ON THE EXTENSION OF DERIVATIONS TO SOME CLOSURES

SILVIA MOLINELLI AND GRAZIA TAMONE

Introduction. Let A be a noetherian ring with integral closure \overline{A} in its total quotient ring k(A). When A is an integral domain, it is well known that any differentiation $\underline{D}=(1,D_1,\ldots,D_i,\ldots)$ of A extends to \overline{A} [3, Section 2], but, generally, \underline{D} doesn't extend to a ring lying between A and \overline{A} (see [4 ex. 1.1 or ex. 2.6]). Now let $A \subset B$ be noetherian integral domains. In Section 1, we consider some closures of A in B with respect to a given property. We prove that a differentiation \underline{D} of A which extends to B also extends to the u-closure and to the \overline{F} -closure of A in B; moreover, \underline{D} extends to the t-closure of A in B whenever B is finite as an A-module. As regards (n-root)-closure, we show \underline{D} can be extended under particular assumptions but not as a general rule (Section 1, Remark 1.9); we note that the (2,3)-closure has been already studied in [5].

The above problem can be considered from another point of view. If A is any noetherian ring, each ring between A and \overline{A} can be seen as a suitable closure of A in k(A) called Δ -closure and denoted with A^{Δ} (where Δ is a set of ideals of A, according to [7]). Since generally neither a differentiation of A nor an integrable derivation extends to A^{Δ} , we wonder when a derivation of A can be extended to A^{Δ} (Section 2). For any A^{Δ} , we give a sufficient (but not necessary) condition in order that a derivation D of A can be extended to A^{Δ} (Proposition 2.5), whereas, under suitable assumptions, we show that the extension of D to A^{Δ} can be characterized by certain properties of the conductor β of A in A^{Δ} . In particular, we prove the following. If A has (S_1) -property, D extends to \overline{A} if and only if β is D-differential (Corollary 2.8).

Finally, in Section 3 we consider some classes of Δ -closures A^{Δ} and of derivations D of A satisfying the sufficient condition of Proposition 2.5, so that $D(A^{\Delta}) \subset A^{\Delta}$.

Received by the editors on August 7, 1990.

In this paper, all rings are assumed to be commutative with a unit element.

Section 1. Let A, B be noetherian rings such that $A \subset B$. The ring A is called *-closed in B if each $b \in B$ satisfying a property (*; A) belongs to A. The smallest subring of B containing A that is *-closed is called the *-closure of A in B; we shall denote it generically with ${}^*_B A$.

In this section we are concerned with the following question: if \underline{D} (respectively, D) is a differentiation (respectively, an integrable derivation) of A which extends to B, then does \underline{D} (respectively, D) extend to *BA ? In particular, *-closure will mean, respectively, t-closure, u-closure, F-closure and (n-root)-closure (as regards (2,3)-closure, see [5]).

First, we recall the basic definitions; generally, they concern integral domains, so that in this section we shall consider noetherian integral domains.

Definition 1.1. Let A, B be noetherian integral domains such that $A \subset B$. If $b \in B$, then:

- 1) b satisfies (u; A) if: $b^2 b \in A$, $b^3 b^2 \in A$;
- 2) b satisfies (t; A) if: $b^2 rb \in A$, $b^3 rb^2 \in A$ for some $r \in A$;
- 3) b satisfies (F; A) if: b^2 , b^3 , $nb \in A$ for some positive integer n;
- 4) b satisfies (n-root;A) if: $b^n \in A$ for some positive integer n.

(See, e.g., [9, 10]). If * means one of the properties 1) through 4), we denote ${}^*{}_BA$ respectively with: ${}^u{}_BA$, ${}^t{}_BA$, ${}^F{}_BA$, ${}^{n-\operatorname{root}}{}_BA$.

Remark 1.2. a) Each property (*; A) in Definition 1.1 is expressed by conditions like $P_i^*(b) \in A$, where, for each i, $P_i^*(b)$ belongs to A[b].

b) If b satisfies one of the properties 1) through 4) of Definition 1.1, then b is integral over A.

c) If * is one of the properties 1) through 4) of Definition 1.1 and b satisfies (*; A), then b satisfies also (*; C) for each ring C such that $A \subset C \subset B$.

Proposition 1.3. Let A, B be as in Definition 1.1. For each $b \in {}^*BA$, one has $b \in A[x_1, \ldots, x_k] \subset B$, where x_j satisfies $(*; A[x_1, \ldots, x_{j-1}])$ for $j = 1, \ldots, k$.

Proof. We call *-finite extension of A in B a ring like $A_k = A[x_1,\ldots,x_k] \subset B$ where x_j satisfies $(*;A[x_1,\ldots,x_{j-1}])$ for $j=1,\ldots,k$. Then put $X=\{A_k|A_k \text{ is *-finite extension of } A \text{ in } B\}$ and

(1)
$$C = \bigcup_{k} A_k$$
, where $A_k \in X$.

First we note the union (1) is filtered, according to Remark 1.2c). Then we prove ${}^*{}_BA = C$. It is obvious that $C \subset {}^*{}_BA$; so, let us prove the opposite inclusion. If ${}^*{}_BA \not\subset C$, then $C \neq {}^*{}_BC$ (otherwise, $C = {}^*{}_BC \supset {}^*{}_BA$, since $A \subset C \subset B$), so that we can find $b \in B \setminus C$ such that b satisfies (*;C). Then, according to Remark 1.2a), there are some polynomials $P_i^*(b)$ in C[b] such that $P_i^*(b) \in C$. Therefore, since the union (1) is filtered, and according to the definition of C, one can find a suitable $A_k \in X$ such that, for each i, $P_i^*(b)$ and its coefficients belong to A_k . The above statement implies b satisfies $(*;A_k)$, then $A_k[b]$ is a *-finite extension of A in B, i.e., $A_k[b] = A_k$ for some $A_h \in X$. So, $b \in C$, a contradiction. Then ${}^*{}_BA = C$.

In many cases, the *-closures with respect to the properties * considered in Definition 1.1 are stable under passage to formal series, as we recall.

Proposition 1.4. Let A, B be noetherian integral domains such that $A \subset B$. Then:

- 1) If A is u-closed in B, so is A[[X]] in B[[X]].
- 2) If A is t-closed in B and B is finite as an A-module, then A[[X]] is t-closed in B[[X]].
 - 3) If A is F-closed in B, so is A[[X]] in B[[X]].

4) If $\operatorname{char}(A) = p$ and A is $(p\operatorname{-root})\operatorname{-closed}$ in B, then A[[X]] is $(p\operatorname{-root})\operatorname{-closed}$ in B[[X]].

Proof. 1) See [6, n. 4, Proposition 7].

- 2) See [6, n. 4., Proposition 8, (8.2)].
- 3) Let us suppose $A = {}^F{}_B A$, and let $f(X) = \sum a_i X^i \in B[[X]]$ be such that f(X) satisfies (F; A[[X]]). One immediately has $a_0 \in A$; so, in order to prove $f(X) \in A[[X]]$, it is enough to show that $(f(X) a_0)^2$, $(f(X) a_0)^3$, $n(f(X) a_0)$ belong to A[[X]] for some positive integer n (for, then we replace f(X) by $f(X) a_0 = X$ $(a_1 + a_2 X + \dots)$ and iterate the procedure with respect to $a_1 + a_2 X + \dots$). Now, expanding out, and according to the assumptions over A, it is enough to show that $a_0 f(X) \in A[[X]]$, i.e., $a_0 a_i \in A$ for each $i \geq 0$. It can be shown as in [1, Theorem (1), page 283].
- 4) Let us suppose that $A = {}^{p-\mathbf{root}}{}_B A$, and let $f(X) = \sum a_i X^i \in B[[X]]$ be such that $[f(X)]^p \in A[[X]]$. Since char (A) = p, one has $[f(X)]^p = \sum a_i^p X^{ip}$, so that $a_i^p \in A$ for each i; then $a_i \in A$, according to the assumptions on A. \square

Now let $\underline{D} = (1, D_1, \dots, D_i, \dots)$ be a differentiation (of Hasse-Schmidt) of A, i.e., a sequence of additive endomorphisms $D_i : A \to A$ such that $D_n(ab) = \sum_{i,j} (D_i(a).D_j(b))$ (where i+j=n) for all $a, b \in A$ (so that D_1 is a derivation of A). A derivation D of A is called *integrable* if there exists a differentiation $\underline{D} = (1, D_1, \dots, D_i, \dots)$ of A such that $D_1 = D$. We denote with HS(A) the group of the differentiations of A, and with Der(A) (respectively with IDer(A)) the A-module of all the derivations of A (respectively of the integrable derivations of A).

It is known that, if A is a ring, to each $\underline{D}=(1,D_1,\ldots,D_i,\ldots)\in HS(A)$ one can associate a ring homomorphism $E:A\to A[[X]]$ defined by $E(a)=\sum D_i(a)X^i$ for each $a\in A$ (see [3, Section 1]. Then, according to Proposition 1.4, we wonder when a $\underline{D}\in HS(A)$, such that \underline{D} extends to B, can extend to *BA . We can prove:

Theorem 1.5. Let A, B be as in Proposition 1.4, and let $\underline{D} = (1, D_1, \dots, D_i, \dots)$ in HS(A) be such that \underline{D} extends to B. Then:

- 1) \underline{D} extends to ${}^{u}_{B}A$.
- 2) If B is finite as an A-module, then \underline{D} extends to ${}^{t}_{B}A$.
- 3) \underline{D} extends to ${}^{F}{}_{B}A$.
- 4) If char (A) = p, \underline{D} extends to $p-root_B A$.

Proof. Let $E: A \to A[[X]]$ be the ring homomorphism associated to \underline{D} ; let us denote with E also the ring homomorphism of B in B[[X]] associated to the extension of D to B. So, for each closure $*_B A$ considered in 1) through 4), we have to prove: $E(*_B A) \subset$ $(*_B A)[[X]]$. Now, according to Proposition 1.3, it is enough to show that $E(A[x_1,\ldots,x_k]) \subset ({}^*{}_BA)[[X]]$ for each $A[x_1,\ldots,x_k]$ contained in B such that x_j satisfies $(*, A[x_1, \ldots, x_{j-1}])$ for $j = 1, \ldots, k$; then we have to prove that $E(x_j) \in \binom{*}{B}A[[X]]$ for each x_j as above, $1 \leq j \leq k$. We show it by induction on k. Since x_1 satisfies (*; A), there is a finite set of polynomials $\{P_i^*(x_1)\}$ such that, for each $i, P_i^*(x_1) \in A[x_1]$, say $P_i^*(x_1) = \sum_h (a_{ih}x_1^h)$ (see Definition 1.1 and Remark 1.2a)). Then, for each *i*, in B[[X]], one has $E(P_i^*(x_1)) = \sum_h E(a_{ih})[E(x_1)]^h$, so that $E(x_1)$ satisfies (*; A[[X]]), i.e., $E(x_1) \in *_{B[[X]]}A[[X]]$. Then $E(x_1) \in ({}^*_B A)[[X]]$, according to Proposition 1.4. Now let us suppose that $E(x_1), \ldots, E(x_{i-1}) \in ({}^*_B A)[[X]]$. The same argument as before shows that $E(x_j)$ satisfies $(*; (*_B A)[[X]])$, so $E(x_j) \in (*_B A)[[X]]$, according to Proposition 1.4.

Corollary 1.6. Let A be a noetherian integral domain, \overline{A} its integral closure, *A be the *-closure of A in \overline{A} , $\underline{D} \in HS(A)$. Then:

- a) D extends to ${}^{u}A$, ${}^{F}A$,
- b) if \overline{A} is finite as an A-module, \underline{D} extends to ${}^{t}A$,
- c) if char (A) = p, \underline{D} extends to p-root A.

Proof. Since \underline{D} extends to \overline{A} (see [3, Theorem 3]), it follows immediately from Theorem 1.5. \square

Corollary 1.7. The results of Theorem 1.5 and Corollary 1.6 hold by considering $D \in IDer(A)$ instead of $\underline{D} \in HS(A)$.

Corollary 1.8. Let R be an integral domain such that char (R) = 0, k(R) be the quotient field of R, and A = R[[X]], B = (k(R))[[X]]. If \underline{D} is the differentiation of HS(B) defined by $\underline{D} = (1, D = \partial/\partial X, \ldots, D_i = D^{(i)}/i!, \ldots)$, then:

- a) $\underline{D} \in HS(A)$
- b) \underline{D} extends to ${}^{u}{}_{B}A$, ${}^{F}{}_{B}A$.

Proof. a) We have $D_j(x^i)=0$ if i< j, and, if $i\geq j$, $D_j(X^i)=\binom{i}{j}X^{i-j}\in A$. Then $D_j(A)\subset A$.

b) It follows immediately from a) and Theorem 1.5, 1, 3).

Remark 1.9. If A, B, D are as in Theorem 1.5, generally \underline{D} doesn't extend to $n^{-\operatorname{root}}{}_BA$, as the following example shows. Let $A = \mathbf{Z}[[X]]$, $B = \mathbf{Q}[[X]]$, $\underline{D} = (1, D = \partial/\partial X, \dots, D_i = D^{(i)}/i!, \dots) \in HS(A) \cap HS(B)$ (Corollary 1.8 a)). Let $f(X) = 1 + (1/2)X - (1/8)X^2 + (1/16)X^3 - (5/128)X^4 + \dots \in B$, considered in $[\mathbf{10}$, Example 1]. As proved in $[\mathbf{10}]$, one has $[f(X)]^2 \in \mathbf{Z}[[X]] = A$, so that $f(X) \in {}^{2-\operatorname{root}}{}_BA$. On the other hand, $D(f(X)) = (1/2) - (1/4)X + (3/16)X^2 + \dots$, so $[D(f(X))]^2 = (1/4) - (1/4)X + \dots$. Then, $D(f(X)) \notin {}^{2-\operatorname{root}}{}_BA$. In fact, according to Proposition 1.3, a series $g(X) = \sum g_i X^i \in B$ belonging to ${}^{2-\operatorname{root}}{}_BA$ is such that $g(X) \in A[x_1, \dots, x_k]$, where, for $j = 1, \dots, k$, $x_j = \sum_i (h_{ij}X^i) \in B = \mathbf{Q}[[X]]$ and $x_j^2 \in A[x_1, \dots, x_{j-1}]$; then, $h_{0j}^2 \in \mathbf{Z}$, i.e., $h_{0j} \in \mathbf{Z}$ (for $j = 1, \dots, k$, as one can easily see), which implies that $g_0 \in \mathbf{Z}$. So, D (then, even more so, D), doesn't extend to ${}^{2-\operatorname{root}}{}_BA$.

Section 2. Let A be a noetherian ring, k(A) be the total quotient ring of A and \overline{A} be the integral closure of A in k(A). Each ring B such that $A \subset B \subset \overline{A}$ can be seen as a suitable closure of A in k(A), as we now recall. We refer to [7]. If Δ is a multiplicatively closed set of nonzero ideals of A, for each ideal I of A we denote with I_{Δ} the set $\bigcup \{IK : K | K \in \Delta\}$. Now, a Δ -extension of A

in k(A) is a subring B of k(A) containing A such that $aB \cap A \subset (aA)_{\Delta}$ for all regular nonunits a in A. We call Δ -closure of A in k(A) the largest Δ -extension of A that is contained in k(A), and we denote it with A^{Δ} (see [7, 2.1, 6.1] and following remark). We recall some basic properties of A^{Δ} .

Proposition 2.1. Let A be a noetherian ring, k(A) the total quotient ring of A, and Δ a multiplicatively closed set of nonzero ideals of A. Then $A^{\Delta} = A[S] = S$, where:

 $S = \{b/a \in k(A) | a \text{ is a regular nonunit in } A \text{ and } b \in (aA)_{\Delta}\}.$

(See [7, Theorem (6.2)].)

Further, we have

Proposition 2.2. Let A, k(A), and Δ be as in Proposition 2.1, and let B be a ring such that $A \subset B \subset \overline{A}$. Then $B = A^{\Delta}$, where:

 $\Delta = \{ \text{finite products of the ideals } aB \cap A | a \text{ is a regular nonunit in } A \}.$

In particular, $\overline{A} = A^{\Delta}$ where Δ is the set of nonzero ideals of A that are not contained in any minimal prime ideal.

(See [7, (8.1)] and the following remarks, and (6.3)].)

So, according to Proposition 2.2, any subring of \overline{A} containing A can be seen as a suitable Δ -closure of A in k(A).

If $D \in I$ Der (A), generally D doesn't extend to A^{Δ} (see [4, ex. 1.1 or ex. 2.6]). So, in this section we wonder when a derivation $D \in D$ er (A) can be extended to A^{Δ} . We recall that an ideal I of A is called D-differential if $D(I) \subset I$. According to Proposition 2.1, each element of A^{Δ} looks like s = b/a, where:

- (2) a is a regular nonunit in A
- (3) $b \in (aA)_{\Delta}$, i.e., $bK \subset aK$ for some ideal $K \in \Delta$.

We have

Proposition 2.3. Let A, Δ be as in Proposition 2.1, $s = b/a \in A^{\Delta}$, K be an ideal of Δ satisfying (3), and $D \in \text{Der}(A)$. If K is D-differential, then $D(s) \in A^{\Delta}$.

Proof. Since $D \in \text{Der }(A)$, one has $D(s) = [D(b)a - bD(a)]/a^2 \text{ in } k(A)$, where a^2 is a regular nonunit in A, since a satisfies (2). So, according to Proposition 2.1, it is enough to show that $[D(b)a - bD(a)] \in (a^2A)_{\Delta}$, i.e., there is an ideal $K' \in \Delta$ such that:

$$[D(b)a - bD(a)]K' \subset a^2K'.$$

Since K satisfies (3), for each $k \in K$ there exists $k' \in K$ such that bk = ak', so in k(A) one has k' = (bk/a), and by applying D one obtains bD(k) + kD(b) = D(a)k' + aD(k') = D(a)(bk/a) + aD(k') in k(A). So, in A one has $abD(k) + akD(b) = D(a)bk + a^2D(k')$, i.e., $k[aD(b)-bD(a)] = -abD(k)+a^2D(k')$. Now $D(k') \in K$ and $D(k) \in K$, since K is D-differential; so $a^2D(k') \in a^2K$, and $abD(k) \in abK$, so that $abD(k) \in a^2K$ since b and b satisfy (3). Then $b[aD(b)-bD(a)] \in a^2K$ for each $b \in K$, so that

$$[aD(b) - bD(a)]K \subset a^2K.$$

If we put K' = K, we obtain (4). \square

Remark 2.4. The converse of Proposition 2.3 is not true, generally. Indeed, we exhibit $A, A^{\Delta}, s \in A^{\Delta}$ such that $D(s) \in A^{\Delta}$, but there is no $K \in \Delta$ such that K is D-differential and satisfies (3).

Let $A = \mathbf{Z}_p[x,y]$ where p is prime, $p \neq 2$ and $y^p = x^p(x+1)$. According to $[\mathbf{8}, \text{ n. 5}]$, we have: A is an integral domain, y/x is integral over A, and $\overline{A} = A[y/x]$. Let $A^{\Delta} = \overline{A}$, $D \in \text{Der}(A)$ be defined by D(x) = 0, D(y) = 1 (see $[\mathbf{8}, \text{ n. 5}]$). Take $s = (y^2/2x) \in \overline{A}$. Then

(6)
$$y^2K \subset (2x)K$$
 for an ideal $K \in \Delta$,

according to (3).

Now we show that each K satisfying (6) cannot be D-differential. In fact, if there is $K \in \Delta$, K D-differential and satisfying (6), then, according to the proof of Proposition 2.3, one obtains (5) for a = 2x,

 $b=y^2$, i.e., $[2xD(y^2)-y^2D(2x)]K\subset (4x^2)K$, so $yK\subset xK$ (since A is a domain). This means that $y/x\in A^{\Delta}$ (Proposition 2.1 and (3)), and K satisfies the assumptions of Proposition 2.3 for s=y/x. Then, according to the result of Proposition 2.3, one has $D(y/x)\in A^{\Delta}$, a contradiction, since $D(y/x)=(1/x)\notin \overline{A}=A^{\Delta}$ (see [8, n.5]).

If A^{Δ} is finitely generated over A, it is possible to find a particular $K \in \Delta$ such that K is an ideal of A^{Δ} . In fact, if $A^{\Delta} = A[x_1, \ldots, x_n]$, the above K can be obtained as follows (see [7, proof of Theorem (6.4)]): for $i = 1, \ldots, n$, let $x_i = b_i/a_i$ and $K_i \in \Delta$ be such that $b_i K_i \subset a_i K_i$ (see (3)); then, $K = \Pi K_i$ has the requested property. This ideal K satisfies the assumptions of the following

Proposition 2.5. Let A, Δ, A^{Δ}, D be as usual; moreover, let $K \in \Delta$ be an ideal of A^{Δ} . Then:

if K is D-differential, then
$$D(A^{\Delta}) \subset A^{\Delta}$$
.

Proof. Let $s=(b/a)\in A^{\Delta}$. Since K is an ideal of A^{Δ} , one has $sK\subset K$, i.e., $bK\subset aK$. Then K satisfies the assumptions of Proposition 2.3; since K is D-differential, Proposition 2.3 shows $D(s)\in A^{\Delta}$. \square

Remark 2.6. Generally the converse of Proposition 2.5 is not true, as the following examples show.

- 1) Let $A=k[t^5,t^6]$ where k is a field of characteristic p=5, $A^\Delta=A[t^8]\subset\overline{A}$. If $K=(t^{16},t^{24})A$, then $K=(t^{16})A^\Delta$; so $K\in\Delta$ according to Proposition 2.2. Further, K satisfies the assumption of Proposition 2.5. Let $D=t^{10}(\partial/\partial t)\in \operatorname{Der}(A)$. One has $D(A^\Delta)\subset A^\Delta$, since $D(t^8)=8\cdot t^{17}\in A$. Nevertheless, $D(K)\not\subset K$; in fact, $D(t^{16})=16\cdot t^{25}\notin K$.
- 2) Let $A=k[t^3,t^7,t^8]$, where k is a field of characteristic zero, and $A^{\Delta}=A[t^4]\subset\overline{A}$. According to Proposition 2.2, it can be seen that $K=(t^8,t^{12})A$ belongs to Δ and is an ideal of A^{Δ} . If $D=t^6(\partial/\partial t)\in {\rm Der}\,(A)$, one has

$$\begin{split} -D(A^{\Delta}) \subset A^{\Delta}, & \text{since } D(t^4) = 4 \cdot t^9 \in A, \\ -D(K) \not\subset K, & \text{since} D(t^8) = 8 \cdot t^{13} \notin K. \end{split}$$

We note that Examples 1), 2) of Remark 2.6 can be seen as particular cases of a larger class of examples we shall consider in Section 3.

Corollary 2.7. Let β be the conductor of A in A^{Δ} , $D \in \text{Der }(A)$. If $\beta \in \Delta$, the following conditions are equivalent:

- 1) $D(A^{\Delta}) \subset A^{\Delta}$;
- 2) β is D-differential.

Proof. 1) \Rightarrow 2). For each $s \in A^{\Delta}$, $x \in \beta$, one has $sx \in A$ so that $D(sx) \in A$, i.e., $xD(s) + sD(x) \in A$. Now $xD(s) \in A$ since $D(s) \in A^{\Delta}$ and $x \in \beta$; then, $sD(x) \in A$ (for each $s \in A^{\Delta}$), so $D(x) \in \beta$.

2) \Rightarrow 1). Let $s = (b/a) \in A^{\Delta}$. Since β is an ideal of A^{Δ} , the result follows from Proposition 2.5. \square

When A satisfies the (S_1) -property and $A^{\Delta} = \overline{A}$, under suitable assumptions one has $\beta \in \Delta$ (Corollary 2.8). We recall a ring A satisfies the (S_1) -property if and only if A has no embedded prime ideals associated with (0).

Corollary 2.8. Let β be the conductor of A in \overline{A} , $D \in \text{Der }(A)$. If \overline{A} is a finitely generated A-module and if A satisfies the (S_1) -property, the following conditions are equivalent:

- 1) $D(\overline{A}) \subset \overline{A}$;
- 2) β is D-differential.

Proof. Since A satisfies (S_1) , each $P \in \text{Ass}(A/\beta)$ has height ≥ 1 since it is associated to an ideal I generated by a regular element (see [2, Proposition 5.21] where only the assumption (S_1) is needed). Then $ht(\beta) \geq 1$, so $\beta \in \Delta$, according to Proposition 2.2. Now the result follows from Corollary 2.7.

Remark 2.9. 1) In Corollary 2.7 the assumption $\beta \in \Delta$ is needed only as regards 2) \Rightarrow 1).

2) Under the assumptions of Corollary 2.8, the condition $\beta \in \Delta$ of Corollary 2.7 is satisfied. Generally, for a Δ -closure A^{Δ} , it is

not true that $\beta \in \Delta$. Consider, for example, $A = k[X^2, XY, Y^3]$, $A^{\Delta} = A[X + Y] \subset \overline{A}$, $D = X(\partial/\partial X) + XY^2(\partial/\partial Y)$. In [4, ex. 2.6], it is proved that $D(A^{\Delta}) \not\subset A^{\Delta}$ and β is D-differential; according to Corollary 2.7, we have necessarily that $\beta \notin \Delta$.

Section 3. In this section we show some classes of Δ -closures A^{Δ} and of ideals $K \in \Delta$ satisfying the assumptions of Proposition 2.5, such that K is D-differential with respect to some $D \in \text{Der }(A)$. In this case, according to Proposition 2.5, one has $D(A^{\Delta}) \subset A^{\Delta}$. First, we show the following

Lemma 3.1. Let A be a noetherian ring, $A^{\Delta} = A[x] \subset \overline{A}$, where x^2 and x^3 belong to A, $K = (x^2, x^3)A$. Then $k \in \Delta$ and K is an ideal of A^{Δ} contained in A.

Proof. If $a=x^2$, then $aA^{\Delta}=K$. In fact, $(x^2,x^3)\subset (x^2)A^{\Delta}$ obviously; on the other hand, for each $y\in (x^2)A^{\Delta}$ one has $y=x^2(a_0+a_1x)$, where $a_0,a_1\in A$, so that $y=a_0x^2+a_1x^3\in K$. So $K=aA^{\Delta}\cap A$, then we have also $k\in \Delta$, according to Proposition 2.2.

So, in Lemma 3.1, we construct an ideal $K \in \Delta$ that satisfies the assumptions of Proposition 2.5 and also generalizes the examples of Remark 2.6. Now we refer to rings of the particular type $A = k[t^{\alpha_1}, \ldots, t^{\alpha_m}]$, in order to show ideals K as above and certain $D \in \mathrm{Der}\,(A)$ such that K is D-differential. So let $A = k[t^{\alpha_1}, \ldots, t^{\alpha_m}]$, where k is a field of characteristic zero.

In this section we denote with S the semigroup $\langle \alpha_1, \ldots, \alpha_m \rangle$ and suppose that $(\alpha_1, \ldots, \alpha_m) = 1$, i.e., that there exists $s \in S$ such that $s + n \in S$ for each $n \in \mathbb{N}$; the least of these integers, s, is called the *conductor* of S. Now, according to Lemma 3.1, take $x = t^a \in \overline{A}$ such that $t^a \notin A$, but t^{2a} , $t^{3a} \in A$, and let $A^{\Delta} = A[x] = A[t^a]$, $K = (t^{2a}, t^{3a})$. Further, take $D = t^{\alpha}(\partial/\partial t)$ with $\alpha \geq 0$ $(D \in \operatorname{Der}(\overline{A}))$. Then the conditions we are interested in are the following:

- i) $D \in \mathrm{Der}(A)$
- ii) $D(K) \subset K$,

that are respectively equivalent to

- I) $\alpha_i 1 + \alpha \in S$ for $i = 1, \ldots, m$
- II) $2a 1 + \alpha \in S$ (since ii holds if and only if $D(x^2) \in K$).

Now, in order to have II, the following condition is sufficient

III) $a-1+\alpha=s+ka$, for some $s\in S$ and $k\geq 1$.

In fact, if III holds, one has: $2a-1+\alpha=s+(k+1)a$, with $s\in S$ and $k+1\geq 2$, so that $2a-1+\alpha\in S$. Nevertheless, II doesn't imply III. Take, for example, $\alpha_1=3,\ \alpha_2=7,\ \alpha_3=8,\ a=8,\ \alpha=6$; conditions I and II are satisfied, but $a-1+\alpha=13$ and $13\neq 8k+s$ for each $s\in S,\ k\geq 1$.

Now we show that conditions I and III are satisfied for a particular choice of the integers $\alpha_1, \ldots, \alpha_m$.

Proposition 3.2. Let $A = k[t^2, t^{2n+1}]$ with k field of characteristic zero, $n \geq 1$, $t^a \in \overline{A} \setminus A$ be such that t^{2a} , $t^{3a} \in A$. Moreover, let $A^{\Delta} = A[t^a]$, $K = (t^{2a}, t^{3a})$. If $D = t^{\alpha}(\partial/\partial t) \in \text{Der}(A)$, then $D(K) \subset K$.

Proof. Let $D = t^{\alpha}(\partial/\partial t) \in \text{Der}(A)$. According to the above notations and remarks, it is enough to show that III holds. In this case, the assumption over D means:

(I)
$$1 + \alpha \in S$$
, $2n + \alpha \in S$.

Moreover, $S = \{0, 2, \dots, 2n+1, \dots\}$ and, since $t^a \notin A$, one has that a is odd and a < 2n+1.

If α is even, then I is satisfied if and only if $\alpha \geq 2n$. Then, $a-1+\alpha \geq a-1+2n > a-1+a-1$ (since a<2n+1)=2(a-1). So, $a-1+\alpha$ is even and greater than 2(a-1), so that $a-1+\alpha=2(a-1)+2h$ for some $h\geq 1$, i.e., $a-1+\alpha=2a+2(h-1)$ where $h-1\geq 0$. Then III holds since $2(h-1)\in S$.

If α is odd, then I is trivially satisfied for each $\alpha \geq 1$. Further, $a-1+\alpha=a+(-1+\alpha)$, where $-1+\alpha$ belongs to S since it is even; then III holds.

Remark 3.3. Let $A=k[t^{\alpha_1},\ldots,t^{\alpha_m}],\ A^{\Delta},\ K$, be as before. If c is the conductor of $S=\langle \alpha_1,\ldots,\alpha_m\rangle$, then each $D=t^{\alpha}(\partial/\partial t)$ with $\alpha\geq c+1$ is such that $D\in {\rm Der}\,(A)$ and $D(K)\subset K$. In fact, if $\alpha\geq c+1$, one has for $i=1,\ldots,m,\ \alpha_i-1+\alpha\geq\alpha_i+c\in S;\ a-1+\alpha\geq a+c,$ so that $a-1+\alpha=a+s,$ for some $s\in S$. Then I and III hold so that the result follows. \square

REFERENCES

- ${\bf 1.}$ J.W. Brewer, Seminormality in power series rings, J. Algebra ${\bf 82}$ (1983), $282{-}284.$
 - 2. S. Greco, Normal varieties, Inst. Math. IV, Academic Press (1978).
 - 3. H. Matsumura, Integrable derivations, Nagoya Math. J. 87 (1982), 227-245.
- 4. S. Molinelli, On differentiations and birational integral extensions, Comm. Algebra 16 (8) (1988), 1663–1671.
- **5.** S. Molinelli and G. Tamone, On some invariant ideals and on extension of differentiations to seminormalization, J. Pure Appl. Algebra, to appear.
- 6. N. Onoda, T. Sugatani and K. Yoshida, Local quasinormality and closedness type criteria, Houston J. Math. 11 (1985), 247–256.
- 7. L.J. Ratliff, Jr., Δ -closures on ideals and rings, Trans. Amer. Math. Soc. 313 (1989), 221–247.
- 8. A. Seidenberg, Derivations and integral closure, Pacific J. Math. 16 (1966), 167-173
- 9. T. Sugatani and K. Yoshida, On t-closures, C.R. Math. Rep. Acad. Sci. Canada $\bf VI$ (1984), 55–57.
- 10. J.J. Watkins, Root and integral closure for R[[X]], J. Algebra 75 (1982), 43–58.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GENOVA, VIA L.B. ALBERTI 4, 16132, GENOVA, ITALY.