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A DIRECT WEAKENING OF
NORMALITY FOR FILTERS

ROBERT MIGNONE

ABSTRACT. Weakly normal filters have been defined and
studied for filters on cardinals k by Kanamori and for filters
on P;\ by Abe. Both versions of weak normality require
functions regressive on some set of measure one to be bounded
on a set of measure one; which is not a direct weakening of
Solovay’s notion of normality, where functions regressive on
some set of positive measure are constant on a set of positive
measure. Consequently, Abe’s definition of weak normality is
not a property possessed by the closed unbounded filter over
P

Here, a weak version of normality, called quasi-normal, is
presented which is a direct weakening of normality for filters.
Functions regressive on some set of positive measure must be
bounded on a set of positive measure. The final section filter
and the strongly closed unbounded filter on P\ are studied
for quasi-normality. Whether or not these filters are quasi-
normal depends on the cofinality of A with respect to k.

Introduction. Fodor’s theorem states that if f : K — & is regressive
on a stationary set B, with B C k, then there exists a stationary set B’
with B’ C B, such that f is constant on B’, see [3]. The stationary sets
are the sets of positive measure with respect to the closed unbounded
filter over k. In [9], Solovay introduced the notion of a normal filter by
generalizing the property described in Fodor’s theorem. A filter F' on
k is normal if whenever f : kK — k is regressive on a set B of positive
measure with respect to F', then there is a set of positive measure B’,
with B’ C B such that f is constant on B'.

A generalization of this property was provided by Jech in [4], where
the notions of filters, closed unbounded sets, stationary sets, and
regressive functions were extended to P;A.

The property of normality was weakened by Kanamori, with a twist,
see [6]. Instead of requiring regressive functions to be constant some-
where, now they are required only to be bounded somewhere. The
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twist is that the somewhere is a measure one set. The property of
weak normality was generalized by Abe in [1], to filters over P, .

This paper studies the direct weakening of normality to filters on P, A\.
It is organized into three sections. Section one introduces the property
of quasi-normality for filters over P,\ and compares results with some
in [1]. At this point weakly normal filters and quasi-normal filters on
P, begin to diverge. Whether or not the final section filter and the
strongly closed unbounded filter can be quasi-normal will depend on the
cofinality of A with respect to . Section two investigates the existence
of filters and ultrafilters which are not quasi-normal. (Note: quasi-
normality and weak normality are equivalent for ultrafilters.) Finally,
Section three shows that the minimal cover ¢x(p) of [8] is quasi-normal
and discusses the large cardinal strength of quasi-normality.

For basic notation and background, please see [5]. For any filter F
on S, denote

FtT={A:ACSand ANB # & for all B € F},

called the sets of positive measure with respect to F', or just the sets
of positive measure when no confusion will result. For every = € P, A,
let & = {y € P,X:xCy}. The final segment filter, denoted F'SFy,, is
defined

FSF.»={A: ACP.\ and 3z € P, A such that £ C A}.

For the rest of this paper, any filter F' on P, will be an extension of
FSF, .

A subset C of P;J, is unbounded, if for every = € P\, there exists
a y in C, such that t Cy. And C is closed, if whenever n < k and
{zy : v < n} C C such that z, C z, for v < 7/, then U,z € C.
The closed unbounded filter on P, A, denoted C'Fj), is defined:

CF.y»={B:BCP.\ and 3C which is
closed unbounded and C C B}.

A subset S of P\ is stationary, if S € (CF,))*.

Finally, let D be an unbounded subset of P;\. D is strongly closed,
if whenever n < k and {z,, : v < n} is a subset of D, then U,<,z, € D.
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The strongly closed unbounded filter on P\, denoted SC'F; ), is defined

SCF,.\x={A: ACP,) and 3D strongly closed
unbounded and D C A}.

Section 1. It is possible to define a notion of quasi-normality for
filters over an uncountable cardinal x and get comparable results to
Proposition 1.2(i), (iii) and (iv) in [6]. Both Kanamori’s version of
weak normality and quasi-normality coincide with normality for -
complete filters. For this reason, the choice was made to introduce
quasi-normality for k-complete filters over P;A. The interested reader
is directed to [6,7], where the regularity of measures on « is studied in
the context of weak normality.

Definition 1.1. A filter F on P,\ is quasi-normal, if whenever
f: P\ — )\ is regressive on a set B € FT, then there exists a subset
B’ of B such that B’ € F™ and f is bounded on B'.

As in the case of normality, the following characterization in terms of
closure under diagonal intersection exists.

Theorem 1.2. Let F be a filter on P.A. F is quasi-normal if and
only if whenever {A, : v < A} is a subset of F such that Ag C A, when
a < (3, then

A{Ay:vy< At ={z€PAr:yex=>z€c A} €F.

Proof. Similar proofs are standard throughout the literature, see [4].

Assuming F' is quasi-normal, suppose {4, : 7 < A} is a subset
of F' where Ag C A, when a < . Suppose for all C € F there
exists an € C such that there exists § € = and = ¢ As. Define
f : P.A — X such that f(z) = 6 for the first such ¢ in z. Then
{z € P,\: f(z) € x} € F*. By the quasi-normality of F, there exists
aBC{zeP)\: f(z) €x} and a v < X such that B € F' and
f(z) < yforall z € B. Let x € BN Ayy1. Then z € A,4; and
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r & A since x € B. But A,y CAj(,), since f(z) < v+ 1. A
contradiction.

Next, assuming F' is closed under the diagonal intersection of nested
A-sequences of measure one sets, suppose {x € P\ : f(z) € ¢} € F™.
But for all 8 < A, {z € P\ : f(z) < B} ¢ F'. Then for all
B < A\ {z € P : f(z) > B} € F. This gives a nested \-sequence
of measure one sets and eventually a contradiction. The details are
straightforward. o

In [2], Carr proves that for all A > &, FSF,y» C SCF.;x C CF,\
and CF,) # SCF,) # FSFy); and if F' is a normal filter on P,
then CF,» CF. Hence, SCF,, and F'SF, are not normal. It is also
true that F'SFy), SCF,) and C'F,) are not weakly normal. However,
clearly C'F,) is quasi-normal, and as this section will demonstrate, the
quasi-normality of F'SF,) and SCF) depends on the cofinality of A
with respect to k.

Theorem 1.3. If cf()\) < k, then every k-complete filter over P A
is quasi-normal. (In particular, FSF, and SCFy) are quasi-normal.)

Proof. Note: The author is grateful to the referee for pointing out a
simple argument which greatly strengthened the original theorem.

Let F' be a k-complete filter over P, A and suppose f is a function
mapping P,A into A such that {z € P\ : f(z) € 2} € F'. Let
0 = c¢f(N) < K and {74 : @ < ¢} be cofinal in A. Suppose for each
a < d, {zx € PA: f(z) < va} ¢ F. Then for each o < § there
exists A, C {r € P\ : f(r) > 74} such that A, € F. By the
k-completeness of F', N{A,_ :a <} € F. But clearly,

{r e PA: f(z) ez}n{n{4,, :a<i}}=2. O

Definition 1.4. Let w : A — PyA. Then denote
C{w}) ={z:2C P\ and a € z = w(a) Cz},

the collection of all sets in P\ closed under w.
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The following proposition is distilled from results in [8].

Proposition 1.5 (Menas). Let A be a subset of P, \. Then,

A€ SCF,) < there exists w: A — P, A and C({w}) C A.

Proof. If A € SCF, and C is strongly closed unbounded and a
subset of A, define w : A — P, by letting w(«) be any member z in
C such that a € z. O

Next, given w : A — P, define w’ : A — P\ as follows: given

n <A, let

Yo(n) = w(n) U {n};
Yn+1(n) = UH{w(8) : 6 € yn(n)}; then
w'(n) = U{yn(n) : n € w}.

Set B, = {w'(n) : 7 < A}. These definitions yield the following.

Proposition 1.6. Let w: X\ — P\ and v: A — Pg)\. Then,
i) C({w}) = C({w'});
ii) w'(n) € C{w'}) and n € w'(n) for alln < A;
) w/() = Ufw'(@) : @ € w/(n)};
iv) aew (n)Nw'(y) implies w'(a) C w'(n) Nw'(y);
v) C({v}) CC({w}) if and only if w'(n) Cv'(n), for alln < X;
vi) C({w}) ={z € P.\: 2 =UD where D C By};
vil) Bu = By implies C({w}) = C({v}).

Theorem 1.7. If k < cf(\), then FSF,y is not quasi-normal.

Proof. Since k < cf()), f: PcA — X can be defined by f(z) = sup z.
For every A € FSFy), there exists a & C A for some x € P.A. This
gives zU{supz} € &, zU{supz} € A and f(zU{supz}) € 2 U{supz},
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which means that
{rePA: f(z)ex}nNA#@forall Aec FSF,.

Hence, {z € P,\: f(z) € z} € FSFY,. Suppose there exists an o < A
such that {z € P, : f(z) < a} € FSFY,. Consider {oz/—ﬁ} € FSF,\.
Let y € {a/—ﬁ} N{z € P\: f(z) < a}. Then f(y) =supy < a. But
a+1 € y. Hence, supy > a. This contradiction proves the theorem.
]

Theorem 1.8. If cf(\) > k, then SCFy is not quasi-normal.

Proof. Let {X\a : & < A} be such that A\, C A, [Aq] = A and
Ao NAg = @ when a # 3. Consider Ay as Ay : A = P\ where A\, (n)
is the one element set whose only member is the n'" member of \,.
Define A, = U{C({\,}) : @ < n}. This gives {Ay : @ < A} C SCFy»
such that Ag C A, for @ < . Assuming SCF,) is quasi-normal,
by Propositions 1.5 and 1.6 (i), there exists w : A — P\ such
that C({w'}) € AA, (the diagonal intersection of the A,). These
definitions result in the following claim.

Claim. For all o < X there exists a v < A such that for all B < A,
if 6 € A— Xy and B > ~ then there exists an n where B Cn and

Ap(a) € w'(B).

Proof. Otherwise: There exists an a < A such that for all v < A
there exists a f < A, with 8 € A — A, and 8 > v and for all 7
if 5 < n then A\ (o) ¢ w'(B). For such an o, let 5; > o and
B1 € A — A such that for all n with 81 < 71, (Au(a) ¢ w'(B1)).
Now (1 € w'(a) Uw'(81) € C({w'}). Hence, w'(a) U w'(B1) € Ap,-
For some 7; with 81 < 1, w'(o) Uw'(B1) € C({Ay, })- By assumption,
An (@) € w'(B1). But, Ay, () € w'(a)Uw'(By) since a € w'(a) Uw'(B1).
Hence, \,, (a) € w'(a). Next, choose 35 > n; such that B2 € A— A, and
for all n with 2 < n (A;(a) ¢ w'(8)). Similarly, there exists 7, with
B2 < m2 such that A, () € w’'(c). Next, assume < X and f¢, n¢ have
been chosen for ¢ < §. By assumption, there exists B¢ > sup{ne : £ < §}
with 85 € A — A such that for al n with 85 < 7 (A;(e) ¢ w'(B5)).
Again, 35 € w'(8s5) Uw'(a) and w'(Bs) Uw'(a) € Ag,. Hence, there
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exists an 7y with 35 < ns such that w'(85) Uw'(a) € C({\,,}). Since
a € w'(Bs) Uu'(a), Ay, () € w'(Bs) Uw' (o). But Ay, (o) ¢ w'(Bs). So
Ans (@) € w'(a). Now letting § = &, since A\, (a) # A (a) for £ # ¢ and
{Ane(a) : £ < K} C w'(a), hence k < |w'(cr)|. But this is impossible,
since w’(a) € P;A. This proves the claim. O

Back to the proof of Theorem 1.8. Given a; < A, choose az > Yo,
the v known to exist by the claim for a; such that as € A — Ay,
and az > «p. By the claim, there exists 721 with ap < 72,1 such
that \,,, € w'(a2). Next, let az > sup{o1,®2,Ya;sVa,}, Where
az € A — (Aa; UAy,). The claim gives 31 and 132 with ag < 131
and a3 < n32 such that X, (1) € w'(as) and Ay, ,(a2) € w'(as).
For § < cf()), assume ag, Yo, and 7¢, have been defined for £ < ¢ and
t < &. Choose as > sup{ae, Yo, : § < 0} such that a; € X — (Ug<s Aoy )-
By the claim, there exists, for each { < d, an 75¢ with a5 < 15,6 such
that \,; . (a¢) € w'(as), where ag # a¢ if £ # (. Since cf(\) > &,
letting 6 = « gives {\,, . (a¢) : & < K} C w'(a). But this implies
k < |w'(ag)|. This contradiction proves the theorem. o

The next theorem is a modified analog to Proposition 3.2 in [1] and
provides a p-point like characterization for quasi-normal extensions of

SCFi.

Theorem 1.9. An extension F of SCFy) is quasi-normal if and
only if whenever {z € P\ : f(x) > a} € F for every a < A, then there
exists an A € F such that AN f~1({y}) C P.y for every v < A.

Proof. = Let o, = {x € P, : f(z) > a} € F. Use the fact that
Az, € F to establish that Az, N f~1({y}) C P.y.

<« The method of proof used for Proposition 3.2(ii) in [1] works here
as well. O

Next, a large class of filters lying between FSF, ) and SCFj) will
be defined. Like F'SF,\ and SCFy), whether or not these filters are
quasi-normal depends upon the cofinality of A.
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Definition 1.10. For ¢ a cardinal such that k < § < A, let

Ds ={we *PX:|U{w(B): B <A} <d}; and
Fs ={A: ACP.\ and C({w}) C A for some w € Ds}.

Fs is a k-complete filter on P\ extending F'SFj).

Theorem 1.11. For k < §; < 3 < A, the following strict inclusion
holds:
FSF.\ CF,CFs5 CFs, CSCFy)

and F,, or Fs, can replace SCF,y in Theorem 1.8.

Proof. First consider F,. Define w : A = P, A by

B interval of length 3, if 8 < k;
a, if kK <.

w(s) - {

For any = € P, if Kk > a > sup(z N k)T, then z U {a} € =, but
zU{a} ¢ C({w}). Hence, C({w}) ¢ FSF,,, giving FSF,) # F,.

Next, given cardinals é; and J2 such that xk < §; < 62 < A,
partition J2 into d2-many disjoint consecutive intervals of length &y,
{Hg : B < 02}, and partition each Hg into d;-many consecutive
intervals of length k,{Hps, : n < 01}. Now, for o < 2, let H(c)
be the unique interval Hg, such that o € Hg,,.

Define u : A — P\ by

{aﬂH(a) if & < 63
u(a) = .
o) otherwise.

For any w € Ds,, there are at most J; many intervals Hg such that
for some & < A\, w(§)NHg # @. Let Hg be such that HgNU{w(a) : a <
A} = @. Choose v € Hg,, such that cardinality of v N Hg, is greater
than one. Recall the construction developed prior to Proposition 1.6:

Yo(v) = w(v) U{r};
Ynt1(7) = UH{w(d) : 6 € yn(v)}; and
w'(7) = UH{yn(y) s n <w}.
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Now v € w'(y) and w'(y) € C({w}) by Proposition 1.6. But u(y) =
vNHg ,, where the cardinality of yNHpg, is greater than one. However,
w'(7) N Ha,y = {7} 50 u(7) ¢ w'(7), hence w'(7) ¢ C({u}). This
shows that for any w € Ds,, C({w}) ¢ C({u}), hence C({u}) ¢ Fy,.
Therefore, F5, # Fj,. This argument can be modified to handle ¢; = &.

Finally, the proof of Theorem 1.8 works for Fj, and Fj. o

Section 2. In [1] an ultrafilter extending C'F;) is constructed which
is not weakly normal, assuming & is strongly compact and X is regular
and greater than k. Since, for ultrafilters, weak normality and quasi-
normality are the same, this provides an example of a nonquasi-normal
ultrafilter. In fact, as the next proposition will demonstrate, a variation
of the construction used in [1] and a different proof will provide an
example of a nonquasi-normal filter which is not an ultrafilter on P\,
when A is a strongly compact cardinal greater than x a regular cardinal;
and a specific instance of the following construction can be used to
provide an example of a nonquasi-normal extension of C'F;x. The proof
of the next proposition can be modified for weak normality, giving an
example of a nonweakly normal filter which is not an ultrafilter. First,
the basic construction from [1].

Let
a={6<A:§>kandcf(d) <k}, and

v={x: XDz and a — z is not stationary}.

This makes v a A-complete filter. In fact, v can be shown to be
normal; since if {a, : @ < A} is a subset of v, then there exists a closed
unbounded subset ¢, of A — (a — ag), so

Afcg:a<AtnN(a—A{ag:a< A}) =2.

Suppose A is strongly compact; then there exists a A-complete ultra-
filter u extending v such that CF U {a} is extended by u. This means
that u is nonnormal, since a € u, hence {& < A : « is inaccessible} ¢
u. Therefore, u is nonnormal, hence nonquasi-normal, since u is A-
complete.

Let F, be a k-complete filter over P,a extending FSF,, for each
a < A. Define F' on P\ by

AeF iff ACP,A and {a<A:ANP,a€F,}€u.
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Proposition 2.1. Let A be strongly compact and let F' be a filter as
defined above. Then F' is not quasi-normal.

Proof. Let f : A — X witness that u is not quasi-normal. It is a
straightforward exercise to verify that for a € a, {z € P,\ : supz =
a} € Fy. Setb=anN{a€x: f(a) < a}. Hence, b € u. For o € b, set

By ={z € PA:supz=a}n{z € P.a: f(a) €z}

Hence, B, € F, for each o € b; and B,NBg = @ when a # 3. Next, set
B =U{By:a€b}. For « € b, B, C BN P,a. Hence, B € F. Finally,
define h : PA — A by h(z) = f(«), if z € B, for some «a € b; and @
otherwise. Hence, h(x) € z for each z € B. Since B € F'*, suppose F
is quasi-normal. Then there would exist C € F™ and v < X such that
B> Cand h(z) <vyforze C. Now, {a €b: CNP,a€ F} €.
But, fora € {a € b: CNP.a € Ff}, let z € C N P.,an B,. Then,
f(a) = h(z) < ~. Hence, {& < A: f(o) <~} € u. But this contradicts
the choice of f. o

Remark . Since CFy\ C u, if F, = CF,, for a < A, then F is a
nonquasi-normal filter extending CFj .

Section 3. This concluding section investigates the existence of
some quasi-normal ultrafilters (hence weakly normal ultrafilters) on
P\ when & is A-strongly compact.

Let U be an ultrafilter on P;A. As usual, assume that U extends
FSF.\. If ¢: P,A — P, and ¢.(U) = {ACP.\: q ' (A) € U}, then
¢«(U) is an ultrafilter on P,A. And ¢,(U) extends F'SF,), whenever
{z € P.A\:a€q(x)} € U for each o < A. This notion is derived from
the Rudin-Keisler ordering on measures. Furthermore, if for all such
g, there is a measure one set A, in U such that ¢ is one-to-one on A,
then U is said to be minimal.

Given U an ultrafilter on P\ and j : V. — M = VEA/U; if
f: P.A — V, let [flu denote the member of M corresponding to
the equivalence class of f modulo U. Next, let s : P;A — X be such
that [s]y = sup{j(a) : @« < A}. Now, {& € P,A: v < s(z)} € U for
each v < A. And if {z € P\ : g(z) < s(z)} € U, then there exists a
v < A such that {z € P,A:g(z) <~} €U.
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A consequence of this property is that U is weakly normal, hence
quasi-normal, if and only if {x € P\ : s(z) = supz} € U (this fact is
mentioned in [1]).

In [8], a minimal cover for an ultrafilter U over P\, where A is
regular, is defined as follows: Using a result of Solovay [9], {a < A :
c¢f(a) = w} can be partitioned into A many stationary subsets of A,
{A, : @ < A}. The minimal cover for U is ¢.(U), where the function
q: PcA — P, is defined by

q(z) = {a < s(z) : A, N s(x) is a stationary subset of s(z)},

for all z € PA.

This makes ¢, (U) an ultrafilter on P\ extending F.SF);,.

Let jo : V — My = VEANU; 51+ V — My = VP2 /q,(U); and
[s1lq. ) = sup{ji(a) : @ <A}

In the proof of Theorem 2.14 in [8], where Menas proves that the
minimal cover ¢.(U) is a minimal fine measure on P, it is shown
that {z € P\ : s1(z) = supz} € q.(U). This, combined with the
comment made in the fourth paragraph of this section, gives:

Theorem 3.1. Let A > & be reqular and k be A-strongly compact. If
U is any ultrafilter on P.\, then the minimal cover for U is a minimal,
quasi-normal (weakly normal) ultrafilter on P\.

Remark . In [1], under the same hypothesis, Abe produces a weakly
normal (quasi-normal) ultrafilter which does not extend SCFj .

It would be interesting to determine what conditions yield C'Fy) C
¢.«(U). (Note: By aresult of Solovay (see [8]), if sup{3: M D MFP} >\,
then ¢.(U), the minimal cover of U, is normal; hence an extension of
CFi.)

By another result in [1], for any A > k, a weakly normal (quasi-
normal) ultrafilter can be constructed from any ultrafilter on PA.

Results such as these demonstrate that a cardinal x gets no more
large cardinal strength from the existence of a quasi-normal ultrafilter
on P\ than that of kK being A-strongly compact. However, it may be
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that the consequences of k being A-strongly compact can be facilitated
knowing that quasi-normal ultrafilters also must exist on Pg\.
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