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RESTRICTIONS OF THE SPECIAL REPRESENTATION
OF AUT(TREE3;) TO TWO COCOMPACT SUBGROUPS

GABRIELLA KUHN AND TIM STEGER

ABSTRACT. Let T be a homogeneous tree of degree 3, let
G be the automorphism group of 7, and let 74 and m_ be
the special representations of G. We consider two discrete
subgroups of G isomorphic to Z3 x Zz and Zy * Zy * Zz and
show how to decompose into irreducibles the restrictions of
w4+ and 7m_ to these subgroups. We also present a general
formula relating continuous dimension for representations of
discrete groups and formal dimension for representations of
continuous groups.

1. General introduction. Let 7 be the homogeneous tree of
degree 3, that is, a connected combinatorial graph with no loops and
with three edges leaving each vertex. The tree T is of course infinite.
Let G = Aut (T) and topologize G by letting pointwise fixers of finite
subtrees form a neighborhood base for the identity. [5, 6] classifies
its irreducible unitary representations. In its representation theory, as
in other ways, G is analogous to SL(2,R), with 7 analogous to the
hyperbolic disk.

Consider the special discrete series representations 74 and 7_ of G
(to be defined later). When these representations are restricted to any
discrete cocompact subgroup I' of G they are continuously reducible.
This follows from [4] since 74 and 7_ are square integrable on G and
are easily seen to be square integrable on I' as well. The purpose of this
paper is to exhibit particular decompositions of w4 |r when T is either
of two particular discrete subgroups.

The subgroups in question are Zgy x Zs x Zo as constructed in [3]
and Zj x Z3 as considered in [12, 14, 19]. These two groups will be
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described later, but in short, the first acts simply transitively on the
vertices of 7 and the second acts simply transitively on the edges.

Since these groups are not type I, the decompositions of 7y |r which
we exhibit are mot unique. Nonetheless, there are points of interest.
The restricted representations turn out to be equivalent to very natural
subrepresentations of ¢?(I'). In fact, the orthogonal projections onto
these subrepresentations of ¢?(I") are given by right convolution with
finitely supported functions; in particular, these projections are in
Creg(T). This raises the question of whether, in similar circumstances,
restrictions of square integrable representations to cofinite subgroups
I' always give rise to representations which agree with the images of
projections in Oy, (T') (or Cr,(I') ® K, K being the algebra of compact
operators on some generic Hilbert space). To put this question in
perspective, observe that if I is Zg x Z3 or Zs x Zo x Zo, then I' has
no nontrivial finite conjugacy classes, and consequently, V Ny (I') is a
factor. Since V Ny (T') also has a finite faithful trace, the results of
[5, III.1.1 and II1.1.2] imply that square integrable representations of

I' are completely characterized by their continuous dimensions.

A quick check (using Lemma 1) shows that for m one of the special
representations of SL(2,R) and for T a free group with two generators
cofinitely embedded in SL(2,R), the continuous dimension of 7|r
is 1/2. On the other hand, [17] says that for the free group the
only projections in Cr*eg(F) are 0 and I, corresponding to continuous
dimensions 0 and 1. This, then, is a case where the restriction of a
square integrable representation to a cofinite subgroup does not agree
with the image of any projection in C}, (T).

reg
Another point of interest is the formula of Lemma 1, relating contin-
uous dimension for representations of discrete groups to formal dimen-
sion for representations of continuous groups. This lemma is known; it
appears in the manuscript [9] and a somewhat different form occurs in
[3, Theorem 3.3.2].

Finally, observe that this paper complements the result (from [18])
that the restrictions to I' of principal and complementary series repre-
sentations of G are (with one simple exception) themselves irreducible
representations.

The geometry of the tree 7 is very easy to grasp and the reader should
draw diagrams as he/she reads, in order to appreciate its simplicity.
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This work now proceeds with the definitions of the two representations
and the two discrete subgroups, followed by the very general Lemma
1, and finally the decomposition. We work with only one of the two
groups and one of the two representations, giving indications in the last
section of how to proceed in the other three cases.

Be forewarned that our decomposition proceeds by showing that after
some twists the spectral decompositions of, on the one hand, [14 or 19],
and on the other hand [3] following [7] are applicable. Thus, the reader
will have to consult at least one other paper if his/her goal is to see the
most explicit form of the decomposition.

We thank Dan Voiculescu for helpful background, for information
about K-theory and for the references on Lemma 1.

2. The representations 7. The representations 71 are called
the special representations and are analogous to the special discrete
series representations of SL(2,R). (But note that m_ is analogous to
the sum of the two special representations of SL(2,R) while 7 has no
precise analogue.) To define these representations, first let £ be the set
of oriented edges of T, that is, the set of pairs (v1,v2) where v; and v,
are adjacent vertices of 7. Each oriented edge s has an opposite edge
s’ obtained by reversing the orientation. The representations w4 can
be realized as subrepresentations of the regular representation of G on
(%(€). Define

f(s)==%f(s") whenever s and s’ are opposite and
He=Lfel?(); f(s1)+ f(s2)+ f(s3) = 0 whenever sy, s2, 53
are the three edges leaving a vertex

Define 7 as the restriction of the regular representation to the invari-
ant subspace H.

In passing, note that f € H_ can be written f (v, v2) = F(v2)—F(v1)
where F' is a harmonic function on the vertices of T, that is, a function
so that F(v1) + F(v2) + F(vs) = 3F(vg) whenever vy, vy, v3 are the
three vertices neighboring vy.

3. The groups ZyxZs+xZs and Z3*xZs. Define distances on the tree
in the obvious way: the distance between two vertices is the number of
edges in the shortest path which connects them; the distance between
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two edges (oriented or unoriented) is one less than the number of edges
in the shortest path containing both. Two vertices or two edges are
called nearest neighbors if they are at distance one. Note that a pair
of nearest neighbor edges has a common vertex.

Fix an abstract group ' = Z3 * Z3 with generators a and b for the
two cyclic factors. Thus, I' = {(a, b;a® = b = €). In order to realize I’
as a subgroup of G, start by fixing an oriented edge sy = (vg,v1). Send
a to any automorphism of order 3 in G which fixes vy and cyclically
permutes the 3 edges around vg; send b to a similar automorphism with
respect to v;. This defines a homomorphism of I" into G which is in
fact an injection.

Indeed, let uy be the unoriented edge corresponding to sg, and observe
first that the nearest neighbor edges of ug are aug, a®ug, bug, b>ug. Since
any edge of 7 is connected to ug by a sequence of edges, each the nearest
neighbor of the next, induction easily shows that I' acts transitively on
the (unoriented) edges of 7.

Pick v € T' and let c{l cgz e cﬁé‘ be the reduced word representing
7, so that jx € {1,2}, cr € {a,b}, and ¢ # ckt1 (making the c;’s a
sequence of alternating a’s and b’s.) Call K the length or block length
of v and denote it by |y|. We will show

d(’YU’OvuO) = |’Y|-

This implies that I" acts simply transitively on the set of (unoriented)
edges of T, and in particular that the map from I" to G is injective.

Consider the sequence (ug, u1, ... ,ux) defined by u = ¢]* - - - ¥ uo.

The edge uy is a nearest neighbor of the edges ug4; and ur_;, and
the vertex which up and wg41 have in common differs from the vertex
which uy and ug_1 have in common. This is because (ug_1, Uk, Ug+1) iS
the translation by c{l c?ck of (c,:j’c Ug, Ug, cfc’i’f up). The geometry of
trees and simple induction show that d(ug,u) = k, and in particular
d(up,yup) = d(up,ug) = K.

Identify I" as a subgroup of G. Call a vertex of T even or odd accord-
ing to whether its distance from v is even or odd. Any automorphism
in G either preserves the set of even vertices or interchanges it with
the set of odd vertices, and since both a and b preserve the set of even
vertices, so does any v € I'. Since I' acts transitively on the edges of
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T, and since each edge of 7 has one even and one odd vertex, I' acts
transitively on the set of even (respectively odd) vertices.

The injection of I' into G constructed here is canonical in the sense
that any two injections constructed in the way we described are conju-
gate by an element of G fixing syp. One can see this by constructing a
canonical tree from I' whose unoriented edges are elements of I', whose
even vertices are triples {7, ya,ya?} and whose odd vertices are triples
{v,7b,vb*}. One can map this canonical tree to 7 in exactly one way
which preservers the I'-action and takes e € I' to ug. The fact that I'’s
action on 7T is canonical, (given the choice of sg) isn’t necessary in the
following. It is illuminating to draw a diagram labelling the edges of T
with the words of I" according to the correspondence v +— yuyg.

Now we reverse field and let ' be the abstract group Zs * Zy * Zy with
generators a, b, c for the three copies of Zy. Thus, I' = (a,b,c;a® =
> = ¢ = e). Let v1,v2,v3 be the three vertices neighboring v
and choose three involutions of 7" which interchange vy with vy, ve, vs,
respectively. Map 7 to G by sending a, b, ¢ to these three involutions.
In analogy with the previous paragraphs, show that I' acts transitively
and simply transitively on the set of vertices of 7. The construction is
again canonical and it is again helpful to draw a diagram, labelling the
vertices of 7 with the elements of v according to the correspondence

¥ = Y.

4. Continuous dimension versus formal dimension. For the
next lemma only, let G be any separable locally compact group, let I'
be a discrete subgroup of G, and suppose that F' is a measurable (left)
fundamental domain for I" in G, i.e., G = I' - F' with no redundancy.
Let m be an irreducible square integrable representation of G with
representation space H,. Under these conditions

Lemma 1. DIM (x|r) = vol(G/T)dim p(7w) where DIM means
continuous dimension and dim g means formal dimension.

In this circumstance, continuous dimension is easily defined. Let H
be separable Hilbert space and suppose P is a bounded operator on
?*(T) ® H which commutes with the left action of I'. Fix a basis
(ej)32, for H, and define Py : €*(T') — (*(T) by (Pjrf1,f2) =
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<P(f1 (9 ek,), (fz ® €j)> for fi, fo € 52(1—‘) Then ij S VNreg(F), that
is, Pjj, is given by right convolution with some function p;; € ¢(T).
One may consider P to be a matrix with entries in V Ny (I'). Now
suppose that P is positive. Then each P;; is positive and in particular
pjj(e) = (Pj;de,de) is positive, so we may define
(1) TR(P) =) pji(e) =D (P(6. @ e5), (6 @ ;)

- ;

Jj= Jj=1

where . € ¢2(T') is the Kronecker § at the identity. This is a faithful
trace (see [5, 1.6.1]) on the commutant of the left I-action on ¢*(I') @ H.
Now if H; is a subrepresentation of ¢2(I') ® H, (that is, an invariant
subspace of ¢?(I') ® H), then the orthogonal projection P; onto Hi
commutes with the left G-action, so we may define

DIM (H1) = TR (P}).

Moreover, if H» is another subrepresentation of ¢?(I') ® H, equivalent
as a representation of I' to H;, then we may find a partial isometry F,
commuting with the left I'-action, so that P, = FE* and P, = E*F,
and the properties of the trace then show that TR (P;) = TR (P%), i.e.,
the continuous dimension of a subrepresentation depends only on the
abstract representation, not on the particular embedding in ¢?(I") ® H.
Write
DIM (7) = DIM (H1)

if 7 is any abstract representation equivalent to the left action of I' on
H1 C%(T) ® H. Of course, the continuous dimension of an abstract
representation is defined only if it can be embedded in the tensor
product. Lemma 1 asserts in particular that 7|r has a continuous
dimension when 7 is a square integrable representation of G.

Recall the notation of Lemma 1: 7 is a representation of G on
the Hilbert space H, and F is a fundamental domain for a discrete
subgroup I'. Let wy be any element of norm 1 in H,. The basic
proposition on irreducible square integrable representations (see 6,
Chapter 14]) asserts that there exists a positive number dim g (), the
formal dimension of 7, so that the map a : H, — ¢*(G) given by

a(w) = dim > () (w, 7(-)wo) &,
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is a unitary map of representations.

Let (e;); be a basis for L2(F) and identify L?(G) with ¢*(T") ® L*(F)
by sending meg(77)e; to dy ® e;. The natural left actions of I' on the
two spaces coincide. Let P be the orthogonal projection from L?(G)

to a(H,). We can calculate continuous dimension with (1) by using
L2(F) for H.

DIM (1) = TR (P) = Y (P(3. ® €;),0c ® €) ;)2 (ryoL2(F)
J

_ZPej,e] L2(G) = ZZ ej, a(fr))L2@ya(fr) e5) L2 (@)

—ZZ| e, a(fr)) > G)| ZZl (fr)s €)1

= Z/ la( fx)?| dg (since (e;); is a basis for L*(F))
—Jr

/ZdlmF {frs (9)wo)s, |* dg

= dim F(w)/ 1dyg (since (fx)x is a basis for H,)
F
= dim g(7) - vol (G/F).

This proves Lemma 1. a

Now return to the specific situation where G = Aut (7") and consider
the special representations m4.

Lemma 2.
(1) IfT CG is Zs * Z3 as above, then DIM (x|r) = 1/3.
(2) IfT CG is Zy x Zo * Zy as above, then DIM (w|r) = 1/2.

Proof. Theorem 2 of [16] gives the formula
1
6 vol (U(s0))

where U(sg) CG is the stabilizer of the oriented edge so. Consider
I’ = Z3 % Z3, which acts simply transitively on the (unoriented) edges

dim p(7y) =
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and therefore has U(uy), the stabilizer of the unoriented version of sg,
as a fundamental domain. According to Lemma 1,

1 vol (U(up)) 1

DIM (7+|r) = 66vol (U(so)) 3

since U(sp) is of index 2 in U (up).

Now take I' = Zg x Zy * Zy and use U(vg), the stabilizer of vy as
a fundamental domain. Because U(vg) acts transitively on the three
edges leaving vy, we have [U(vp) : U(so)] = 3 and DIM (w1 |p) = 1/2.
O

5. Embedding #, in ¢*(T'). For the next two sections we will
work exclusively with 7, and with T' = Z3 x Z3. Since 7 |r has square
integrable matrix coefficients, the basic ideas from [8] (also described
in [6, Section 14.1]) tell us that H can be embedded in the direct sum
of copies of ¢?(I") as a I'-representation. The objective of this section
is to construct a particularly useful embedding of 7 in a single copy
of £2(T).

Let P be the orthogonal projection from ¢2(€) to H and let ¢g =
P(6s,). Since M4 is G-invariant, P commutes with the G-action and
we have, for f € H; and vy €T,

(2)
(£ims(V)do) = (f,m4 (V) Pdsy) = (f, Prreeg(7)0s) = (f10+.,) = F(750)-

Since, up to orientation, I' acts transitively on &, this shows that
¢o is cyclic for m|p. Also, for ¢ € U(sp) (the stabilizer of sg)
m+(g)po = Pry(g)ds, = Pds, = ¢o. This shows that ¢o(s) depends
only on d(s, sg) and (conceivably) on the side of sy to which s belongs.
Knowing also that ¢g € H, one can easily compute that

o= () ool

Consider next the function

b = G0 + wri(a)do + w?mi(a®) o
= P(ds, + wlas, + w25a230),
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where w is a cube root of 1.
Lemma 3. ¢, is cyclic for m4|r.
The proof depends upon

Lemma 4. If f € (*(€) satisfies
(1) |f(s)|=1f(s")| when s and s" are opposite,

(2) |f(s1)| = |f(s2)] = |f(s3)| when s1,s2, and s3 are the three
oriented edges leaving any even vertex, and

(3) f(s1)+f(s2)+f(s3) =0 when sy, s2, and s3 are the three oriented
edges leaving any odd vertex,

then f = 0.

Proof of Lemma 4. Let Sy = {so,s;} and for n > 1, let S, be the
set of oriented edges at distance n to sg which are closer to vy than to
v1. The sets (S, )n=5° make up roughly one half of the tree. We shall
prove

(3)
2 ) fP = D f6)P=2 Y [f(s)] forevery n > 1.

sE€San s€San_1 s€San_2

Since f € ¢2(€), this implies that f(so) = 0. Now repeat the argument
using in place of sy any oriented edge from an even to an odd vertex,
and conclude that f is identically zero.

Let s be any element of Ss,,_1 pointing towards vy, let v be the vertex
which s leaves and let s; and sy be the two elements of S5, which also
leave v. Since f(s) + f(s1) + f(s2) = 0, Schwarz’s inequality gives

[F(8)[* < 2(1f(s1)]” + | f(s2)]%)
and therefore

(1" < 21 (1)1 + 1 £(s5])

where 7 denotes opposite. The first half of (3) follows by summing these
two inequalities over s, s’ € So,_1.
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Now suppose s € Sap,—2, suppose s points towards vy, let v be the
vertex which s leaves, and let s; and sy be the two oriented edges in
San—1 which also leave v. Since d(v,v9) = 2n — 2, v is an even vertex,

so [f(s1)] = |f(s2)| = |£(s)];
2f(s)* = If(s1)” + £ (s2)]* and 2|f(s)]* = £(s1)|* + |f(s3)*-

Summing these two over s, s’ € Sy, o gives the second half of (3) and
proves Lemma 4. ]

Proof of Lemma 3. Suppose f € Hy satisfies (f, 7+ (7)¢.) = 0 for
each v € T, or equivalently, using (2)

0 = (f, 4+ (7)(¢o + wry(a)do + w’my(a®) o))
= f(vs0) + wf(vase) + w? f(va®so).

Since vsg, yaso, and ya?sg are the three oriented edges leaving yvg, the
defining relations for H give

f(vs0) + f(vase) + f(va®so) =0

so f(yso) = w?f(yasy) = wf(va®sg). Since T' acts transitively on
the set of even vertices, this gives condition (2) of Lemma 4, while
conditions (1) and (3) follow from the definition of %;. Thus f =0
and Lemma 3 is proved. u]

In order to produce an inclusion i of 7| into the left regular repre-
sentation of I consider the matrix coefficient ¢,,(7) = (¢w, 7+ (7)¢w),
and likewise the matrix coefficient ¢o(y) = (po, T+ () do).

Lemma 5. ¢, and ¢o are bounded convolvers of £*(T).

Proof. Since ¢w is the sum of nine translations on both the left and
the right of constant multiples of ¢0, we need only consider (]50 We
apply Haagerup’s inequality (from [10]) as generalized by [11] to the
free product of cyclic groups

) /2
(4) fllosm <€ n+1) ( S Ity )
n=0

lv|=n
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where || - |

C,, (1) is convolver norm. ([11] gives value for the constant

C.) To see that the right-hand side is finite when we take f to be bo,
observe that

$o(7) = (b0, T4 (7) o) = bo(V50)
_ 1\ 4(7s0,50) 1\ Ml
() e =(3) et

and that #{v; |y| =n} = 0(2"). o

Following [8], observe that ng is necessarily a positive operator, let
¥, be the positive square root of ¢, in Cy,(I'), and set i(¢,) = -
Since

(P, T4 (V) w) = &w (v) = <¢’w’7"reg(7)¢w>a

i extends uniquely to a I'-isomorphism of H with the subspace, 63_ (),
generated by v,,. Next, we describe ¢2 (I).

Let 2 (T') be the subspace of ¢?(I") consisting of functions satisfying

(5) f(va) =wf(y) foryel.

The orthogonal projection P, : ¢*(I') — ¢2(T) is given by right
convolution with p, = (1/3)(8. + wd, + w?d,2), so that

DIM (¢2(T)) = 1/3.

(Here applying the definition of DIMto the case of a TI'-invariant
subspace of a single copy of ¢2(I').) On the other hand, it is easy
to verify that @, (va) = woy,(7), i.e., that ¢, = ¢, * p,, and since 1,
the square root of q~5w is the limit of polynomials in éw without constant
terms, it is also true that v, = 9 * p,. Thus, ¢2(T) is contained in
¢2(T'), but Lemma 2 says that DIM (¢3.(I')) = DIM (r4|r) = 1/3 =
DIM (¢2(T")), hence €3 (I') = €2(T").

Proposition 1. The representation mq|r on H, is equivalent via i
to the left reqular representation of I' on £2,(T).

Please observe that insofar as we are unable to calculate the convolu-
tion square root v, explicitly, we are unable in the end to give explicit
formulas for our decomposition.
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6. The decomposition of 7 |z,.z,. Taking advantage of the
previous proposition, we will decompose ¢2(T') instead of H . For any
v € I' the number of times a occurs in any representation of v as a
product of a’s and b’s defines a residue class modulo 3, denoted 7(y),
which is independent of the representation. Let 'y be the subgroup
consisting of v € T' such that n(y) = 0. (Clearly, n is the unique
homomorphism from Zs % Z3 to Zz which takes a to 1 and b to 0.) One
can see [13] that 'y is isomorphic to the free product of three copies of
Zs with generators b, aba?, and a?ba. Let

H1 = (1/6)(6b + (51)2 + 6aba2 + (5ab2a2 + 6a2ba + 5a2b2a)-

The function p; is considered by [12, 14 and 19], who describe its
spectrum as a (right) convolver of ¢2(I'g) and the associate spectral
resolution. The first and last of these works show also that this
spectral resolution induces a direct integral decomposition of £%(I'y)
into irreducible components.

Next observe that p, the restriction map from ¢2(T') to ¢3(Ty), is
unitary up to a factor of v/3, since each triple (7v,va,va?) contains
exactly one element of I'g. Let 7" be right convolution with p; on ¢2(T")
and let T be right convolution with u; on ¢2(I'g). T preserves ¢2(T')
since p, * py = f1 * po. It is clear that pI" = Tpp. Thus p~! takes
the spectral decomposition of ¢2(T'g) with respect to Tp, as described in
the above works, to the spectral decomposition of ¢2(I") with respect
to T. Let 7 denote the regular representation of I' on ¢2(T") and
the regular representation of I'g on £2(I'g). Then pr(y) = mo(7)p for
v € Ty, so the components of the spectral decomposition of ¢2 (T) are
irreducible as representations of 'y, a fortiori as representations of I'.
This proves

Proposition 2. The spectral decomposition of ¢ (T') with respect
to right convolution by w1 induces a direct integral decomposition into
1rreductbles.

We mention another inclusion of 7 |p in ¢*(T'), namely the inclusion
mapping ¢o € H4 to ¢g € £(I'). This works because ¢g * ¢pg = ¢, S0

that ¢y is its own square root in Cy,,(I'). The image of this inclusion

is the subspace of ¢3(I") generated by q~50. This subspace also comes
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up in the spectral resolution of the operator of right convolution by
k= (1/4)(84 + a2 + dp + 632) on ¢2(T). [14] shows that the continuous
spectrum of x consists of a closed interval I while the point spectrum is
{—1/2}. The piece of ¢*(T') corresponding to the continuous spectrum
resolves as the direct integral of irreducible components [12] while
the eigenspace of —1/2 is nothing but ¢3(I'). This last assertion
follows easily from the description of the orthogonal projection onto
the eigenspace which one can reconstruct from [13].

Thus, the decomposition of H, ~ ¢4(T) into irreducibles completes
the project of finding at least one particular decomposition of ¢2(T")
into irreducibles.

7. The other three cases. First consider m_|r when I' = Z3 x Z3
(as in Section 2). [16] says that

T_ =sgn @ my

where sgn (g) is +1 or —1 according to whether g preserves the set of
even vertices or sends it to the set of odd vertices. As noted in Section
2,sgn(y) =41 for all yin T', so m_|r & m4|r and this case reduces
trivially to the previous case.

We now show how to work out a similar construction for I' =
Zy*Zy+Zs (as in Section 2). Recall that ' = (a,b,c;a? = b% = % =¢)
and let |y| denote the length of the shortest product of generators giving
.

Consider 7 |r first. One shows that ¢y is cyclic for 7, |, by showing

that no function of 7, can be orthogonal to 7 (y)¢po for all v in T'.
Let ¢o(7y) : I' — C be the matrix coefficient

$0(7) = ($o, T+ (7)B0) = do(750)-

Use Haagerup’s inequality (Section 5.(4)) to show that ¢y is a bounded
convolver, observing that

|d(y - s0,80) — [7l] <1

and so

[Go(7)] < 26o(e)(1/2),
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and again #{v;|y| = n} = O(2"). A slight modification of the
arguments in Section 5 shows that 7 |r is equivalent to the left regular
representation of I' restricted to the subspace

GAT) ={f € P() : f(ya) = f(y) ¥y € T}.

(The generator a appears here because a is that generator which flips
the oriented edge sg, and ¢y is the projection to H . of the delta function
at sp.)

Now let 7(7) be the residue class modulo 2 of the number of times the
generator a occurs in any expression of v as a product of generators,
and let I’y be the subgroup of all v € I" such that n(y) = 0. Then I'y
is the free product of four copies of Zs with generators {b, ¢, aba, aca}.
As in Section 6, the spectral decomposition of Zi(F) with respect to
right convolution by

p=(1/4)(d + dc + Sava + Jaca)

(given explicitly in [3]) is a decomposition into irreducibles. This
completes the decomposition of ¢2 (T') and hence of m |r.

Lastly, consider the case of m_|r with I' = Zg % Zy x Z3. One
must redefine ¢y as the projection of d,, onto H_ C ¢?(£). Then the
preceding constructions show that 7_|r is equivalent to the regular
representation of I' restricted to

C (L) ={fel’(T): f(ya) =—f(7) ¥y €T}

and that ¢%(T') also decomposes into irreducibles according to the
spectral decomposition for right convolution by

n= (1/4) (Ja + 51) + Jaba + 6aca)-
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