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REMARKS ON SOME THEOREMS OF
BANACH, McSHANE, AND PETTIS

T.R. HAMLETT AND DAVID ROSE

ABSTRACT. In [12] B.J. Pettis gives several results which
sharpen results of McShane [7]. These results use properties
related to the ideal of meager or first category subsets. An
ideal is a collection of subsets closed under the operations
of subset and finite union. In this paper we identify the
crucial properties of the ideal of meager sets which make these
results possible and extend the results to other ideals which
possess these properties. A well-known result of Banach [1],
concerning subgroups of a topological group is extended and
two theorems concerning continuity of homomorphisms and
linear transformations are given as applications.

1. Introduction. In [12] B.J. Pettis gives several results which
sharpen results of E.J. McShane [7] which in turn extend a well-known
theorem of Banach [1]. These results use properties related to the ideal
of meager or first category subsets. In this paper we identify the crucial
properties of this ideal which make these results possible and extend
the results to other ideals which possess these properties.

An ideal (|6, 15, 16]) Z on a topological space (X, 7) is a collection
of subsets of X which satisfies the following two properties: (1) A € T
and B C A implies B € Z (heredity), and (2) A € Z and B € T
implies AU B € T (finite additivity). If, in addition, Z satisfies (3)
{4, : n = 1,2,3,...} C 7 implies U{4, : n = 1,2,3,...} € T
(countable additivity), then Z is called a o-ideal.

Let P(X) denote the power set of X. Given a topological space (X, T)
and an ideal Z on X, a set operator ( )>*(Z,7): P(X) —» P(X),
called the local function of T with respect to T in [16] is defined as
follows: for A C X, (A)*(Z,7) = {# € X : UN A ¢ T for every
U € 7(z)}, where 7(z) = {U € 7 : © € U}. A Kuratowski closure

Received by the editors on October 22, 1989.

This research was partially supported by a grant from East Central University.
1980 AMS Mathematics Subject Classiﬁycation. 54H99, 54C50.

Key words and phrases. Ideal, Baire set, measure, meager, sets of measure zero,

topological group, topological vector space, homomorphism, linear transformation,
continuous function, compatible ideal, 7-boundary ideal.

Copyright ©1992 Rocky Mountain Mathematics Consortium

1329



1330 T.R. HAMLETT AND D. ROSE

operator Cl* for a topology 7*(Z) finer than 7 is defined as follows:
ClI"(A) = AUA*(Z,7) [16]. A basis B(Z,T) for 7*(Z) can be described
as follows: B8(Z,7) ={U—1I1:U € 7,I € I} [15]. When no ambiguity is
present, we simply write A*, 7*, and 8 for A*(Z, ), 7*(Z), and B8(Z, 1),
respectively.

In [8] Natkaniec defines a set operator ¢ : P(X) — 7 as follows: for
AC X, 9(A) = {z: thereexists a U € 7(z) such that U — A € T},
and observes that ¥(A) = X — (X — A)*. The operator ¢ is studied
extensively in [3] where it is observed that Y(A) =U{U er:U - A€
I}

In [12] Pettis defines three set operators, which he denotes as I(.S),
II(S), and III(S) for S C (X,7). Observe that I(S) = X — S* =
Y(X —=S8), II(S) = S* and IT1(S) = Int(S*) N4 (S) where Int denotes
the interior operator with respect to 7.

In what follows, we will denote by (X, 7,Z) a topological space (X, 1)
and an ideal Z on X. Given a space (X,7,Z) and A C X, we denote
by Cl(A) and Int(A) the closure and interior of A with respect to 7,
respectively, and by Cl1*(A) and Int*(A) the closure and interior of
A with respect to 7*, respectively. We abbreviate “implies” or “this
implies” or “which implies” by “—”, “f and only if” by “iff,” and
“neighborhood” by “nbhd.”

2. Compatible and T-boundary ideals. Given a space (X, 7,7),
T is said to be compatible with T [10], denoted Z ~ 7, if the following
holds for every A C X: if for every a € A there exists a U € 7(a) such
that UN A € Z, then A € Z. Ideals having this property with respect
to a topology are also called “supercompact” [16], “adherence ideals”
[15], and “strong locally Banach” [14], in the literature. One significant
consequence of Z ~ 7 is that this implies 5 = 7* [10]. It is known that
in any topological space (X, 7) the ideal of meager sets, denoted Z,,,
is compatible with 7 ([11, 16]), the Banach Category Theorem), and
the ideal of nowhere dense sets, denoted Z,,, is compatible with = [16].
It is also known [5] that in a hereditarily Lindel6f space, any o-ideal
is compatible with the topology. The last result applies for instance to
the o-ideal of subsets of measure zero, the null sets, with respect to
a complete measure in a hereditarily lindel6f space. See [5] for more
information.
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Given a space (X, 7,7), Z is said to be m-boundary [9], if TNZ = {¢}.
Recall that an equivalent formulation of (X, 7) being a Baire space is
TNL, ={¢}.

Given a topological group (X,7,-) and an ideal Z on X, denoted
(X,7,Z,), and ¢ € X, we denote by 2Z = {aI : I € T}. We will
say 7 is left translation invariant if for every z € X we have zZ C .
Observe that if 7 is left translation invariant then 2Z = 7 for every
x € X. We define 7 to be right translation invariant in a similar way
and observe that 7 is right translation invariant if and only if Zx =7
for every = € X.

Note that if Z is left or right translation invariant, X ¢ Z, and
I ~ 7, then 7 is 7-boundary. The well-known result that a second
category topological group is a Baire space follows immediately from
this observation.

3. Extending some results of Pettis [12]. We first prove some
preliminary lemmas which lead to a theorem extending the theorem in
[12] and apply the theorem to topological groups.

Lemma 1. Let (X,7,Z) be a space withZ ~ 7, S C X. If N is a
nonempty open subset of S* NY(S), then N—S €Z and NNS ¢ T.

Proof. It N C S*N(S), then N—-S C(S)-Se€Z 3] > N-Sel
by heredity. Since N € 7 — {¢} and N C S*, we have NN S ¢ Z by
definition of S*. u]

Given a space (X, 7,7), we will follow the notation of Pettis [12] and
define B, (X,7,7) = {S C X: there exists G € 7 such that SAG € T},
where SAG = (S — G) U (G — 95) is the “symmetric difference” of S
with G. We will call B,.(X,7,Z) the Baire sets of (X,T) with respect
to Z, denoted simply B,.(X) when no ambiguity is present. We denote
by B(X) = B,(X) - 7.

Lemma 2. Let (X, 7,Z) be a topological space with ideal T.
(1) B e B(X) — there exists a G € T — {¢} such that BAG € T.
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(2) IfZnt = {¢}, then B € B(X) if and only if there exists a
G € 7 — {¢} such that BAG € T.

Proof. (1) Assume B € B(X), then B € B,(X). Now if there does
not exist a G € 7 — {@} such that BAG € Z, we have B = BA¢ € T
which is a contradiction.

(2) Assume there exists a G € 7 — {¢} such that BAG € Z. Then
G =(B—-J)UI where J, I € Z. If B € T, then G € T by heredity and
additivity, which contradicts the T-boundary assumption. o

Lemma 3. Let (X, 7,Z) be a space with T T-boundary. If B € B(X),
then (B) NInt(B*) # ¢.

Proof. Assume B € B(X). Then, by Lemma 2, (1), there exists
a G € 7 — {¢} such that BAG € T — ¢ # G C G* = B*. Also,
¢ # G CyY(G) =¢(B) so that G C¢(B)NInt(B*). O

Given a space (X,7,Z), let U(X,7,Z) denote {A C X: there exists
a B € B(X) such that B C A}. Following our convention we denote
U(X,7,T) as U(X) when no ambiguity is present.

Lemma 4. let (X,7,Z) be a space with T NI = {¢}. The following
are equivalent: (1) S € U(X); (2) Int(S*)NY(S) # ¢; (3) S*NY(S) # ¢
(4) ¥(S) # ¢; (5) Int*(S) # ¢; and (6) there exists N € T — {¢} such
that N—Se€Z and NNS ¢TI

Proof. (1) — (2). Let B € B(X) such that B C S. Then Int(B*) C
Int(S*) and ¢(B) C ¢¥(S) = ¢ # Int(B*) N¢(B) C Int(S*) N¢(S) by
Lemma 3.

(2) — (3). Obvious.

(3) = (4). Obvious.

(4) — (5). If Y(S) # ¢, then let U € 7 — {¢} such that U — S € T.

Since U ¢ Zand U = (U-S)U(UNS), wehave UNS ¢ Z. In
particular, p ZU NS Cy(U)NS = Int*(S5).
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(5) — (6). If Int*(S) # ¢ then there exists N € 7 — {#}, I € Z, such
that p #N—-ICS. Wehave N—Se€Z, N=(N-S)U(NNS), and
N¢INNS¢T.

(6) > (1). Let B=NNS¢ZwithNer—{¢}and N—-S €T
Then B € B(X) since B¢ Z and BAN =N - S eT. |

A function (or mapping) f : (X,7) = (Y,0) is said to be open if
Uer— f(U) € o. Inwhat follows F always denotes a nonempty
collection of open mappings from a space X to a space Y. We do not
restrict the domains of members of F as does Pettis [12].

Lemma 5. Given spaces (X,7),(Y,0) and a collection F of open
mappings from X toY, let N € 7 — {¢} and let A be a nonempty
subset of N. If f(N) C F(A) = U{f(4) : f € F} for every f € F,
then F(A) € o — {¢}.

Proof. Apply Lemma 3 of [12]. O

We are now ready to prove a theorem similar to the theorem of Pettis
n [12]. Let F~(y) = U{f*(y): f € F}

Theorem 1. Let (X,7,Z) and (Y, o) be spaces with T ~ 1, TNT =
{6}, Ner—{¢}, S C X, N C S*ny(S), and F a nonempty collection
of open mappings from X toY. Ify € F(N) - NNF (y) ¢ Z, then
F(NNS)eo—{o}.

Proof. By Lemma 1, N —S € Z and NNS ¢ Z. Now we have
NNSNFy) ¢ T for every y € F(N), since N N F y) C
[NNF L(y)NSJU[N —S]. In particular, y € F(N) -y € F(NNS) —
F(NNS)eo—{¢} by Lemma 5. 0O

In light of Lemma 4, it is clear that Theorem 1 will only apply when
S € U(X). Also note that U(X) # ¢ only if X ¢ Z. Theorem 1 implies
the Theorem of Pettis [12] if X is a Baire space; however, Pettis does
not assume X is a Baire space. Our next corollary which is analogous to
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Corollary 2 of [12] requires that X ¢ Z. Here Pettis requires X ¢ Z,,,
which in a topological group implies X is a Baire space.

First we need a preliminary lemma.

Lemma 6. Let g: (X,7,Z) — (Y,0,J) be a continuous mapping
with g=1(J) C Z. Then g[A*(Z,7)] C [g(A)]* (T, o).

Proof. Assume y ¢ [g(A)]*. Then there exists V' € o(y) such that
VNngld) e T — gt Vnygl)]eg(J)CIT g (V)NAeZ
by heredity. Since g (V) € 7 and g !(y) C g }(V), we have
g Hy)NA* = ¢ — y ¢ g(A*), and the proof is complete. O

Corollary 1. Let (X,7,Z,-) be a topological group with T ~ 7. Let
S eUX), Re P(X)—Z. Let G,H € 7 such that GNR* # ¢ #
HNInt(S*)Ny(S). If A=GNRNR* and B= HNSNInt(S*)N(S),
then

(1) IfT is right translation invariant, then A='B is a nonempty open
subset of R™18; and

(2) IfZ is left translation invariant, then BA~! is a nonempty open
subset of SR™1L.

Proof. We will prove (1) only, since the proof of (2) is similar. Observe
that R¢7Z - X ¢ 7T — I N1 = {¢} since X is a topological group
and Z ~ 7.

For every a € A define f, : X — X by f.(z) = a~ 'z, and let
F ={fa :a € A}. Note that GNR* C (GNR)* [6, p. 64] = (GNRNR*)*
(since Z ~ ), and the hypothesis G N R* # ¢ then implies A # ¢ and
F # ¢. Note that A C A* and that each f, is a homomorphism. Let
N = HNInt(S*) N9(S). Now if it is shown that NN F 1(y) ¢ Z for
every y € F(N), Theorem 1 applies and F(NNS) = F(B) = A"'B is
a nonempty open subset of R™1S.

Let y € F(N), then y = a 'z for some a € A, x € N — F 1(y) =
Aa~lz. Thus, z € A alz C A*alz C (Aa 'z)* (Lemma 6)
= [Fly)|* - UnNnF y) ¢ I for every U € 7(z); in particular,
Ner(z) > NNF 1y ¢ T
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Thus, by Theorem 1, A~ !B is a nonempty open subset of R~!S, and
the proof is complete. mi

Observe that Corollary 2 of [12] is a special case of Corollary 1 where
IT=1Ipn.

Letting G = H = X in the previous corollary, we have the following
result.

Corollary 2. Let (X,7,Z,-) be a topological group with T ~ 7. Let
S eU(X) and R € P(X) —Z, then

(1) If T is right translation invariant then [RN R*]~! [SNInt(S*) N
¥(9)] is a nonempty open subset of R=1S; and

(2) IfT is left translation invariant, then [SNInt(S*)N(S)][RNR*] ™1

is a nonempty open subset of SR,
Proof. Let G = H = X and apply Corollary 1. |

Observe that Corollary 3 of [12] is a special case of Corollary 2 where
=71,

Letting R = S in Corollary 2, we obtain the following result.

Corollary 3. Let (X,7,Z,-) be a topological group with identity e,
I~T,and S clU(X).

(1) If T is right translation invariant, then e € Int(S™1S).
(2) IfZ is left translation invariant, then e € Int(SS™1).
(3) If T is translation invariant, then e € Int(S~1S) N Int(SS1).

Proof. We will prove (1) only. The proof of (2) is similar and (3)
obviously follows from (1) and (2).

Observe that S NInt(S*)Ny(S) C SNS* so that in Corollary 2, (1),
we have e € [SNInt(S*) Ny (9)][SNS*]~L. o
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Corollary 5 of [12] is a special case of Corollary 3 where Z = Z,,.
We could continue the development here to extend a well-known result
of Banach, utilizing the hypothesis Z ~ 7. However, the previous
corollary can be strengthened as the next theorem shows. First, we
state an easily established lemma without proof.

4. Extending a theorem of Banach and applications.

— (Y,0,J) is a homomorphism with

Lemma 7. If f : (X,7,1)
(f(A)) for every A C X.

f(@) =7, then f((4)) =

The following theorem strengthens Corollary 3 by weakening the
hypothesis Z ~ 7 to ZN7 = {¢}.

Theorem 2. Let (X,7,Z,-) be a topological group with identity e,
INT={¢} and S e U(X).

(1) If T is right translation invariant, then e € Int(S™1S).

(2) If T is left translation invariant, then e € Int(SS™1).

(3) If T is translation invariant, then e € Int(S~1S) NInt(SS1).

Proof. We prove only (2) since the proof of (1) is similar.

(3) follows immediately from (1) and (2).

Let S € U(X); then there exists A C S such that A € B(X).
Since left translation by any element is a homomorphism, we have
by Lemma 7 that, for any z € X, z¢(A) = ¢(zA) and, hence,
zp(A) N Y(A) = ¢Y(xA N A) (it is shown in [3] that the operator
¢ distributes over intersection). Thus if z¢(A4) N Y(A) # ¢, then
zANA# ¢ since Y(¢) = U(rNI) = ¢. Now we have

AN = {z: 26(4) N H(A) £ 6}
C{z:zANA# o}
= AA7!
cs5sh

By Lemma 4, ¥(A) # ¢. Since ¥(A) is open for any A C X, we have
e € [Y(A)][Y(A))™ Cnt(SS7H. o
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Observe that Corollary 3 could also be obtained from Theorem 2.

The following corollaries extend a well-known result of Banach [1].

Corollary 4. Let (X,7,Z,-) be a topological group with TN = {¢}
and I right or left translation invariant. If S is a subgroup and

S eU(X), then S = Int(S) = CL(S).

Proof. S = Int(S) since, by Theorem 2, e € Int(S71S) (or e €
Int(SS~!')) CIntS. O

Corollary 5. Let (X,7,Z,-) be a topological group with I ~ T and
T right or left translation invariant. If S is a subgroup and S € U(X),
then S = Int(S) = CI(S).

Proof. SeU(X) > X ¢Z. X¢ZTandZI~7—7NIT={d}. Now
apply Corollary 4. ]

The well-known result of Banach follows from Corollary 4 or Corollary
5 by letting Z = Z,,.

An interesting special case of Corollary 4 is to take the subsets of
Haar measure zero on a locally compact group, the null sets, denoted
Ho. If Ho N7 = {¢}, then Corollary 4 applies establishing a symmetry
between Banach’s result for meager sets and the null sets.

The following theorem extends a result of McShane [7, Corollary 7].

Theorem 3. Let f : (X,7,Z,-) = (Y, 0,-) be an onto homomorphism
with Z a right or left translation invariant o-ideal, Z T-boundary,
X ¢ I, and Y separable. If f~1(V) € B,.(X) for every V € o then
f 1is continuous.

Proof. We assume that 7 is right translation invariant. The proof for
left translation invariant is similar.

Let {y,} be a countable dense subset of Y, and let V' € o —{¢}. Then
{Vy,} is an open cover of Y and hence {f~!(Vy,)} is a cover of X.
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Since X ¢ Z, there exists a natural number K such that f~1(Vyk) ¢ Z.
Now let = € f~!(yg'), then f~1(Vyg)z C f~Y(V) — f~Y(V) ¢ T.

Now let U € o(ey), where ey is the identity element in Y. There
exists U; € o(ey) such that U1U1_1 C U. By the above comments,
f71(U1) € B(X), thus (by Theorem 2) ex € Int[f~1(Uy)][f 1 (U1)] =
G. Let g € G, then ¢ = ab™! where f(a),f(b) € U;. Thus,
flg) = flab™!) = f(a)f(b)™* € WU, ' C U, showing f(G) C U

and the proof is complete. ]

Observe that the hypothesis “Z 7-boundary” can be replaced by the
stronger hypothesis “Z ~ 77 in the previous theorem. Also observe
that if we have a complete measure on a topological group G and if the
null sets are right or left translation invariant (such as a Haar measure
on a locally compact group) then the null sets are a o-ideal.

Our next result is an application of Theorem 2 to functional analysis.

Given a real (or complex) topological vector space (X, 7,+) and an
ideal Z on X, denoted (X,7,Z,+), Z is said to be multiplication
invariant if for any scalar r and any I € Z, rI € 7.

Theorem 4. Let (X,7,Z,+) and (Y,o0,+) be real (or complez)
topological vector spaces, I a o-ideal, T T-boundary, I translation
invariant and multiplication invariant, and X ¢ Z. If T: X - Y isa
linear transformation such that T=Y(V) € B,.(X) for every V € o(0),
then T s continuous.

Proof. Let V be anbd of 0in Y and let V; be a nbd of 0 in Y such that
Vi—-V1 CV.Now {nV;:n=1,2,3,...} covers Y [13, Theorem 1.15],
hence {T~*(nV7) : n = 1,2,3,...} covers X. Since X ¢ Z, we must
have T~ 1(KV1) ¢ T for some K. Since (1/K)T Y(KVy) C T 1(V1), we
have that 7-1(V;) ¢ Z. By Theorem 2, 0 € Int[7~1(V;) — T 1(W1)] =
G. We claim that T(G) C V; indeed, if z € G, 2z = w — y for
w,y € T1(V)) - T(z) =T(w—-y) =T(w) —T(y) € V1 =V, C V.
Thus, T is continuous at 0 and the proof is complete. ]
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