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ON THE EXTENSION OF DERIVATIONS
TO SOME CLOSURES
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Introduction. Let A be a noetherian ring with integral closure
A in its total quotient ring k(A). When A is an integral domain, it
is well known that any differentiation D = (1,D1,...,D;,...) of A
extends to A [3, Section 2|, but, generally, D doesn’t extend to a ring
lying between A and A (see [4 ex. 1.1 or ex. 2.6]). Now let A C B be
noetherian integral domains. In Section 1, we consider some closures of
A in B with respect to a given property. We prove that a differentiation
D of A which extends to B also extends to the u-closure and to the
F-closure of A in B; moreover, D extends to the t-closure of A in B
whenever B is finite as an A-module. As regards (n-root)-closure, we
show D can be extended under particular assumptions but not as a
general rule (Section 1, Remark 1.9); we note that the (2,3)-closure has
been already studied in [5].

The above problem can be considered from another point of view.
If A is any noetherian ring, each ring between A and A can be seen
as a suitable closure of A in k(A) called A-closure and denoted with
A® (where A is a set of ideals of A, according to [7]). Since generally
neither a differentiation of A nor an integrable derivation extends to
A2 we wonder when a derivation of A can be extended to A2 (Section
2). For any A, we give a sufficient (but not necessary) condition in
order that a derivation D of A can be extended to A% (Proposition
2.5), whereas, under suitable assumptions, we show that the extension
of D to A® can be characterized by certain properties of the conductor
B of Ain A®. In particular, we prove the following. If A has (S;)-
property, D extends to A if and only if 8 is D-differential (Corollary
2.8).

Finally, in Section 3 we consider some classes of A-closures A® and
of derivations D of A satisfying the sufficient condition of Proposition
2.5, so that D(A%) C A,
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In this paper, all rings are assumed to be commutative with a unit
element.

Section 1. Let A, B be noetherian rings such that A C B. The
ring A is called x-closed in B if each b € B satisfying a property (x; A)
belongs to A. The smallest subring of B containing A that is *-closed

is called the *-closure of A in B; we shall denote it generically with
*BA.

In this section we are concerned with the following question: if
D (respectively, D) is a differentiation (respectively, an integrable
derivation) of A which extends to B, then does D (respectively, D)
extend to *pA? In particular, *-closure will mean, respectively, t-
closure, u-closure, F-closure and (n-root)-closure (as regards (2,3)-
closure, see [5]).

First, we recall the basic definitions; generally, they concern integral
domains, so that in this section we shall consider noetherian integral
domains.

Definition 1.1. Let A, B be noetherian integral domains such that
A C B. If b € B, then:

1) b satisfies (u; A) if: b> —b € A, b — b% € A;

2) b satisfies (t; A) if: b> —rb € A, b3 — rb* € A for some r € A;

3) b satisfies (F; A) if: b2, b3, nb € A for some positive integer n;
) (

4) b satisfies (n-root;A) if: b™ € A for some positive integer n.

(See, e.g., [9, 10]). If * means one of the properties 1) through 4),
we denote * 3 A respectively with: “5A, fzA, F g A, n~T00t ;4.

Remark 1.2. a) Each property (*; A) in Definition 1.1 is expressed by
conditions like P (b) € A, where, for each i, P;*(b) belongs to A[b].

b) If b satisfies one of the properties 1) through 4) of Definition 1.1,
then b is integral over A.
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c) If * is one of the properties 1) through 4) of Definition 1.1 and
b satisfies (x; A), then b satisfies also (x; C) for each ring C such that
AcCcCB.

Proposition 1.3. Let A, B be as in Definition 1.1. For eachb €*gA,
one has b € Alz1,... ,zx] C B, where x; satisfies (x; A[z1,... ,2j_1])
forj=1,... k.

Proof. We call x-finite extension of A in B a ring like Ay =
Alz1,...,zx] C B where z; satisfies (¥;A[z1,...,z;_1]) for j =
1,...,k. Then put X = {Ag|Ag is *finite extension of A in B} and

(1) C =|J Ak, where 4; € X.
k

First we note the union (1) is filtered, according to Remark 1.2c).
Then we prove *pA = C. It is obvious that C' C*pA; so, let us
prove the opposite inclusion. If *gA ¢ C, then C' #*pC (otherwise,
C =*pC D*pA, since A C C C B), so that we can find b € B\C such
that b satisfies (x; C). Then, according to Remark 1.2a), there are some
polynomials P;*(b) in C[b] such that P*(b) € C. Therefore, since the
union (1) is filtered, and according to the definition of C, one can find a
suitable A, € X such that, for each ¢, P*(b) and its coefficients belong
to Ag. The above statement implies b satisfies (*; A), then Ay [b] is a
*-finite extension of A in B, i.e., Ag[b] = Ap, for some Ap € X. So,
b € C, a contradiction. Then *gA = C. O

In many cases, the *-closures with respect to the properties * consid-
ered in Definition 1.1 are stable under passage to formal series, as we
recall.

Proposition 1.4. Let A, B be noetherian integral domains such that
A C B. Then:

1) If A is u-closed in B, so is A[[X]] in B[[X]].

2) If A is t-closed in B and B is finite as an A-module, then A[[X]]
is t-closed in B[[X]].

3) If A is F-closed in B, so is A[[X]] in B[[X]].
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4) If char (A) = p and A is (p-root)-closed in B, then A[[X]] is
(p-root)-closed in B[ X]].

Proof. 1) See [6, n. 4, Proposition 7].

2) See [6, n. 4., Proposition 8, (8.2)].

3) Let us suppose A =54, and let f(X) = > a;X* € B[[X]] be
such that f(X) satisfies (F; A[[X]]). One immediately has ag € A4; so,
in order to prove f(X) € A[[X]], it is enough to show that (f(X)—ag)?,
(f(X) —ao)®, n(f(X) — ag) belong to A[[X]] for some positive integer
n (for, then we replace f(X) by f(X) —ap =X (a1 +a2X +...) and
iterate the procedure with respect to a; + a2 X +...). Now, expanding
out, and according to the assumptions over A, it is enough to show
that agf(X) € A[[X]], i-e., apa; € A for each ¢ > 0. It can be shown as
in [1, Theorem (1), page 283].

4) Let us suppose that A = P~T00b ;4 and let f(X) = Y a;X* €
B[[X]] be such that [f(X)]? € A[[X]]. Since char (A) = p, one has
[f(X)]P =Y. al X, so that a? € A for each i; then a; € A, according
to the assumptions on A. a

Now let D = (1,D4,...,D;,...) be a differentiation (of Hasse-
Schmidt) of A, i.e., a sequence of additive endomorphisms D; : A — A
such that Dy, (ab) = 3, ;(Di(a).D;(b)) (where i+j = n) for all a,b € A
(so that Dy is a derivation of A). A derivation D of A is called integrable
if there exists a differentiation D = (1, Dy,...,D;,...) of A such that
D, = D. We denote with HS(A) the group of the differentiations of
A, and with Der (A) (respectively with IDer (A)) the A-module of all
the derivations of A (respectively of the integrable derivations of A).

It is known that, if A is a ring, to each D = (1,D4,...,D;,...) €
HS(A) one can associate a ring homomorphism E : A — A[[X]] defined
by E(a) = Y. D;(a)X® for each a € A (see [3, Section 1]. Then,
according to Proposition 1.4, we wonder when a D € HS(A), such
that D extends to B, can extend to *gA. We can prove:

Theorem 1.5. Let A,B be as in Proposition 1.4, and let D =
(1,D1,...,D;,...) in HS(A) be such that D extends to B. Then:
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) D extends to “gA.

) If B is finite as an A-module, then D extends to ' A.
3) D extends to FgA.

)

Proof. Let E : A — A[[X]] be the ring homomorphism associated
to D; let us denote with E also the ring homomorphism of B in
BJ[[X]] associated to the extension of D to B. So, for each closure
*pA considered in 1) through 4), we have to prove: E(*pA) C
(*BA)[[X]]. Now, according to Proposition 1.3, it is enough to show
that E(Alz1,... ,zk]) C (*BA)[[X]] for each A[z1,. .. ,zx] contained in
B such that z; satisfies (¥; A[z1,...,2z;_1]) for j = 1,... ,k; then we
have to prove that E(z;) € (5A)[[X]] for each z; as above, 1 < j < k.
We show it by induction on k. Since z; satisfies (*; A), there is a finite
set of polynomials {P;(z1)} such that, for each i, P} (z1) € A[x1], say
Pf(z1) = Y, (ainz?) (see Definition 1.1 and Remark 1.2a)). Then,
for each i, in B[[X]], one has E(P}(z1)) = Y., E(ai)[E(z1)]", so
that E(z;) satisfies (; A[[X]]), ie., E(z1) € #pqxjA4[X]]. Then
E(zy) € (*pA)[[X]], according to Proposition 1.4. Now let us suppose
that E(z1),...,E(zj_1) € (*A)[[X]]. The same argument as before
shows that E(z;) satisfies (x;(*pA)[[X]]), so E(z;) € (5A)[[X]],
according to Proposition 1.4. O

Corollary 1.6. Let A be a noetherian integral domain, A its integral
closure, * A be the x-closure of A in A, D € HS(A). Then:

a) D extends to “A, A,
b) if A is finite as an A-module, D extends to ‘A,
¢) if char (A) = p, D extends to P"TOOUA.

Proof. Since D extends to A (see [3, Theorem 3]), it follows immedi-
ately from Theorem 1.5. u]

Corollary 1.7. The results of Theorem 1.5 and Corollary 1.6 hold
by considering D € IDer (A) instead of D € HS(A).
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Corollary 1.8. Let R be an integral domain such that char (R) =0,
k(R) be the quotient field of R, and A = R[[X]], B = (k(R))[[X]].
If D is the differentiation of HS(B) defined by D = (1,D =
0/0X,...,D; = DWW/ ...), then:

a) D e HS(A)
b) D extends to “gA, FgA.

Proof. a) We have D;j(z") = 0if i < j, and, if i > j, D;(X*) =
(J) Xi~3 € A. Then D;(A) C A.

b) It follows immediately from a) and Theorem 1.5, 1, 3). O

Remark 1.9. If A, B, D are as in Theorem 1.5, generally D doesn’t
extend to ""TOOV ;A as the following example shows. Let A =
Z[[X]], B = Q[X], D = (1,D = 8/dX,...,D; = DV/il,...) €
HS(A) N HS(B) (Corollary 1.8 a)). Let f(X) = 1+ (1/2)X —
(1/8)X2+(1/16)X3—(5/128) X*+- - € B, considered in [10, Example
1]. As proved in [10], one has [f(X)]? € Z[X]] = A4, so that
F(X) € 27100t L A On the other hand, D(f(X)) = (1/2) — (1/4)X +
(3/16)X% + ..., so [D(f(X))]? = (1/4) — (1/4)X + .... Then,
D(f(X)) ¢ 2 T00t , A, In fact, according to Proposition 1.3, a series
9(X) = Y g: X" € B belonging to 2100t 5 4 is such that g(X) €
Alz1,...,xk), where, for j =1,... k, z; = > ,(hi; X?) € B = Q[[X]]
and mf € Alzy,... ,xj_1]; then, h?]j €Z,ie,h,jeZ(forj=1,... kK,
as one can easily see), which implies that go € Z. So, D (then, even

more so, D), doesn’t extend to 2-To0t _ 4

Section 2. Let A be a noetherian ring, k(A) be the total quo-
tient ring of A and A be the integral closure of A in k(A). Each
ring B such that A ¢ B C A can be seen as a suitable closure of
A in k(A), as we now recall. We refer to [7]. If A is a multiplica-
tively closed set of nonzero ideals of A, for each ideal I of A we de-
note with In the set | J{IK : K|K € A}. Now, a A-extension of A
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in k(A) is a subring B of k(A) containing A such that aBNA C (ad)a
for all regular nonunits a in A. We call A-closure of A in k(A) the
largest A-extension of A that is contained in k(A), and we denote it
with A2 (see [7, 2.1, 6.1] and following remark). We recall some basic
properties of A2,

Proposition 2.1. Let A be a noetherian ring, k(A) the total quotient
ring of A, and A a multiplicatively closed set of nonzero ideals of A.
Then A® = A[S] = S, where:

S ={b/a € k(A)|a is a regular nonunit in A and b € (aA)a}.

(See [7, Theorem (6.2)].)
Further, we have

Proposition 2.2. Let A, k(A), and A be as in Proposition 2.1, and
let B be a ring such that AC B C A. Then B = A®, where:

A = {finite products of the ideals aBN Ala is a regular nonunit in A}.

In particular, A = A® where A is the set of nonzero ideals of A that
are not contained in any minimal prime ideal.

(See [7, (8.1) and the following remarks, and (6.3)].)

So, according to Proposition 2.2, any subring of A containing A can
be seen as a suitable A-closure of A in k(A).

If D € IDer (A), generally D doesn’t extend to A (see [4, ex. 1.1 or
ex. 2.6]). So, in this section we wonder when a derivation D € Der (A)
can be extended to A”. We recall that an ideal I of A is called D-
differential if D(I) C I. According to Proposition 2.1, each element of
A® looks like s = b/a, where:

(2) a is a regular nonunit in A
(3) b€ (ad)a, ie., bK C aK for some ideal K € A.

We have
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Proposition 2.3. Let A, A be as in Proposition 2.1, s = b/a € A®,
K be an ideal of A satisfying (3), and D € Der (A). If K is D-
differential, then D(s) € A2,

Proof. Since D € Der (A), one has D(s) = [D(b)a—bD(a)]/a? in k(A),
where a? is a regular nonunit in A, since a satisfies (2). So, according
to Proposition 2.1, it is enough to show that [D(b)a—bD(a)] € (a%A)a,
i.e., there is an ideal K’ € A such that:

(4) [D(b)a — bD(a)|K' C a®K’.

Since K satisfies (3), for each k € K there exists k' € K such that
bk = ak', so in k(A) one has k' = (bk/a), and by applying D one
obtains bD(k) + kD(b) = D(a)k' + aD(k') = D(a)(bk/a) + aD(K')
in k(A). So, in A one has abD(k) + akD(b) = D(a)bk + a®>D(K'), i.e.,
k[aD(b)—bD(a)] = —abD(k)+a*D(k'). Now D(k') € K and D(k) € K,
since K is D-differential; so a?D (k') € a®?K, and abD(k) € abK, so that
abD(k) € a®K since b and K satisfy (3). Then k[aD(b) —bD(a)] € a®’K
for each k € K, so that

(5) [aD(b) — bD(a)|K C oK.

If we put K’ = K, we obtain (4). O

Remark 2.4. The converse of Proposition 2.3 is not true, generally.
Indeed, we exhibit A, A%, s € A2 such that D(s) € A%, but there is
no K € A such that K is D-differential and satisfies (3).

Let A = Z,[z,y] where p is prime, p # 2 and y? = 2P(z + 1).
According to [8, n. 5], we have: A is an integral domain, y/z is integral
over A, and A = Aly/z]. Let A = A, D € Der(A) be defined by
D(x) =0, D(y) =1 (see [8, n. 5]). Take s = (y*/2x) € A. Then

(6) y’K C (2z)K for an ideal K € A,

according to (3).

Now we show that each K satisfying (6) cannot be D-differential.
In fact, if there is K € A, K D-differential and satisfying (6), then,
according to the proof of Proposition 2.3, one obtains (5) for a = 2z,
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b =1y?% ie., [2eD(y?) — y?*D(2z)|K C (42°)K, so yK C zK (since A
is a domain). This means that y/z € A2 (Proposition 2.1 and (3)),
and K satisfies the assumptions of Proposition 2.3 for s = y/z. Then,
according to the result of Proposition 2.3, one has D(y/z) € A%, a
contradiction, since D(y/x) = (1/x) ¢ A= A® (see [8, n.5)).

If A® is finitely generated over A, it is possible to find a particular
K € A such that K is an ideal of A®. In fact, if A2 = Alzy,...,z,)],
the above K can be obtained as follows (see |7, proof of Theorem (6.4)]):
fori=1,...,n, let ; = b;/a; and K; € A be such that b;K; C a;K;
(see (3)); then, K = IIK; has the requested property. This ideal K
satisfies the assumptions of the following

Proposition 2.5. Let A, A, A%, D be as usual; moreover, let K € A
be an ideal of A®. Then:

if K is D—differential, then D(A®) C A®.

Proof. Let s = (b/a) € A®. Since K is an ideal of A®, one
has sK C K, ie., bK C aK. Then K satisfies the assumptions
of Proposition 2.3; since K is D-differential, Proposition 2.3 shows
D(s) e A®. o

Remark 2.6. Generally the converse of Proposition 2.5 is not true, as
the following examples show.

1) Let A = k[t5,t5] where k is a field of characteristic p = 5,
AR = A[tS] C A. If K = (t!6,#%) A, then K = (t1%)A%; so K € A
according to Proposition 2.2. Further, K satisfies the assumption of
Proposition 2.5. Let D = t1°(9/0t) € Der (A). One has D(A?) C A,
since D(t®) = 8- t1T € A. Nevertheless, D(K) ¢ K; in fact,
D(t'°) =16 -t*° ¢ K.

2) Let A = K[t3,t",t%], where k is a field of characteristic zero,
and A% = A[t*] ¢ A. According to Proposition 2.2, it can be
seen that K = (t%,¢12)A belongs to A and is an ideal of A%, If
D = t%(9/0t) € Der (A), one has

~D(A®) c A®,  since D(t*) = 4-t° € A,
—-D(K) ¢ K,  sinceD(t®) =8 -t'% ¢ K.
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We note that Examples 1), 2) of Remark 2.6 can be seen as particular
cases of a larger class of examples we shall consider in Section 3.

Corollary 2.7. Let (3 be the conductor of A in A%, D € Der (A). If
B € A, the following conditions are equivalent:

1) D(A%) C A%

2) B is D-differential.

Proof. 1) = 2). For each s € A%, z € (3, one has sz € A so that
D(sz) € A, i.e., zD(s) +sD(z) € A. Now xzD(s) € A since D(s) € A®
and z € 3; then, sD(z) € A (for each s € A®), so D(z) € B.

2) = 1). Let s = (b/a) € A®. Since 3 is an ideal of A®, the result
follows from Proposition 2.5. o

When A satisfies the (S;)-property and A% = A, under suitable
assumptions one has § € A (Corollary 2.8). We recall a ring A
satisfies the (Si)-property if and only if A has no embedded prime
ideals associated with (0).

_ Corollary 2.8. Let 3 be the conductor of A in A, D € Der (A). If
A is a finitely generated A-module and if A satisfies the (S1)-property,
the following conditions are equivalent:

1) D(A) C 4;

2) B is D-differential.

Proof. Since A satisfies (S1), each P € Ass(A/B) has height > 1
since it is associated to an ideal I generated by a regular element (see
[2, Proposition 5.21] where only the assumption (S;) is needed). Then
ht(B) > 1, so B € A, according to Proposition 2.2. Now the result
follows from Corollary 2.7.

Remark 2.9. 1) In Corollary 2.7 the assumption 3 € A is needed only
as regards 2) = 1).

2) Under the assumptions of Corollary 2.8, the condition § € A
of Corollary 2.7 is satisfied. Generally, for a A-closure A%, it is
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not true that 3 € A. Consider, for example, A = k[X?2, XY,Y?3],
AA = A[X+Y]C A, D=X(0/0X)+ XY?/9Y). In [4, ex. 2.6],
it is proved that D(A?) ¢ A® and $ is D-differential; according to
Corollary 2.7, we have necessarily that 5 ¢ A.

Section 3. In this section we show some classes of A-closures A%
and of ideals K € A satisfying the assumptions of Proposition 2.5, such
that K is D-differential with respect to some D € Der (A). In this case,
according to Proposition 2.5, one has D(A%) C A®. First, we show
the following

Lemma 3.1. Let A be a noetherian ring, A® = Alzx] C A, where z*
and z* belong to A, K = (2%,23)A. Then k € A and K is an ideal of
A contained in A.

Proof. If a = z%, then aA® = K. In fact, (z%,2%) C (2%)A%
obviously; on the other hand, for each y € (z2)A” one has y =
z?(ap + a1x), where ag,a; € A, so that y = apz? + a1z®> € K. So
K = aA” N A, then we have also k € A, according to Proposition 2.2.
O

So, in Lemma 3.1, we construct an ideal K € A that satisfies
the assumptions of Proposition 2.5 and also generalizes the examples
of Remark 2.6. Now we refer to rings of the particular type A =
Eter,... ,t*m], in order to show ideals K as above and certain D €
Der (A) such that K is D-differential. Solet A = k[t*,... ,t*m], where
k is a field of characteristic zero.

In this section we denote with S the semigroup (aq,...,q,) and
suppose that (ai,...,an,) = 1, i.e., that there exists s € S such that
s+ n € S for each n € N; the least of these integers, s, is called
the conductor of S. Now, according to Lemma 3.1, take z = t* € A
such that t* ¢ A, but t2¢, 3¢ € A, and let A2 = Afz] = A[tY],
K = (t2%,3%). Further, take D = t*(0/0t) with a > 0 (D € Der (4)).
Then the conditions we are interested in are the following:

i) D € Der(A)
ii) D(K)C K,
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that are respectively equivalent to
I) aj—14+aeSfori=1,...,m
II) 2a —1+ a € S (since i holds if and only if D(z?) € K).
Now, in order to have II, the following condition is sufficient
III) a—1+ «=s+ka, for some s € S and k > 1.

In fact, if IIT holds, one has: 2a — 1+ a = s+ (k+ 1)a, with s € S and
k+12>2,so that 2a — 1+ o € S. Nevertheless, II doesn’t imply III.
Take, for example, a1 = 3, az =7, a3 = 8, a = 8, @ = 6; conditions I
and IT are satisfied, but a — 1+ a = 13 and 13 # 8k + s for each s € S,
E>1.

Now we show that conditions I and III are satisfied for a particular
choice of the integers aq, ... , Q.

Proposition 3.2. Let A = k[t?,t>" '] with k field of characteristic
zero, n > 1, t* € Z\A be such that t3¢, t3 € A. Moreover, let
AR = Aft?], K = (t*%,#3%). If D = t*(9/dt) € Der(A), then
D(K)C K.

Proof. Let D = t*(9/0t) € Der(A). According to the above
notations and remarks, it is enough to show that III holds. In this
case, the assumption over D means:

(I) l1+a€sf, 2n+ac€f.

Moreover, S ={0,2,...,2n+1,...} and, since t* ¢ A, one has that a
is odd and a < 2n + 1.

If o is even, then I is satisfied if and only if @« > 2n. Then,
a—l+a>a—-1+2n>a—1+a—1 (since a < 2n+1) = 2(a—1). So,
a—1+a is even and greater than 2(a—1), so that a—1+a = 2(a—1)+2h
for some h > 1,ie,a—1+a=2a+ 2(h —1) where h —1 > 0. Then
IIT holds since 2(h — 1) € S.

If o is odd, then I is trivially satisfied for each a > 1. Further,
a—1+a=a+(—1+a), where —1 4+ « belongs to S since it is even;
then IIT holds.
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Remark 3.3. Let A = k[t®t,... ,t®], A®, K, be as before. If ¢ is the
conductor of S = (o, ..., ), then each D = t*(9/0t) with a > ¢+1
is such that D € Der (A) and D(K) C K. In fact, if @« > ¢+ 1, one
hasfori=1,... m,a; —1+a>a;+c€ S;a—1+a >a+c, so
that a—14+a =a+s, for some s € S. Then I and III hold so that the
result follows. O
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