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K-THEORY OF ANALYTIC CROSSED PRODUCTS
CHAOXIN QIU

ABSTRACT. We prove the following theorem which is
simultaneously a non-self-adjoint analogue of Conne’s Thom
Isomorphism and a generalization of a result of J. Peters.
Suppose that G is a locally compact, compactly generated,
abelian group and that ¥ is a subsemigroup of G satisfying
(29" = = and ¥ N (-%) = {0}. Then, for an arbitrary
C*-dynamical system (4, G, o),

K;(A) if G is discrete
{0} otherwise

(i=0,1).

Ki(E xa A) = {

1. Introduction. K-Theory has revolutionized the study of
operator algebras in the last few years [2, 4, 1]. Most work is, however,
devoted to C*-algebras and relatively little is known on the K-theory
for non-self-adjoint Banach algebras. A few results in this direction can
be found in [12, 11].

We will concentrate our attention on the computation of the K-groups
of analytic crossed products. We will use terminology, notation and
basic facts on K-theory and crossed product used in [1, 10, 8]. We
recall here some details about analytic crossed products for the sake of
the reader’s convenience.

Let A be a C*-algebra, let G be a locally compact group with left
Haar measure p and let a be a continuous homomorphism from G into
Aut (A), the group of C*-automorphisms of A with the topology of
pointwise norm-convergence. Following the notation in [10], we denote
the enveloping C*-algebra of L'(G, A) by G x, A and call it the C*-
crossed product determined by the C*-dynamical system (A, G, o).

Let X be a closed subsemigroup of G containing the identity e of G
satisfying the following conditions:
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1.1 X is the closure of its interior,
1.2 INXt={e},
1.3 X generates G.

The set of functions in L'(G, A) that are supported on X, L}(%, A),
is clearly a closed subalgebra of L!(G, A). The closure of L!(%, A) in
G x4 A will be denoted by X X, A and will be called the analytic crossed
product determined by (A, G,a) and the semigroup X. In this note we
always work with compactly generated, abelian locally compact groups
without further explanation and thus we denote the operation in groups
additively.

It is not difficult to show that the K;-group of the algebra of compact
operators in any nest algebra is trivial. Also, J. Peters [ 11] proved that

Ki(Z4 xo C(X)) = Ki(C(X))  (1=0,1).

Counsider the following special case, called the “standard nest algebra”.
Let H be a Hilbert space with orthonormal bias {e,, }ncz, let N be the
nest with M,, = I</ C{e;}, and let KAlg(N) be the set of compact

operators in nest algebra Alg (N). It is easy to see that
KAlg(N)>Z, x4 Co(Z)

where Z acts by translation [9]. Both our argument and Peter’s paper
can be applied to prove the triviality of K;(KAlg(N)). Looking
through the arguments in the above works, we see that the idea behind
them is to multiply each function f in L'(Z,Cy(Z)) by some decay
function with parameter s € [0,00], i.e., to define a homomorphism
H:Ry x LY(Z4,Co(Z)) — L'(Z+,Co(Z)) by

H(s,f)=fs with fs(n) =e °"f(n).

We find that this same idea works for a large class of analytic crossed
products. Our main theorem is

Theorem 1.4. Suppose that G is a compactly generated, abelian
locally compact group and X is a subsemigroup of G satisfying the
conditions 1.1, 1.2, and 1.3. Then

W A) {K,-(A) if G is discrete

Ki ¥ X .
( {0} otherwise

(i=0,1)
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for all C*-algebras A.

This result reminds us of the Pimsner-Voiculescu Exact Sequence and
Conne’s Thom Isomorphism [2].

In the next section, we will prove that the conclusion in Theorem 1.4 is
true provided that there exists a continuous homomorphism 6 : G - R
such that (X) C R, and Ker () N X is trivial. We will conclude the
proof of Theorem 1.4 by showing that such a 0 exists when X satisfies
1.1, 1.2 and 1.3.

2. K-theory of analytic crossed products. We will use the
terminology and notation in Section 1 without further explanation.
We will also make the following additional assumption:

There exists a continuous homomorphism 6 : G — R such that
0(2X) CR, and Ker ()NX = {0}.
This will be proved to hold for all pairs G, under the above assump-
tion in the next section.

The following lemma gives us a method to define a homotopy to be
used in the computation of the K-groups of the crossed product X X, A.

Lemma 2.1. Let f € LY(X, A). Define
f,@) =e Wity teX, yel0,00);

and define

foo(t)Z{O ift#0

f(0) ift=0.
Then we have
(i) f, € LY(Z, A)for all y € [0, ).
(i) (F*g)y = Fy*gy
(iti) limy o fy = f,and limy o fy = foo,
and

(iv) the mapping F : y — f, is continuous as a map from [0, oo| into
L(%, A).
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Proof. (i) is obvious. (ii) can be verified by a straightforward
computation. (iii) and (iv) can be proved easily by using Lebesgue
Dominated Convergence Theorem. u]

Remark. From Lemma 2.1, we get a map H from [0, 00] x L1(X, A)
into L}(X, A) defined by setting

H(y,f)=f, foryel0,00], fe€ LY(%, A).

Lemma 2.1 asserts that
(i) H(y,) is a continuous homomorphism on L(3, A), and
(ii) H(-, f) is also continuous.

We thus have the following byproduct.

Proposition 2.2. For i =00, 0 and 1,

K;(A) if G is discrete

Ki(Ll(E,A)) = { {0} otherwise.

Proof. (i) On the Koo-group.

First, assume that G is discrete. Note that p({0}) = 1. We are
about to show that Koo(L'(X, A)) = Koo(L*({0}, A)). It will result
that Koo(Ll(Z,A)) = KO()(A)

Define ¢ : L'(X,A4) — L'({0},A4) by ¢(a) = a|{o}, and define
¥+ {0}, A) — LI(,4) by v(b)(t) = b(0) if t = 0, 0ift # 0.
Let @ and ¥ denote the homomorphism induced by ¢ and % on their
Koo-groups respectively. It is clear that ® X ¥ = id g, (11 ({0},4))-
To show ¥ o & = id g, (L1(x,4)), it suffices to show that if [f](f =
(aij) € M,(L*(Z, A))) is an idempotent in Koo(L'(X, A)), then [f] is
homotopic to [fo] where fo = (¢¥(d(ai;))) € M, (LY(E, A)).

Define f,. = (af;), for r € [0, 1], by

1
a. =H T e 10 %ij | -
ii(*) ltan (7] ]
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From Lemma 2.1, [f,] is a path of idempotents in M, (L!(3, A)) joining
f and fo. It results that [f] = [fo] and hence,

Koo(LY(Z, A)) = Koo (L ({0}, A)).

If G is not discrete, then p({0}) = 0. The above argument then leads
to the conclusion that

Koo(L' (2, A)) = Koo(L*({0}, A) = {0}.

(ii) On the Ko-group and K;-group.

Let L'(Z, A)* be the initial Banach algebra obtained by adding a
copy of C to L!(Z, A). Extend H in the Remark preceding Proposition
2.2 to L}(X, A)™ by defining

Hy,f+c-1)=fy,+c-1 for c € C.

H satisfies (i) and (ii) in the above remark. Thus, by an argument
similar to the one in (i), we see that

Ky(LY(3, 4)) = Ky (L(3, A)T) = Ky (L0}, 4))
RS (AT) 2 Ky(A) if G is discrete
| Ky (C) = {0} otherwise.

Moreover, since the following diagram is commutative

Ll(E, A)+ H(y,") Ll(Z,A)Jr

LY, A /LN(2, A) + —4 = LY(D, A)T/LY(Z, A)

for any y € [0, 00|, we have the commutative diagram

Koo(L' (2, A)T) —2— Koo (L'{0}, A) 1) —%— Koo(L'(Z, A)T)

Koo(C) id Koo(C) id Koo(C)
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Therefore,

Ko(LY(S, 4)) = Ko(LY(S, A)F, LY(S, 4)) = Kerrl)
Kermi? 2 Ky (L' ({0}, A)*, L' ({0}, 4))
| Ko(AT,A) = K¢(A) if G is discrete
| {0} otherwise. o

1%

Remark. To establish our main result (Theorem 1.4), we need to
extend the map H from L'(X, A) onto ¥ x, A so that

(i) for each y, H(y,-) is a continuous homomorphism on ¥ x4 4,
(i) for each z € ¥ x A, the function H(-, z) is continuous on [0, co].

Since the norms on L!(%, A) and X x,, A are different, the extension
is not at all trivial. The following lemma is the key to making that
extension.

Lemma 2.3. Suppose G is discrete and y € [0, 00]. Then there exists
py € M(G) so that fiy(t) = e ¥*®) for t € X, where fi, denotes the
Fourier transformation of p, (see [6, Chapter 6]). In the case when G
is not discrete, the above assertion is true for y € [0, c0].

Proof. We discuss this in three cases.

Case 1. Suppose y = 0. We may define po as the point measure at
identity of G.

Case 2. Suppose y € (0,00). Since 6 is a continuous group
homomorphism from G to R, we may define 6 :R — G as the dual
group homomorphism. Hence, for each given y, 6 induces a measure
tty € M(G) corresponding to the measure in M (R) determined by the
Poisson kernel P;,,. Then it is straightforward to check that such a pu,

does work.

Case 3. Let y = oo and let G be discrete. Then G is compact and
abelian (cf. [6], Theorem 23.17) and, thus, we may define uo, as the
Haar measure on G (cf. [6], Lemma 23.19). O

We now may make the expected extension.
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Proposition 2.4. There ezxists a mapping H from [0,00] X (X X4 A)
nto X X, A satisfying the following:

(i) for each y, H(y,-) is a continuous homomorphism of ¥ x4 A,
and

(ii) for each x, H(-,x) is a continuous function on [0, co].

Proof. If G is discrete, define H(y,z) = & %4 py for € ¥ x4 A and
y € [0,00] where p, is given in Lemma 2.3. And if G is not discrete,
define H(y,x) = & %4 py if 0 <y < 0o and 0 if y = oo.

Note that, for f € L'(X, A) and y € [0, 00),

H(y, f)(t) = /Gdt‘(f)(t)dliy(f)
- /<t,£>f<t>duy<f>
G

— ) /G (t,2) dpy ()

= f{t) - iy (2)
= e YO f(1).

It is also clear that
H(y, f)(t) = e V"D f(t)

for f € L*(X, A) and y = oo.

This proposition follows from Lemma 2.1 for L'(%, A) is dense in
5 o A and [[o 2 ] < [[o]] - Iy

We conclude that the argument from Proposition 2.2 proves Theorem
1.4, subject to assumption (S).

3. Locally compact, compactly generated abelian semi-
group. Recall from harmonic analysis that a locally compact, com-
pactly generated abelian group G is topologically isomorphic to a
“canonical” group R* x Z’ x F where a and b are nonnegative in-
tegers and F is a compact abelian group [6]. We are going to find a
continuous homomorphism § from G into R such that §(X) C R, and
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Ker (§) "X = {0}. This is the assumption (S) in Section 2, and so, this
will complete the proof of Theorem 1.4. Without loss of generality, we
may assume that G = R® x Z® x F. We first consider the special case
when G = R® x Zb. We will need the following notation:

RY=R*xR’ (N =a+b),
k

hE)={) aiwi:a; >0, gz eNfori=1,2,...,k k=12,...},
i=1

¢(X) = the linear subspace spanned by ¥ in RY.

Lemma 3.2, below, guarantees that ~(X) is not equal to ¢(X). Its proof
requires an elementary observation in linear algebra.

Lemma 3.1. Let wy,...,w, € Q", and ay,...,a, € R be such
that Z;r;l ajw; =0. If e > 0 is given, there exist &1,... ,0, € Q with
laj —&;| <e, 1<j<m, and 37", &jw; = 0.

Proof. Let A = [wy, ... ,wy,] be the n x m matrix whose columns are
a1

the w;’s, and let [o] = | : |. Then A induces linear transformations
On

T4 from Q™ to Q™ and from R™ to R™. The dimension of the kernel of
T4, as a vector space over () is the same as the dimension of the kernel of
S4 as a vector space over R, since both are determined by the reduced
row-echelon form of A, which involves only rational operations on A.
Thus if {vi,...,vq} spans Ker(T4) over @, it also spans Ker (S4)
over R. As [o] lies in the kernel of Sy, [a] = ijl tjvj. Choose § > 0
such that if |t; — ¢;| < §,1 < j < d, then [&] = Z?:l t;v; satisfies
laj — &) <e, 1 <j<m.Ift; is also rational, 1 < j < d so is &;, and
the proof is complete. mi

Lemma 3.2. —X°NA(Z) = ¢, where 30 is the interior of ¥ in the
topology of G = R® x Zb.

Proof. Suppose that there exists a u € X° such that

—U = Q11 + asxs + - - - + apTk
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for some k > 0,{z;}%_; C ¥ and {a;}F_; CR,. Let

_ 1 a ,a+1 a+b
u=(u,..., 0w, uTY),
and
_ 1 a a+1 a+b .
= (z;,... &, i, o2, 1=1,2,...,k,

be the coordinate representations of u and the z;’s. We then get a
system of linear equations written in two portions—real and integer
portions.

ut 2 h y
() - —ai | | an | || |,
u® x$ g Ty
uott z9tt 3t zytt
(Im - = : +ay | +etag |
ua—l—b £I3§+b m;+b .Z'Z+b

We call (I) the “real portion” and (II) the “integer portion”.

Since the topology of G is the product of the Euclidean topology on
R and the discrete topology on Z°, we can find a small perturbation of
the z;’s such that all the coordinates of the x;’s are rational numbers,
for (X%~ =X and u € X% Denote the new system of equations by (I)
and (II) again.

By Lemma 3.1, given € > 0, there are rational §;’s with |8; — o] <
g, 1 < i <k, such that (II) is satisfied with §; in place of ;. For ¢
sufficiently small, the element u' = 2?21 Bjx; has the property that
nu' is in both —Y and ¥, for some positive integer n. Since their
intersection is {0}, this is not possible. O

The following proposition is an analogue of the existence of states
which appears in [5, Chapter 4]. The proof is basically the same as
that used to prove [5, Corollary 4.4]. We simply outline the proof for
the sake of completeness.

Proposition 3.3. Suppose that {uy,... ,u,} is a basis of £(X) such
that u; € ¥°, ¢ =1,2,...,n. Let u = uy +uy + --- + u,. Then
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there exists a linear (continuous) functional § : RN — R such that
6(h(X)) CR" and B(u) =1 > 0.

Proof. We may assume that £(X) = R without loss of generality.
Note that since RuNh(X) = R u, there exists an f : Ru — R which is
a linear continuous functional satisfying f(u) = 1 and f(R(u)Nh(X)) C
R*.

Let K be the collection of such pairs (K,g) where K is a linear
subspace of RV containing Ru, g is a linear functional satisfying
glre = f and g(K Nh(X)) € RT. For (K,g) and (K',g') in K, we
define (K,g) < (K',¢") if K C K’ and ¢'|x = g. By Zorn’s Lemma,
there exists a maximal element (K,g) in K. It suffices now to show
that K = R™. We are going to do this by contradiction. Suppose that
K # RN. Then there exists a zo(# 0) € RV\K, where RV\K is the
set theoretic complement of K in RN. Let K/ = K + Rxg. Define

Pz, = sup{g(y)/m:y € K, m € R", mzo —y € h(L)},
and
2o = inf{g(y)/m:y € K, m € RT, y — maxy € ()},

It is easy to show that —oo < pg, < ry, < co. Now, let ¢ be a number
between p,, and r,,, and define ¢’ : K’ — R by

g (k+rxo) = g(k) +rq forall k+rzy € K'.

It is easy to show that (K’,¢') € K and (K’,g')i(K, g), which is a
contradiction. ]

Furthermore, we have
Proposition 3.4. dim({(Ker§ N X)) < N.

Proof. If dim(¢(Kerf N X)) = N, then dim(Kerf) = N. It follows
Kerd D ¥. But u € ¥, and u ¢ Kerf. A contradiction. O

We now have
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Proposition 3.5. Suppose that G = R* x Z° and let RN = R* xR?.
Then there ezists a linear functional 6 : RN — R such that Ker §NY =
{0} and 8(h(Z)) CR*.

Proof. Let 6; be the linear functional from Proposition 3.3. Set
¥; = Ker6; NX and N; = dim¥¢(X,). By Proposition 3.4, N; < N.
We may apply Proposition 3.3 to ¢(X;) again. Suppose that we have
found 91,. .. ,91', Eo(: E), E]_,.. - 722'717 and No(: N), Nl:- .. 7Ni
such that

(i) 0 :¢(X;—1) = R is a continuous linear functional,
(i) 6,(h(S; 1)) € R,

(iii) dim ((3;) = Nj < Nj_1,

(iv) ¥; = Kerf,; N X,_;1.

Since N is finite, the inductive procedure will terminate after finitely
many “iterations”. Suppose i is the first index such that N; = 0. We
can use an argument similar to that used in Proposition 3.3 to extend
all the ;s to R so that 6;(h(X)) C R*. We see that § = 6 +---+6;

is the functional we want. O

Let us consider the general case, G = R® x Z® x F. We need the
following lemma.

Lemma 3.6. Let X be the projection of ¥ onto R* x Zb. Then
Yn(=%;) = {0}, and (29)~ = Z;.

Proof. Since F is compact, the projection map from G onto R® x Z°
is open and closed. The equation (X¢)~ = ¥; follows from (X°)~ = X.

Assume that there is a x(# 0) € ¥; N (—X;). Then there are
A1, A2 € F such that (z, A1) and (—z,A2) € F. Then

(0,)\1 + )\2) = (I,)\l) + (*I,)\g) eXn ({0} X F)

Since F' is compact, ¥ N ({0} x F') is a subgroup of {0} x F. It results
that (0, —A; — A2) € Z N ({0} x F) and hence,

(—z,=A1) = (0, =1 — X2) + (—z, A2) € .
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This contradicts the fact that ¥ N (—X) = {0}. O

We may now complete the proof of our main result, Theorem 1.4, by
proving the following theorem.

Theorem 3.7. Suppose that G = R*xZ*x F and let RN = R*xR®.
There exists an N-tuple (A1,...,A\n) and a continuous homomorphism
6:RN x F = R defined by

N
(*) 0(t) = Niw; for t = (w1,...,2n,9) ERV X F
i=1

such that
() CRT and KerfNX = {0}.

Proof. Applying Proposition 3.5 to X; in R", we get a liner functional
6; : RY — R defined by (*), for some N-tuple, which satisfies
61(X1) C R* and Kerf; NY; = {0}. Define § by composing #; with
the projection map 7 from RY x F onto RY, i.e.,

0(t) = 0,(n(t)) fort e G.

Then 6 has the form (*) and satisfies §(X) C 0;(X) C R*. Assume
that ¢t = (z,g9) € Ker§NX. Then z € Kerf; N%; and hence z = 0. It
follows that t = (0,9) € XN ({0} x F). The subsemigroup XN ({0} x F)
must be a group and hence, trivial for ¥ N (—%) = {0}. It follows that
g = 0 and therefore, ¢t = 0. This concludes the proof. i
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