u). Then p'¢,, = ¢, for n € N. For any
e > 0 there exists an ng € N such that ||(¢n — ¢,9)Xa,. |l < €
for n > no, [|y'|l < 1. Then [(p(¢n,y") = p(d: ¥ ) Xp@mllec < €
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for n > ng, ||yl < 1, ie., we have [[(dn — P'O)Xp)llc < €
for n > ng. If Qo = UX_; (U N p(Ry,)), then p(p) = 1 and

(p'¢)(w) = limp— 00 dn(w) = ¢(w) for w € Qp.

If only ¢ € £%(u), let Q,, := {||#]| < n} € L. Then Qy = U2y,
Q,, € ¥ since ||@|] € £2(n). Put A, = Q,\ Ul Qi ¢, := éXa, for
n € N. Since ||¢n|| < n we find by the last paragraph sets B,, € ¥
such that B, C A,, u(Bn) = u(An), and (p'¢n)(w) = ¢n(w) = ¢(w)
for w € B,, n € N. If (¢,y) = (¢,2) a.e. (p) for ',z € Y,
then (p'én,y') = (p'¢n,2'); therefore, (¢(w),y') = ((¢'¢n)(w),y’)
((P'¢n) (W), 2) = (d(w), ) for w € D = UFL, By € X, p(€h) =
]

1.

We call ¢ € £?Y,7y) () weak* separating if there is some Q) € ¥ with
1(Qo) = 1 such that (y,¢) = (2,9) a.e. (u) for y,z € Y implies always
(y, p(w)) = (z,¢(w)) for all w € Q. Since we may in the above proof
interchange Y and Y’, we have the following complement of Lemma
2.1.

Remark 2.2. Any ¢ € £3,(u) is weak* separating. If, in addition,
¢ € By yy(u), then ¢ = p*¢ a.e. (u) for any lifting p of £>°(u) and
[lp*¢lloc < oo

A Banach space Y is called weak* separating if for any complete
probability space (2, X, 1) any weak* separating map ¢ € S?y/,y)(ﬂ) is
in £%,(u). Let us call ¢ € Q’?Y’,Y)(/J’) vector lifting invariant if ¢ = \*¢
a.e. (u) for some vector lifting A of £°(u). Clearly, any vector lifting

invariant ¢ is weak™* separating. The converse holds also since for a
weak* separating ¢ there exists Qp € X such that p(Q) = 1 and

(¥,¢) = (2,0) ae. (u) for y, z € Y implies (y,p(w)) = (2, $(w)) for
w € Qo, and for £ := {(y,¢) : y € Y}. Lemma 1.2 gives a vector lifting
X of £%(p) such that A(y, ) = (y, @), i.e., (A\*¢)(w) = ¢(w) for w € Q.

Theorem 2.3. For a Banach space Y the following conditions are
all equivalent.

(i) Y has the weak* separation property.

(ii) For any complete probability space (2, X, u) any weak* separating
¢ S %(ylyy) (,U,) 8 in S%o/(/.t)
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(iii) For any complete probability space (2,2, u) any vector lifting
invariant ¢ € Ly, v (1) s in L3 ().

Proof. The equivalence of (i) and (iii) follows from the remark
preceding the theorem. The implication (i) = (ii) is trivial since
[|p* @00 < 0o for ¢ € B(yry) (1) and any lifting p of £ (u).

(ii) = (i). For ¢ € £?Y,’Y)(u) we choose by Remark 1.1 ¢, €
B(yry)(u) such that ¢ = > dn, Sn € X with supp (¢,) C S, and
SpNSy = @ forn # m, n,m € N. Since {(y, ¢,) # (2,0n)} C{(y, P) #

(z,6)}NS,, we have ¢,, weak* separating if ¢ is, and the result follows.
o

A Banach space Y is called an Asplund space if Y’ has the Radon-
Nikodym property RNP (see [6, p. 61 and p. 213]). This definition is
the most convenient one in our context. Equivalent conditions can be
found in [19, 20, 8, 9, 21 and 6]. The equivalence of the conditions
(ii) and (iii) of the following theorem is stated in [21, 3-4-1]. But I
could find nowhere the equivalence of (i) and (ii) which is just what
we need for Section 3 below and makes Asplund spaces useful for our
purposes. We call ¢ € By y)(p) weak® lifting invariant if we have
p*d = ¢ a.e. (u) for some lifting p of £ ().

Theorem 2.4. For a Banach space Y the following conditions are
all equivalent.

(i) Y is an Asplund space.

(ii) For any complete probability space (2,3, ) any weak* lifting
invariant ¢ € By y)(pn) is in L35 ().

(ili) For any complete probability space (Q,%, 1) and any function
¢ € By y)(un), there exists a function ¥ € L5, (p) such that

¢ =1o(Y',Y).

(iv) For any complete probability space (2,3, u) and any map ¢ €
£?Y, Y) (1), there exists a map ¥ € £%,(n) such that

¢ = Yo (Y',Y).
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Proof. (i) = (ii). Let Y be Asplund. For ¢ € By y)(u), we define
a continuous linear map u from L*(y) into Y’ by means of

(%M@%=/@¢MW¢ for y€Y and g€ L' (p).

By [6, Chapter III, Theorem 5| there exists a ¢ € £ (p) such that
we have (y,u(9)) = [(y,v¥)gdp for y € Y and g € L'(x). This implies
that ¢ = ¢¥o(Y’,Y). By Remark 2.2, it holds that p*1) = ¢ a.e. (u) for
any lifting p of £°(u). If ¢ = p*¢ a.e. (u) for some lifting p of £°(u)
then ¢ = ¢ a.e. (1) since p*¢p = p*¢, i.e., § € £5.

(ii) = (iii). For ¢ € By y)(p) is ¥ = p*¢ € By y)(n) weak*
lifting invariant and ¢ = ¥o(Y’,Y). By assumption, it holds that

¥ € L5 (1)

(iii) = (i). By [6, Chapter III, Theorem 5] it is sufficient to verify
the Riesz representation property. For a continuous linear map u from
L'(u) into Y', we find by [10, Chapter VII, Theorem 1, Corollary
1] a function ¢ € By y)(p) such that (y,u(g)) = [(y,d)gdu for
y € Y and g € L'(u). By assumption, there exists 1 € £55(u) with
¢ = Yo (Y',Y). But then also (y,u(9)) = [(y,%)gdp for y € Y and
g € L (u).

(iv) = (iii). For ¢ € B(yy)(1), we have by assumption ¢ € £%,(u)
with ¢ = 4o(Y',Y). But then 6 € Beyry)(), 0] < o0,
and p*¢ = ¢ a.e. (1u) by Remark 2.2. Then p*¢ € £ (pn) and
¢ =p*Yo(Y',Y).

(iii) = (iv). For ¢ € £(()Y,’Y) () we choose by Remark 1.1 sets S, € &
and ¢, € By yy(u) with supp (¢n) € Sn, Sp N Sy = D for n # m,
and ¢ = > " ¢, (n,m € N). By (iii), we find ¢, € £ () with
¢n = Ypo(Y',Y) for n € N, where we may assume supp (¢,,) C S,, for
n € N. Then ¢ := >~ ¥, € £}, (p) and ¢ = Yo (Y',Y). O

Corollary 2.5. Any Banach space Y having the weak® separating
property is an Asplund space.

Proof. Clearly, condition (ii) of Theorem 2.3 implies condition (ii) of
Theorem 2.4. O
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Theorem 2.6. A separable Banach space Y has the weak* separation
property if and only if Y is an Asplund space, and then all conditions
listed in Theorems 2.3 and 2.4 are all equivalent.

Proof. Let Y be an Asplund space and let ¢ € By y)(u) have the
weak* separation property, i.e., there exists Q¢ € ¥ with u(Q) = 1,
and for y, z € Y holds (y, ¢(w)) = (2, ¢(w)) for w € Q if and only if
(y, p*®) = (2,p*®). Then kernel (¢p(w)) = kernel (p*¢(w)) for w € Qy,
and therefore there exist a(w), S(w) € R with ¢(w) = a(w)(p*¢)(w)
and (p*¢)(w) = B(w)p(w) for w € Q. For y € Y, there exists 2, € &
such that p(Qy) = 1 and (y,4(w)) = p(y,9)(w) = (y,p"d(w)) =
B(w)(y, p(w)) for w € Q, N Q. This implies that F(w) = 1 for
we QN N{(y,¢) # 0} = By. If (yn)nen is a dense sequence
in Y, then we have

{¢# 0} = UnZi{(yn, ¢) # 0} = UL, By, = B ae.(u).

Since B(w) = 1 for w € B we have (p*¢)(w) =
we define € := B U {¢ = 0}. But p(2) = 1,
invariant, hence by Theorem 2.4 (ii), ¢ € £55 (.
has the weak* separation property. ]

e., ¢ is weak* lifting

¢(w) for all w € Q if
i
). By Theorem 2.3, Y

By Theorem 2.6, the spaces cp,l, for 1 < p < oo have the weak*
separation property while [, does not, by Corollary 2.5. A Banach
space Y is called M*-space if for any complete probability space
(Q,%,u) and every n € £(()Y,’Y,,)(,u) there exists a ¢ € £3,(u) such
that n = ¢¥o(Y’',Y), and we call Y an L*-space if for any complete
probability space (2, %, ) any weak* lifting invariant ¢ € By y)(u)
is in ’Q?Y’,Y”)(ﬂ‘)' A W*-space is a Banach space Y such that for any
complete probability space (2, X, ) and any ¢ € 2(()Y, Y)(,u) there exists

ann € Sgy,,y,,)(p) such that ¢ = no(Y',Y).

Lemma 2.7. Any Asplund space is an L*-space, and any L*-space
1s a W*-space.

Proof. Y is a W*-space by Remark 1.1 if and only if for any complete
probability space (,%,u) and any ¢ € By y)(u) there exists a
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map n € E?Y, Y,,)(u) with ¢ = no(Y’',Y). For an L*-space Y and
¢ € By y)(u) there is n = p*¢ € B(yry)(u), n is weak® lifting
invariant, ¢ = no(Y’,Y"), and hence 7 is in £(Y,’Y,,)(,u) by assumption.
[}

Theorem 2.8. For a Banach space Y the following conditions are
all equivalent.

(i) Y is an Asplund space.
(ii) Y is an M*-space and a W*-space.

(iil) Y is an M*-space and Y is an L*-space.

Proof. The implication (i) = (iii) is obvious from Theorem 2.4 since
’Q?Y',Y”)('“) QS?},,vy) (1), and (iii) = (ii) is a consequence of Lemma
2.7. For the implication (i) = (i), let ¢ € By y)(p). Since Y is a
W*-space, we find a function n € £?Y’,Y")(“) with ¢ = no(Y',Y). But
Y is an M*-space. So we can choose a map ¥ € £J,(u) such that
n = ¢o(Y',Y). Then ¢ = ¢o(Y',Y), i.e.,, Y is Asplund by Theorem
2.4. O

Remarks 2.9. A Banach space Y is a W*-space if and only if Y’ has
the weak Radon Nikodym property WRNP (see [17] for definition)
provided (i) Y is separable (see [4, 7.4.11]) or (ii) Y is separably
complementable (see [17], Theorem 5] where [17, Theorem 5'] asserts
the equivalence for arbitrary Banach spaces without proof). If a Banach
space Y is not Asplund but a W*-space, then Y is no M*-space by
Theorem 2.8. This situation is given e.g., for Y = JT, the separable
James tree space by [4, p. 308] and the above remark (i). By I8,
Proposition 5.4] any Banach space Y is an M*-space if (Y’, weak) is
measure compact, the converse implication does not hold as witnessed
by ¢ for measure compact discrete space I' (see end of Section 4). If
we assume that the continuum 7 is not measure compact, then Y is
Asplund, hence an L*-space and a W*-space if (Y’, weak) is measure
compact by [8, Section 4 (3)].

If Y = C|0,1], the separable space of all continuous functions from
[0,1] into R, then we have (Y, weak) strongly lifting compact, hence
measure compact by [1, 4.10 (iii)] if we assume 7 measure compact.
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Therefore, Y is an M *-space. But Y does not possess the WRNP by
[17, 161], hence there is no W*-space by (i) above. By Lemma 2.7, Y
is no L*-space, and it does not have the weak® separation property by
Corollary 2.5.

Theorem 2.10. A Banach space Y is an M*-space if and only if for
any lifting p of £°(u) holds p*n € L35 (p) for any n € By ymy ().

Proof. If n € By yn(p) for an M*-space Y, there exists a
¥ € £).,(p) such that n = ¢o(Y',Y). Then p*n = p*¢ for any lifting
p of £°(u). By Remark 2.2., p*tp = ¢ a.e. (u) holds. Therefore,
p*n € £%(u). For the converse, let us assume only that for any
n € By, ym(p), there exists a lifting p of £>°(u) with p*n € £55 ().
For a given map n € ’Q?Y',Y")(“)’ we choose by Remark 1.1 functions
M € Byryn(u) and sets S, € ¥ with supp (¢,,) €S, for n € N,
Sp NSy =@ for n#m, U525, =Q, Y07 ¢ = ¢. For any n € N
there exists a lifting p,, of £°(u) such that ¥, = ppn, € £55(1).
Since supp (¥r) C pn(Sn) := pn(Xs,) the functions &, := ¥,Xs, have
disjoint supports and satisfy &, € £5%(u) and &, = ¢, a.e. (1) as well
as n, = ,o(Y',Y) since 0, = ¢,0(Y’,Y) for n € N. This implies
that n = €o(Y',Y) and € € £)/(p). o

Remark . The second part of the above proof shows that a Banach
space Y is an M*-space if and only if for any n € B(ys y»)(u) there
exists a lifting p of £>°(u) such that p*n € £ (k).

For ¢ € £(()Y’,Y) (1) we choose ¢, € B(y+ y)(u) and S, according to
Lemma 1.1. If we apply for some lifting p of £°(y) Lemma 1.2 for
L= {3000 0n)Xps,y t y € Y} and Q := U2 1p(S,) a vector
lifting A for £°(u) is obtained such that (\*¢)(w) = (p*¢,)(w) € Y’
for w € p(S,) and n € N. For ¢ € S?Y’Y,)(u) and w € Q only
(N¢)(w) € Y'* follows for arbitrary vector lifting A of £%(u). We
therefore call a Banach space Y linear lifting compact if for any
complete probability space (2, X, 1) and any ¢ € S?Y’Y,) (1) there exists
a vector lifting A for £°(u) and Qo € ¥ with () = 1 such that
(N9)(S20) Y.
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Theorem 2.11. For a Banach space Y the following conditions are
all equivalent.

(i) Y is linear lifting compact.
(ii) (Y, weak) is measure compact.
(iil) (Y, weak) is lifting compact.

(iv) For any complete probability space (2,3, ) and any function
¢ € By,y)(n) there exists a lifting p for £ (u) and a set Qo € T with
1(Qo) =1 such that (p'¢)(Q) CY.

Proof. (i) = (ii). If we choose A and Qy as in the definition of linear
lifting compact spaces, then ¢ := (X ¢)Xq, has the separation property.
Therefore, ¢ € £%(u) by [11, Theorem 3] and clearly ¢ = ¢o(Y,Y’)
holds. From [8, 5.4], it follows that (Y, weak) is measure compact. The
equivalence of (ii) and (iii) is well known, see, e.g., [3, p. 252].

(ii) = (iv). Let ¢ € By y)(n). By [8, 5.4], there exists a function
Y € £ (u) with ¢ = ¢o(Y,Y’). But then ¢ € B(y,yr(p) and by
Lemma 2.1, ¢ = p'¢p = p'¢p a.e. (), i.e., there exists a set Qp € ¥ with
(S2) = 1 such that (9)(2) = (%) C Y.

(iv) = (i). For ¢ € S(()Y,Y’)(N’) we choose ¢, and S, according
to Remark 1.1 and then liftings p, of £°(y) and Q, € ¥ with
w(Q,) = p(Sn), 9, CS, such that (p!,¢,)(2,)CY. If we apply
Lemma 1.2 to the space £ := {377, pu(dn,¥')Xa, : ¥ € Y'}
and Qp = UX,Q, € ¥ we find a vector lifting A\ for £°(u) with
Moy y') = 20y Pn(bns ¥ )X, = 2021 (Phén,y')Xe, . This implies
(Ng)(w) €Y for w e Qp and u(Qp) = 1. u]

The following characterization of strong lifting compactness in terms
of vector valued lifted functions for Banach spaces under their weak
topology should be compared with Theorem 3.1.

Theorem 2.12. For a Banach space Y (Y, weak), the Banach space
Y under its weak topology o(Y,Y"), is strongly lifting compact if and
only if for any complete probability space (2,3, u) and any lifting p of
£2°(u) holds ¢ = p'¢ a.e. (p) for every ¢ € By,yr)(p).
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Proof. If (Y, weak) is strongly lifting compact, then every ¢ €
B v,y (p) is in £3 (1) by [1, Theorem 4.3], hence we have ¢ = p'¢ a.e.
(1) by Lemma 2.1 for arbitrary liftings p of £°(u). If for ¢ € B(y,y+) (1)
and Qp € ¥ with x(Qp) = 1 holds ¢(w) = (p'¢)(w) for w € Q for a
lifting p of £(u), then put ¢ (w) := ¢(w) for w € Qp, and P(w) :=0
otherwise. Then v is separating. By [11, Theorem 3] is ¢ in £5°(u).
Clearly ¢ = ¢ a.e. (u) holds. Therefore, (Y, weak) is strongly lifting
compact by [1, Theorem 4.3]. O

3. The strong lifting compactness for the weak* topology.
We call a Banach space Y weak* strongly lifting compact if Y’ under
its weak* topology o(Y’,Y) is strongly lifting compact in the sense of
[1, Section 3]. By Alaoglu’s theorem, Y’ is o-compact under its weak*
topology. Hence, it is always weak* strongly measure compact by [16,
3.43] and lifting compact by [3, Corollary 6.1].

Theorem 3.1. A Banach space Y is weak* strongly lifting compact
if and only if for any complete probability space (Q, %, 1), any lifting
p of £°(n) and any ¢ € By y)(p) holds p*¢ = ¢ a.e. (u), i.e., ¢ is
weak® lifting invariant for any ¢ € By,yr)(u).

Proof. First let Y be weak* strongly lifting compact and ¢ €
By yy(n). Then |(y,¢)| < My a.e. (u) for some constant M < oo
andallyeY. ForyeY,r >0, let h,, :=med (—7||y|,y,|ly]]), if as
usual med(a, b, ¢) := max(min(a, b), min(a, ¢), min(b, ¢)) for a,b,c € R.
Then h,, € Cy(Y'), the space of all bounded, continuous functions on
Y’ under the weak* topology, h,, 0 ¢ = y o ¢ a.e. (u), and therefore
p(hryod) = p(yod) =yo(p*¢) forr > 0, y € Y. By assumption, there
exists a set Qg € X such that u(Qp) =1, and forall y € Y, w € Qo,
> 0 holds p(hysy © 8)(0) = (hry  (9/(6))(@) = (hry 0 9)(w) if /() i
defined according to [1, p. 213]. This implies

1) yo(pd)(w) = (hryod)(w) for yeY,weg, r>0.

For w € Q, (p*¢)(w) € Y’ holds since ||(p*¢)(w)|| < M. For y € Y we
have |y o (p*¢)| < M||y|| for y € Y, and so we get for r > M, w € Q

(2) hry((p*¢)(w)) = y((p™ @) (w))-
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Equations (1) and (2) yield
() hry((p"P)(W)) = hry(p(w)) for yeY, r=M, we Q.
The family H := {h,, : y € Y,r > M} is separating on Y’, and
therefore (3) implies (p*¢)(w) = ¢(w) for w € Q.
For the converse, let ¢ be a Baire-measurable map from 2 into Y’

under the weak* topology, i.e., ¢ € E((Jy,vy) (p) by [8, 2.3]. According to

Remark 1.1, we can choose functions ¢, € By y)(u) and disjoint
sets S, € X with supp(¢,)C S, for n € N, UX S, = Q, and

>0 | ¢n = ¢. By assumption, for any n € N there exist sets Q, €
with u(2,) = 1 and (p*¢n)(w) = ¢n(w) for w € Q,. If we put
= S, Np(Sp) N Qy, we have 4, € X, A, NA,, = @ for n # m,

)

and (p*¢p)(w) = ¢p(w) for w € A,, n € N. Let Qo := US2,A,.
Then Qp € ¥ and u(Q) = 1. For n € N there exists M,, < oo with
[|(p*Pn)||oc < My. The latter implies ||¢n(w)|| < M, for w € Q,,
n € N. If we put hy,,, := med(—ry,,y,7,), then for y € Y, r,, > M,
hOlds fy.r, 06 = Yo, (g, 00)(w) = (g, 00) () = (y56)(w) for
w € Sy, so we get p(hy, ., ©9)X,(s,) = P(Y © dn)X (s, for n € N. This
yields p(hy,r, © ¢)(w) = p(y; n)(w) = (¥, ¢n(w)) = (hy,r, © dn)(w) =
(hy,r, © @)(w) for w € An, n € N, ie., by, (p'(¢)(w)) = Ay, (d(w))
forneN,er,weAn,rnZMn.

Again, H := {hy,, : y € Y,r, > M,,n € N} is a separating family
on Y'. Therefore, (p/(¢))(w) = ¢(w) for w € A,, n € N, and ¢ is
strongly lifting compact with respect to the weak* topology. a

Remarks . (1) Since, for ¢ € By yy (1) we don’t need the decomposi-
tion ¢ = Y7, by, the above proof shows in fact that a ¢ € By y)(u)
is strongly lifting compact with respect to the weak* topology on Y if
and only if p*¢ = ¢ a.e. (u) for any lifting p of £°(u).

(2) If Y is weak™ strongly lifting compact, then the mapping p of
By y)(p) into £57(Y, 1), the space of all functions ¢ € By y)(n)
with [|¢]|cc < 00, is bounded linear with ||p||cc < 1 and the following

holds
o6 = dae. (1),
6 =tae (i) implies p'é=p'y
for ¢, € By y)(n), ie., p* is a lifting for vector-valued functions in
B(vy) (1)
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Corollary 3.2. IfY is weak* strongly lifting compact and an M™*-
space, then (Y', weak) is strongly lifting compact.

Proof. Let ¢ € E((Jy,y,,)(u) be given. We choose ¢, € By y) (1)
and S, € ¥ according to Remark 1.1. We have ¢, = p*¢, a.e.
() by Theorem 3.1 and p*¢, € £35(u) by Theorem 2.10. Since
supp (p*én) C p(S,) we may put ¢ := 377 | p*¢,. Then ¢ € £3, ()
and ¢ = ¢ a.e. (u). By [1, Theorem 4.3] (Y’, weak) is strongly lifting
compact. O

Theorem 3.3. Any separable Banach space Y is weak® strongly
lifting compact and for any Baire and Borel measure p on (Y', weak*)
every lifting of £ (u) is almost strong (here (Y', weak*) denotes the
space Y' under the weak* topology) and (Y', weak) is strongly lifting
compact if and only if (Y', weak) is measure compact.

Proof. For separable Y, (Y', weak*) is metrizable, see, e.g., [7, V
5.1]. Therefore, Baire (Y’, weak*) = Borel (Y’, weak*), by [1; 2.2] (Y,
weak™) is strongly lifting compact, and every lifting of £>°(u) is almost
strong for any Baire measure p on (Y’, weak*) by [2, Theorem 4]. Since
(Y', weak) is submetrizable this space is strongly measure compact if
and only if it is measure compact by [1, Theorem 4.7]. O

Example. The space Y = C[0,1] is weak™* strongly lifting compact
by Theorem 3.3. If we assume the continuum 7 is measure compact (i.e.,
it has no real valued measurable cardinal by [8, Section 4 (3)], a mild
set theoretic assumption), then (Y, weak) is strongly lifting compact
by [1, 4.10 (iii)], and Y is an M*-space which is neither Asplund, nor
an L*-space nor a W*-space as we have seen under Remark 2.9. But if
we assume the continuum 7 is not measure compact, then (Y, weak) is
not strongly measure compact, not even measure compact. Hence, Y
is no M*-space by Corollary 3.2, and not a W*-space by Remark 2.9,
hence is not Asplund.

A Banach space Y is called S B*-space if for any complete probability
space (£2,%,u) and any ¢ € By y)(u) there exists a function 3 €
£% (1) such that ¢ = ¢ a.e. (1), and we call Y a strict W*-space if for
any complete probability space (€2, X, 1) and any ¢ € B(y+ y)(u) there
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exists an n € L0y, Y,,)(,u) such that ¢ = n a.e. (u). Clearly, any strict
W*-space is a V%/*—space by Remark 1.1. Every reflexive Banach space
is a strict W*-space.

Theorem 3.4. For a Banach space Y the following conditions are
all equivalent.

(i) Y is an SB*-space.

(ii) For any complete probability space (2,%,u) and any ¢ €
S?y,vy) (1), there exists a function v € £y, (n) with ¢ =¥ a.e. ().

(iii) (Y', weak) is strongly lifting compact and Y is a strict W*-
space.

(iv) Y is weak* strongly lifting compact and an Asplund space.

(v) Y is weak* strongly lifting compact, an M*-space, and a W*-
space.

(vi) Y is weak® strongly lifting compact, an M*-space, and an L*-
space.

(vii) For every Baire probability measure p on (Y', weak*) is any
weak Baire set p-measurable, and every lifting of £2°(u) is Cp(Y’,
weak)-strong (respectively, there exists a Cy(Y', weak)-strong lifting of
£ (u))-

(viil) (Y, weak) is measure compact and for every Baire probability
measure p on (Y', weak®) any weak Baire set is pu-measurable.

(ix) For any Baire probability measure p on (Y', weak*) any weak
Baire set s p-measurable and p is supported by a p-measurable closed
linear subspace of Y' which is norm-separable.

(x) (Y', weak) is measure compact and any norm Borel set in' Y’
is u-measurable for any Baire probability measure p on (Y', weak®).

(xi) (Y, weak) is measure compact and submetrizable, and for every
Baire probability measure p on (Y', weak*) any weak Baire set is u-
measurable.

(xii) For any complete probability space (2, X, u), any lifting p of

£2(u), and any ¢ € By yny(u), ¢ = p'¢ holds a.e. (n), and every
weak Baire subset of Y' is p-measurable.
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Proof. The implication (i) = (ii) is immediate by Remark 1.1.
(if) = (iii). Since any ¢ € S((’Yﬁy,,)(u) is in S(()Y’,Y)('u’)’ there exists

by assumption a 1 € £Y%,(u) such that ¢ = ¢ a.e. (u). Therefore, (Y,
weak) is strongly lifting compact by [1, Theorem 4.3].

If $ € Byy)(u), then again by assumption, we find a ¢ € £3,(u)
with ¢ = ¢ a.e. (u). Clearly, ¢ € Sgy,7y,,)(/,l,), i.e., Y is a strict W*-
space.

(iii) = (iv). Let ¢ € By« y)(u). Since Y is a strict W*-space, there
exists an 7 € £(()Y’,Y”)(:u) with n = ¢ a.e. (p). Since (Y’', weak) is
strongly lifting compact, we find ¢ € £9,(u) such that n = 1 a.e. (i)
by [1, Theorem 4.3]. But then ¢ = ¢ a.e. (1), p*¥ € £3(n), and
¢ = p*¢ a.e. (u), i.e., Y is an Asplund space. By Remark 2.2 p*tp = 4
a.e. (p) holds true. Since p*¢ = p*¢, we have ¢ = p*¢ a.e. (u), i.e., Y
is weak* strongly lifting compact by Theorem 3.1.

Condition (iv) is equivalent with each of the conditions (v) and (vi)
by Theorem 2.8.

(iv) = (i). Let ¢ € B(ys y)(p). By Theorem 3.1 ¢ = p*¢ a.e. (u)
holds since (Y, weak*) is strongly lifting compact. Since Y is Asplund,
p*¢ € £5 (u) follows by Theorem 2.4. Therefore, we put ¢ := p*¢ and
obtain ¢ = 1 a.e. ().

Let Q := Y’', ¥ := (Baire(Y’, weak),u)™ for a Baire probability
measure on (Y’, weak*). Then ¢ = idy: € £9, v)(#) if idy denotes
the identical map of Y'. If we now assume Y to be a strict W*-space,
then by Remark 1.1 we find a function 7 € £(()Y,’Y,,)(ﬁ) with ¢ =7 a.e.
(ft). This yields

(1) Baire (Y, weak) C 3.

If, conversely, we assume (1) and let ¢ be a Baire measurable map
from Q into (Y’, weak*), then we define for a complete probability
space (Q,%,u) a o-algebra By = {ACY' : ¢71(A) € X} and
the image measure A on By, A\ = ¢(p) of u under ¢ by means of
AA) = u(¢p'(A)) for A € By. Since Baire (Y’, weak) C By, we
can define the restriction v of A to Baire (Y’, weak*). But (Baire
(Y', weak*),v)~ C By, because By is complete. By (1) we find for
a set A € Baire(Y’, weak) sets B, C € By with BCACC and
5(C\B) = A(C\B) = 0. This implies ¢~1(B) C ¢~1(4) C$~1(C) and
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(o HC)\¢ H(B)) = A\(C\B) =0, so ¢ }(A) € ¥ since ¥ is complete,
ie, ¢ € £?Y,7y,,)(,u), and we see that Y is a strict W*-space. So we
have the following remark.

(2) A Banach space Y is a strict W*-space if and only if for any
Baire probability measure p on (Y, weak*),

Baire (Y', weak) C (Baire (Y', weak™*), u)™

holds, i.e., any weak Baire set of Y’ is u-measurable.

For this reason we can extend any measure p on Baire (Y, weak*),
to a measure v on Baire (Y, weak) and the completions with respect
to p and v are identical.

If we replace in condition (iii) the term “Y is a strict W*-space”
by the equivalent condition (2) and the term “(Y’, weak) is strongly
lifting compact” by any one of the 13 equivalent conditions given in
[1, Theorems 4.3 and 4.7, Corollaries 4.5 and 4.8], we get equivalent
conditions for “Y is an SB*-space.” We have noted above only some
of these equivalent conditions. As indicated, condition (vii) follows
from [1, Theorem 4.3 (iii)], (viii) from [1, Theorem 4.3 (iv)], (ix) from
[1, Theorem 4.3 (v)], (xi) from [1, Theorem 4.3 (vi)], (xii) from [1,
Theorem 4.3 (v)], and (xiii) from Theorem 2.12. O

As a corollary, we obtain a result of [17, p. 161], the remark before
Theorem 3.

Corollary 3.5. A separable Banach space is an SB*-space if and
only if it is Asplund. In that case the conditions of Theorems 2.3, 2.4
and 3.4 are all equivalent.

According to [17, Theorem 3] a separable Banach space is a W*-
space if and only if it is a strict W*-space or, equivalently, if Y does
not contain any isomorphic copy of ;.

Theorem 3.6. If the Banach space Y is a strict W*-space and an
M*-space, then Y is an Asplund space.
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Proof. If ¢ € B(y+ y)(u) and Y is a strict W*-space we find a function
n e S((’Y,yy,,)(u) with ¢ = n a.e. (¢). By Remark 1.1, we decompose 7
into functions 7, € By y~) (1) and find S, € ¥ with supp (9,) € Sp
for n € N. For a lifting p of L*°(x) we have p*n,, € £55(u) for n € N
by Theorem 2.10. Since supp (p*n,) C p(S,) for n € N we can define
the function ¢ := > °° | p*n,. Since ¢ € £}, (1) and ¢ = Yo (Y',Y)
the space Y must be Asplund by Theorem 2.4. o

Theorem 3.7. If the Banach space Y is a W*-space and weak*
strongly lifting compact, then Y is an L*-space.

Proof. Let ¢ € By yy(p) be weak* lifting invariant, i.e., p*¢ = ¢
a.e. (p) for some lifting p of £°(u). Since Y is a W*-space, we may
choose a function 7 € Q’?Y’,Y)(/J’) with ¢ = no(Y’',Y). This implies
p*¢ = p*n = n ae. (u), the latter since n € By y)(u), and Y is
weak* strongly lifting compact. Therefore, ¢ = n a.e. (1), and so
¢ € E?Y,yy,,)(,u). u]

Examples 3.7. (i) The space Y = C[0,1] is weak* strongly lifting
compact but not an Asplund space as we have seen after 3.3 above.
Hence, by Theorem 3.4, Y is not an SB*-space. Hence, by [1, 2.3],
the condition (SL) of the introduction holds for (Y’, weak*), i.e., for
every Baire measure p of (Y', weak*), every lifting of £°(u) is almost
strong, but condition (SB) is not satisfied. By Theorem 3.4, Y is no
strict W*-space.

For completely regular Hausdorff space T" imbeds T as well as 87,
the Stone-Cech compactification of 7', homeomorphically into Cy(T’)'.
Hence, for any weak* strongly lifting compact Cy(T"), 8T as well as T
must be necessarily strongly lifting compact by [1, 3.1 (i)]; therefore,
T must be measure compact at least.

(i) By Remarks 2.9, the James tree space Y = JT is a W*-space
which is not Asplund, and therefore no SB*-space by Theorem 3.4, nor
does Y have the weak* separation property by Corollary 2.5, but Y
is an L*-space by Theorem 3.7, since the separable space JT is weak*
strongly lifting compact, and by [17, Theorem 3] and [4, 7.4.11] a strict
W*-space. By [9, 5.8] (Y’', weak) is not measure compact, therefore
not strongly lifting compact, so Y is no M*-space by Theorem 3.6 in
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agreement with [13] (compare also [17, p. 163]). Since Y is a strict
W*-space, the completions of Baire measures with respect to the weak
* as well as with respect to the weak topology are identical by Remark
(2) in the proof of Theorem 3.4, hence so are the liftings of their spaces
£%(p). Any such lifting p is almost strong with respect to the weak*
topology by [1, Theorem 2.3] (applied to the identical map), but no
such lifting is almost stronig with respect to the weak topology on Y’
by [1, Theorem 4.3].

(iii) The reflexive space Y = 1[2011] is Asplund and a strict W*-space,
hence a W*-space, an M *-space, and an L*-space by Theorem 2.8. By
[1, 4.10 (ii)] (Y, weak) is not strongly lifting compact, therefore not
weak™ strongly lifting compact, but it is clearly measure compact. By
Theorem 3.4, Y is no SB*-space.

(iv) The separable space Y = L[0,1] is no W*-space by [17,
Theorem 3 (iv)], therefore no strict W*-space. Hence, this space is
neither Asplund nor an L*-space by Theorem 2.8 and Lemma 2.7, and
not an SB*-space by Theorem 3.4 but weak* strongly lifting compact
by Theorem 3.3. By [9, Section 6, Example (3)] (Y’, weak) is not
measure compact, hence not strongly lifting compact. By Corollary
3.2, Y is no M*-space, and by Corollary 2.3 not weak* separating. The
function ¢(w) := X[, of [0,1] into Y” is by [8, p. 672] not strongly
lifting compact with respect to the weak topology on Y’. Since for
g € L'[0,1] the quantity (g, ¢(w)) = fow gdw is a continuous function
of w and any lifting of £°°[0,1] is almost strong, we have p*¢ = ¢
a.e. (u) for the Lebesgue measure on [0,1]. By Remark (1) following
Theorem 3.1, the function ¢ is strongly lifting compact with respect to
the weak* topology on Y.

(v) The separable space [; is not a W*-space by [ 17, Proposition 3]
and Remarks 2.9, so it is neither a BS*-space nor an L*-space. But Y is
weak™ strongly lifting compact by Theorem 3.3, not measure compact
by [9, Table 1], hence not strongly lifting compact. So it is no M *-space
by Corollary 3.2, and no strict W*-space by [17, Theorem 3].

4. Permanence properties. The first theorem is a complement
to [1, Section 3]. The idea of using Michael’s selection theorem traces
back to [8, 6.2]. I am indebted to E. Michael for introducing me to and
for commenting upon these selection theorems.
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Theorem 4.1. Let X be a Fréchet space and Y a closed subspace
of X. Then (X, weak) is strongly lifting compact if (Y, weak) and
(X/Y, weak) are both strongly lifting compact.

Proof. Let (Y, weak) and (X/Y, weak) both be strongly lifting
compact. If ¢ is a scalarly measurable map of €2 into X, then w o ¢
is scalarly measurable, therefore, Bochner measurable by [1, Theorem
4.3] since (X/Y, weak) is strongly lifting compact. Again, by [14] there
exists a section o from X/Y into X which is continuous with respect
to the canonical metrics on X and X/Y for the canonical map 7 from
X onto X/Y. Then (0 omo¢) 1(B) € ¥ for any open ball B in X
and since 7 o ¢ is Bochner measurable, there exists 29 € ¥ such that
1(Q) = 1 and (7w o ¢)(Q) separable which implies (o o 7 o @)(p)
separable. Since X is metrizable o o 7 o ¢ is Bochner measurable.

Again, by [1, Theorem 4.3] the scalarly measurable map ¢ = ¢ —
como ¢ from Q into Y is Bochner measurable since (Y, weak) is
strongly lifting compact. Therefore, ¢ is Bochner measurable, too, i.e.,
(X, weak) is strongly lifting compact again by [1, Theorem 4.3]. If (X,
weak) is strongly lifting compact for a Banach space X, then (Y, weak)
is strongly lifting compact for any closed subspace Y by [1, 3.1 (i)]. If
X is weak™ strongly lifting compact, then dually X/Y is weak* strongly
lifting compact. Indeed, recall that (X/Y)’ is isomorphic to Y+ C X’
(where, as usual, Y1 := {2’ € X’ : 2’|y = 0}) and the weak* topology
of (X/Y)" transforms under this isomorphis to the weak* topology of
X' restricted to Y1; therefore, the assertion follows again from [1, 3.1
(i)]. Since the quotient of an Asplund space is Asplund by [18] (see
also [4, Theorem 5.8.1]) the same is true for SB*-spaces by Theorem
3.4 (iv). o

Theorem 4.2. Let Y be a closed subspace of the Banach space X.
IfY and X/Y are SB*-spaces, then X is an SB*-space.

Proof. We verify condition (ii) of Theorem 3.4. For this let ¢ €
’Q?X',X)(“)' Y is isomorphic to X'/Y*, and the canonical surjection
7m: X' — X'/Y' is weak*-weak* continuous. Then 7o ¢ € S?y/,y)(ﬂ)
by [8, 2.3]. Since Y is weak* strongly lifting compact m o ¢ € £}, (p)
follows by Theorem 3.4. By [14] there exists a norm continuous section
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o for . Then comogp € £, (u) and ) =¢p —comod € E?YL,X/Y)(“)
since (X/Y)" is isomorphic to Y by the remark preceding the theorem.
Again, from Theorem 3.4 it follows that ¢ € £3,(u) since X/Y is
weak* strongly lifting compact, therefore ¢ = ¢y + ocomo ¢ € £, (u).
O

Theorem 4.3. If for a Banach space Y the dual space Y' is weak
strongly lifting compact or an SB*-space, then (Y, weak) is strongly
lifting compact.

Proof. The weak* topology of Y induces the weak topology on Y.
If Y’ is weak* strongly lifting compact the assertion follows from [1,
Theorem 3.1].

Let ¢ be a Baire measurable map from (2 into Y, i.e., ¢ is scalarly
measurable by [8, Theorem 2.3]. If e : Y — Y is the evaluation map,
then e o ¢ € £?Y”,Y’)(:u) and there exists a ¢ € £5%,(u) such that
¢ = ¢ a.e. (u), i.e., there exists a set Qy € ¥ with u(p) = 1 and
P(Qo) = ¢(20) CY. Put ¢y(w) := P(w) for w € Dy and Yo(w) =0
otherwise. Then 19 € £)(u) and ¢ = g a.e. (1). By [1, Theorem 4.3]
the space (Y, weak) is strongly lifting compact. O

By [8, 6.(4)] the space D[0,1] of all right continuous functions with
left limits from [0, 1] into R is not measure compact, so not strongly
lifting compact. (C[0, 1], weak) is strongly lifting compact since C[0, 1]
is norm-separable, and DJ[0,1]/C]0,1] is isomorphic with c?o,l]' By
Theorem 4.1 (0?071}, weak) is not strongly lifting compact, and by

Theorem 4.3 1[10,1] is neither an SB*-space nor weak® strongly lifting
compact.

For the cg respectively [, product (DierY;)c, respectively (©icrYi)i,
of Banach spaces Y; (i € I) see [5, p. 35]. Let ¢o(t) := (dss)seo,1) for
t € [0, 1], where d;5 is the Kronecker §. For 1 < p < oo, y = (y;) € lﬁ),l]
holds (y,¢0)(t) = y¢ # 0 for at most countably many ¢ € [0,1],
and for any lifting p of L*°(u), p the Lebesgue measure, holds for
all t € [0,1] always p*@o(t) = 0 # ¢o(t) for ¢ € [0,1]. This means
that lﬁ),l] = (DrepR);, is not weak* strongly lifting compact for
1 < p < o and not strongly lifting compact for the weak topology
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for 1 < p < co. For a non measure compact discrete index set I, i.e.,
card (T) is a real valued measurable cardinal by [8, 4(3)], the space (I,
weak) is not measure compact by [8, 6(1)], hence If. = (®,erR)n is
not strongly lifting compact in the weak topology.

By Corollary 3.2 the space ¢ = (®,erR), cannot be weak* strongly
lifting compact, hence not an SB*-space. But products with countable
index set have good stability properties.

Theorem 4.4. For any n € N let Y, be weak* strongly lifting
compact. Then the cy product (BnenYn)e, as well as the I, product
(®nenYn)1, are weak™ strongly lifting compact for 1 < p < oco. The
theorem remains true if we replace “weak™ strongly lifting compact” by
“L*-space.”

Proof. Let Y = (@nenYn)e, and ¢ € B(ysy)(u). Then Y’ =
(BrenYp)it, ¢ = (fn)nen Wwith ¢n € B(yyy,)(n), hence for any
lifting p of £°(u), p*édn = ¢, holds a.e. (u) for n € N. Since
(y,8) = > o7 (Yn,Pn) pointwise on Q for y = (y,) € Y, we find
by Egorov for any m € N a set Q, € ¥ with u(Q\Q,) < 1/m
and > > (Yn,Pn) = (y,¢) uniformly on Q,,, where we may as-
sume Q,, CQpy1. Let Ay i= QN p(Qy,). Then A4, CA,,4+1, and
> (Ynsdn)Xa,, = (y,¢)Xa,, uniformly. Since p is continuous,
this implies that Y " | p(yn, ®n)Xp(a,) = P(Y, #)Xp(a,,)- This yields
p(y, ) (w) = 3071 P(Yn, $n)(w) for w € Qo := Us_1p(Am), (o) = 1.
By the weak™* lifting invariance of ¢, we may choose B, € ¥ such
that /"’(Bn) =1 and p(yn7¢n)(w) = (yn7¢n)(w) for w € By, n € N.
Put Ag := Qo N NpenBy. Then p(Ap) = 1, and for w € Ag we have
p(y, 9) (W) = 2207 P(Yns 8n) (W) = 32071 (Yn, ¢n) (w) = (y,¢)(w). From
Theorem 3.1, it follows that Y is weak* strongly lifting compact. For
I, products the proof is similar and will be dropped. For L*-spaces Y,,
(n € N) the proof follows by a modification of the above proof. O

Corollary 4.5. The cy product as well as the l,, product of a sequence
of SB*-spaces is itself an SB*-space for 1 < p < oco.

Proof. On the basis of Theorem 3.4 condition (iv) this follows from
Theorem 4.4 and [18, Theorem 13]. o
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Clearly, [, is no SB*-space since it is not even Asplund (see, e.g., [6,
p. 219]), so Corollary 4.5 cannot hold for the [, product.

Theorem 4.6. The cy product as well as the l, product of a
sequence of strongly lifting compact Banach spaces is itself strongly
lifting compact for 1 < p < oo.

Proof. If we verify the condition given in Theorem 2.12 this amounts
to interchanging Y and Y’ in the proof of Theorem 4.4. O

Theorem 4.7. The cy product as well as the l, product of a sequence
of strict W*-spaces 1is itself a strict W*-space.

This follows immediately by definition. The space l; is not even a
W*-space.

Theorem 4.8. Let I' be a set with nonreal-valued measurable
cardinal. For each v € ', let Y, be an M*-space. Then the co product
(®yerYy)e, as well as the l, product (®yecrYy)y, are M*-spaces for
1<p<oo.

p

Proof. Let Y := (©yerYy)e, and 1 = (ny) € Lyry)(p) with
Y' = (@yerYy):,- Interchanging X =Y and X' = Y' in the proof of
[9, Theorem 3.4] we find that the set 'y := {y € I': n, Z 00(Y,,Y,)}
is countable. Let us put 7, := 7, for v € Ty, and 7., := 0 for v € ['\T'y.
Since I' has a nonreal-valued measurable cardinal, a reasoning similar
to that in [9, Theorem 3.4] gives ' = no(Y',Y). For v € T'y we may
choose ¢, € LYy, (u) with n, = ¢,0(Y]Y,). If we put 4, := 0 for

v
v € T\Dg, then ¥ := (¢ )yer € LY (p) and 7/ = 9o (Y',Y) since [y is
countable, i.e., n = Yo (Y',Y). o

Again, the above theorem remains true if we replace “M *-space” by
“W*-space.”
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