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Introduction. Let S, be the symmetric group on n symbols, and
let G = Hwr S,, be the wreath product of a finite p-group H and S,,.
Then G is the semidirect product H" x S, = {(a1,...,an;0) | a; €
H,o € S, } with the product rule

(al,... ,an;o)(bl,... ,bn;T) = (alba—l(l),... ,anba—l(n);UT).

Let ZG be the integral group ring and QG the rational group algebra
of G. If u is a unit of QG, denote by 7, the inner automorphism of
QG induced by u. In this paper, we verify a conjecture of Zassenhaus
for these groups G by proving the

Theorem. Let G be the wreath product Hwr S, of a finite p-group
H and S,,, n > 3. Then every normalized automorphism 0 of ZG can
be written in the form 60 = 1, 0 A where X is an automorphism of G and
u s a suitable unit of QG.

This result is known if G = AwrS, where A is abelian [1] and
if G = SpwrS, [5]. In order to prove the theorem, it suffices [4,
Proposition II1.7.2] to find an automorphism px € Aut (G) such that
for all g € G, 6(Cy) = Cy(y)- Here, by Cy is understood the sum of
elements in the conjugacy class C(g) of g in G. We shall find in Section
3, as a consequence of a Theorem of Weiss [6], A € Aut (H™) such that
0(Cr) = Cx(n for all h € H™. However, it is not at all clear if one can
extend A to an automorphism of G. Due to the special structure of G,
it is possible to use A to construct an automorphism of G having the
desired effect on the classes in H™. Then we invoke a result of Valenti
[5] to complete the proof.
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1304 A. GIAMBRUNO AND S. SEHGAL

2. Some basic lemmas. We describe the conjugacy classes
Ca(g), of elements g of G. Let o € S, and let ¢(os) denote the
number of disjoint cycles of o, including 1-cycles, and s, their lengths
(p =1,...,c(0)). If i, is the smallest number appearing in the u't
cycle, then we can write

For each p, define the product
W =ai,a06,)  Goou—1(;,)

and if Cq,...,C; are the distinct conjugacy classes of H, for every k
with 1 <k <mand 1l <j <t set

zjk(at,-..,an;0) = [{b" | s, = k and V" € C;}|.

These elements determine the conjugacy classes of G, in fact, by
[2, Theorem 4.2.8] two elements (ai,...,an;o) and (by,... ,bn;7)
are conjugate in G if and only if the matrices zjx(ai,...,an;0)
and zji(b1,... ,by;7) are equal. In particular for an element h =
(h1,...,hy;I) to be conjugate to h' = (hY,...,hl;I) it is necessary
and sufficient that for every g € H, the number of h; ~ g equals the
number of A} ~ g. We shall often write (h1,... ,hy,) for (h1,...,hn; ).
The next three lemmas are obvious. All automorphisms we consider
are normalized, i.e., they preserve augmentation.

Lemma 2.1. Let a = (hy,...,h,) € H" and suppose hy ~ hg--- ~
htl; ht1+1 [ ht2,... ,htm71+1 [ htm = hn bClOTLg to m
distinct conjugacy classes in H. Then

Ca(a)] = (t") <";“) (n—(h +t-n;-+tm_1)>

ACh (R )™ -+ |Ch (B, )

n!
= () (Car (he, )
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Lemma 2.2. Lett; > ty > -+ > t,, > 0 be integers such that
t14+ - +tnw=n>1 If m>1, thenn <nl/(t;! - tn!) and equality
holds if and only if t; = (n — 1), to = 1.

Proof. Induction on n. O
Lemma 2.3. For z,y € G, |Ca(zy)| < |Ca(2)||Ca(y)].

Lemma 2.4. Let 6 € Aut (ZG). Then we have
(i) g € G= 60C,) = C, for some x € G with 0(g) = 0(z),
IC(g9)l = IC(x)].
(ii) 0(Cy) = Cp = 0(Cyr) = 0(Cyx) for all integers k.
(iil) If 6(Cy) = Cs, 8(Cr) = Cy then for some t, z € G, we have
0(Cgn) = Cayt = Cpzy.

Proof. See [3]. O

Denote by ((G) the center of G and let 6 be a normalized automor-
phism of Z@G.

Lemma 2.5. Ifa € ((H"), then 6(C,) = Cy for some b € ((H™).

Proof. First observe that if ¢ € G then |Cg(g)] = n if and only if
g~ (2,2',...,2) with 2,2’ € ((H), z # 2z’. As a consequence, if we
write @ = (21,...,2n), 2; € ((H), then for all 4,

0
Clzitrn) = Clatsy.. sy, for some  zj,s; € ((H).

Thus, since (z1,...,2n) = (21,1,...,1)(1,22,...,1) - (L,1,..., 2,),
we have C, = Oz, ... =) 2, Cy when b=(z1, 51,--. ,51)(25, 82,...,82)*2
- (2], 8ny .- 5 8p)"™ € C(H™) by (2.4), proving the result. o

For a normal subgroup N of G, denote by A(G, N) the kernel of the
natural map ZG — Z(G/N). Thus, A(G, N) is the ideal generated by
all 1 —z, x € N. We have
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Lemma 2.6. Suppose that H is nilpotent and 0 € AutZG, G =
Hwr S,,. Then

(i) 6(A(G,H")) = A(G,H").
(ii) if 0(Clay,... anie)) = Clor,... by;r) then o is conjugate to T (o0 ~ T).

Proof. (i) We use induction on |H|. If H =1, then A(G,1) = A(G),
the augmentation ideal of ZG, and G = S,. Since 6 is normalized
we have nothing to prove. Now let ¢ = ((H), H = H/(, G =
G/¢" = (H/¢)wrS,, = HwrS,. Let h € H". We know by (2.5)
that 0(A(G,¢™)) = A(G,¢™). This gives an induced automorphism
0 of ZG. Then, by induction, §(h — 1) € A(G,H"). So 8(h—1) €
A(G,H™) + A(G, (™) = A(G, H™) as desired.

(ii) Since @ induces an automorphism of ZS,, by (i), the claim follows
by Peterson [3]. O

3. A consequence of a theorem of Weiss. We fix notation and
recall some known facts. For an element a = > a(g)g of a group ring
RG of G over a commutative ring R, we set &(g) = >_j,., a(h), the sum
of coefficients of « over the conjugacy class of g. We denote by [RG, RG]
the additive group generated by the Lie products [a, 8] = a8 — Ba, «,
B € RG. Then

(3.1) [RG, RG] = { Z a(z)r € RG| a(g) =0forallg € G}.

Moreover, if we pick a set of representatives 1" of the conjugacy classes
of G, then we have as modules

5%
(3.2) RG/[RG,RG] = ) Ru.
zeT

Let M = (a;5) € (RG), be an m X m matrix over, the not necessarily
commutative ring, RG. Then the trace, namely the sum of diagonal
elements modulo [RG, RG],

tr (M) = _a; € RG/[RG, RG]
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is well defined and has the expected properties

(33) tr (Ml +M2) = tr (Ml) + tr (Mg)
(3.4) tr (rM) = rtr (M), reR
(35) tr (MlMg) = tr (Mng)

Now, let G be a split extension A X X where |X| = m and A is
not necessarily abelian. Then there is an imbedding 5 of RG into
(RA),,. We shall describe this map. We have RG = Y _." | RAxz;, where
X ={zy,...,zn}tand 1 = 1. Let u = > u(g)g € RG. Suppose

J

Then u 5 U = [fij(u)] € (RA)s. In particular, for a € A,

a®t

a®m

We write u = > u(g9)g = >, e @(9)g mod [RG, RG] by (3.1). We
need a formula for tr U:

Lemma 3.6. Let T’ be a set of class representatives of A. Then

trU =Y spi(h)h

heT’

where sp, 1s the index of the centralizers (Cg(h) : Ca(h)).

Proof. We have u = deT iu(g)g mod [RG, RG]. Further, tr B[RG,
RG] C [RA, RA] as tr Bay, ag] = tr B(arae —azaq) = tr (B(ar)B(az) —
B(az)B(a1)) = 0 by (3.5). To prove the lemma, it suffices to do so for
u =g € G, U = (g). Since both sides of the formula are zero for
g ¢ A, we may assume that u = a € A. Then
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r; = 1 and trU = ) .y a®. Suppose that {a®,...,a"1} are A-
conjugates of a among the o, z € G and {a®1+!,... ,a*1+2} are
A-conjugates of a®m1+1 among the a*, = € G, etc. Then we write

trU = (a+a™ + -+ +a"1) + (a®14" + -+ + a1t72) 4. ..
=ria -+ roa®1tt 4 ...

=ria(a)a + reti(a®1tt)a®tt 4 - as @(a”) = t(a) = 1.

It remains to observe that 71 = (Cg(a) : Ca(a)) and similarly for the
other r;. This we do now.

(3.7) The number of conjugates of a fixed element a € A by x € X
"’ which are conjugate in A is (Cg(a) : Ca(a)).

Proof. 1t suffices to set up a 1-1 correspondence between S; = {right
cosets of C4(a) in Cg(a)} and Sz = {z € X | a® = a" some
he A} ={z € X |z € Cg(a)h some h € A}. Let Ca(a)b € S;. Write
b = x1hy € Cg(a) with 1 € X, h € A. Then set ¢ : Cy(a)b — ;.
Notice that z; = bhl_1 € Cg (a)hl_1 and thus z; € S>. One now verifies
easily that indeed ¢ is 1-1 and onto. u]

We need the strong form of a Theorem by Weiss [6]. Let ¢ be the
augmentation map of a group ring. We may extend it to matrices over
the group ring by applying it to the entries and call it ¢*. An invertible
matrix M such that e*(M) is the identity matrix is called an I-unit.
The result then is

Lemma 3.8. Let Z,P be the group ring of a finite p-group P over
the p-adic integers Z,. Suppose that Q) is a finite p-group of I-units
contained in (ZyP)y,. Then there exists a matric M € (Z,P),, such
that every element M~1qM, q € Q is a diagonal matriz (g1, .- ,gm),
gi € P.

Lemma 3.9. Let G = P x X where P is a p-group. Suppose that
0 is an automorphism of ZG such that 0(A(G, P)) = A(G,P). Then
there is a group automorphism X of P such that

0(Cy) = Cx(q) for allg € P.
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Proof. Write |X| = m and let 8 be as defined. We know 0(P) €
1+ A(G, P). It follows by the definition of 8 that BA(G, P) C (AP),,
Thus, 86(P) C I+(AP),, and we can apply Weiss’s theorem. It follows
that there exists M € (Z,P),, such that

P

(3.10) MBO(P)M ™' C P

P

For g € P, we have M30(g)M ! = diag (g1, .. ,gm). Moreover,

0(g) =u= Z u(z)z = Z (z)r mod[ZG, ZG].

zeG zeT

We observe that tr(86(g)) = >..-,g; and, by (3.6), tr(86(g)) =
Y werr S2U(x)x, 5, natural numbers, 7" representatives of classes of

Compare the two expressions for tr (86(g)) and use (3.2) to conclude
that @(z) are natural numbers for € P. Thus we can write

0(g) = Z x + Z )z mod[ZG,ZG].

z€P z¢P

Since §(g) € 1+A(G, P), it follows that the augmentation contribution
from the second sum, } . p @(z), is zero. We conclude that there is a
unique %(xg), g € T, xo € P which equals one and the other @(z) for
x €T, x € P are zero. We have thus

0(g) = zo + Z w(y)y + Ao, Xo € [ZG, ZG].
y¢pP

Writing ¢ = > geg T, we have

8(9%) = 6(9)° D = o) + 3 Ay @ + A1, A € [2G,ZG)
y¢p
=|Glzo + > IGli(y)y + A2, A2 € [ZG, ZG).
y¢pP
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The left hand side is a multiple of a class sum 6(Cy); so should be the
right hand side. Also, ¢ € P and its class does not disappear from the
right hand side. Therefore, 6(Cy) = Cy,. Moreover, 3, o p |Gla(y)y €
[ZG,ZG] which implies that @4(y) = 0 for all y ¢ P. Hence, we may
write

bl9) =z0+ho, N €[ZG,ZG],  6(C.) = Ci,

We may replace xy by any element conjugate to it. We shall fix this
choice by
Ty

M~'B8(g)M =

namely, we take zo to be the first entry in the matrix M ~136(g)M.
Define

A:P—P by M\g)=wxo.

Then A is a homomorphism. Suppose A(g) = 1, then A(g) — 1 €
[ZG,ZG] and 0(g9) = > agg, a1 # 0. It follows by [4, p. 45]
that 8(g9) = 1, ¢ = 1. Thus, X is an automorphism of P and
Ci(g) = Czy = 0(Cy) for all g € P as desired. O

4. Proof of the theorem. We need to find 1 € Aut (G) such that
0(Cy) = Cu(g)- This we proceed to do in a number of steps. We shall
let 6 denote a normalized automorphism of ZG.

Lemma 4.1. For h € H, we have 0(Cy1,...,1)) = Chr a,... &) for
some h', x € H.

Proof. We may clearly assume that h # 1 and n > 2. Let
0 .
Cha,.. 1) = Clhy,... b since [Cq(h,1,...,1)| = |Cq(hy,... ,ha)l|, by

N

(2.1), we get

n!
iCar(h)| = -y Carlhy ) -+ (e, ]
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If m =1, then hy ~ hy ~ --- ~ h, and we are done. If m > 1,
then n!/(t1!---t,!) > n and this implies |Cg(h)| > |Cr(he,)|™---
|Cr (hs,, )|, If we prove that [Cx(R)| = [Cr(hi)|™ - |Ca (hs,,)['m,
then n!/(t;!---t,,!) = n, and so, by (2.2), it will follow that t; = n—1,

to=1,t3 =---=t, =0, the desired conclusion. The proof will be by
induction on [Cyx(h)|. If [Cx(h)| = 1, then h € {(H) and, by Lemma
2.5, |Cy(hy)| = --- = |Cg(hn)| = 1. Since |Cg(h,1,...,1)] = n, we

are done in this case. Suppose now that |Cgx(h)| > 1 and assume, by
contradiction, that for some § € Aut (ZG), m > 1 and

Crr(R)| Z [Crr (e, )| -+ [Crr (e, ) '™
This implies that |Cg (he,)
Clhe, 1,.,1) NN Clhy oo, ... e,y for all i, for all n € Aut(ZG), where

FREIED

S |Cu(h)|, for all ¢; hence, by induction,

hi,,z:, depend upon 7. Thus, in particular, by taking n = 61, one
gets:

0
Ciha,....t) = Clha, b)) = Clha 1, 1) (Lha 1, 1) (1, 1,h0)

-1

YoM (B Ty )R

@1y, x1) (hly,@a,. ) R2
for suitable elements hf, x; € H, k; € H™. Thus,
(h'l,:cl, e ,xl)(hé,mg, e ,d:g)kZ s (h;z,xn, Ce ,wn)k" ~ (h, ]., ey 1)

and this implies that wjug---u, ~ h where, for all 4, either u; ~ b
or u; ~ x;. Also, notice that, since C(y, 1, . 1) 9—; C(hg,wi,..-,zi)’
then |Cq(hi,1,...,1)| = |Ca(hl, i, ... ,x;)|. Now, if h} ~ x;, then
we get n|Ch(h;)| = [Cu(x;)|™, whereas if h o z;, then |Cy(h;)| =
|Cr (h)||Crr ()"~ . In any case, since n > 2, |Cx(u;)| < |Cr(hi)], for
all ¢. From the above relations, we obtain:

ICr(h)| = |Cr (uruz -+ - up)| < [Cr(u1)] -~ [Cr(un)l
< |Cr(h1)| -+ 1Cu (hn)| = [Crr (he )| - -+ |Cra (R, )|,
a contradiction. O
Lemma 4.2. Let n > 2, and suppose that for every 6 € Aut (ZQG)

andh € H, 0(C,... 1)) = Clazy,22s,... wem), JOr somex € H, z; € ((H).
Then 0(Cp,1,... 1)) = C(h ... z) where b’ € H, z € ((H).
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Proof. By the previous lemma, C(y, 1, .. 1) 2, Cin' ... «); notice that

if b’ ~ x, then C(,, . 4 a_; Cint,.oty = Clyzy . yzn) = y2zi = 1 for
some ¢ = y € ((H) = by Lemma 4.1, z € ((H) and we are done.
Thus, we may assume that h’ £ z, and so, since |Cg(h,1,...,1)| =
ICa(W,z,...,z)|, we get |Cr(h)| = |Cu(R')||Cr(x)|"!. The proof will
be by induction on |[Cyx(h)|. If |Cx(h)] = 1, then h € {(H) and, by
Lemma 4.1, b/, z € ((H), proving the lemma. Suppose |Cgx(h)| > 1
and write (k',z,...,z) = (Wz~1,1,...,1)(a,z,...). Since n > 2, by
applying (2.3), we get

Ca(hw )| < [Ca(h)]ICrr ()] = |Crr (W)]|Ch ()]
S [Ca(W)ICr ()"~ = [Cr(h)]-

Hence, by induction we can write
-1
Clhz-11,.. 1) AN Cn»,.. » forsomeze ((H),h" € H.

Also, by hypothesis, C(,,... ) o Clyz,... yzn) Where y € H, z; € ((H).

Thus,

971
Cinzy.o2) = Clhra-11, (@ 1) > Ch2, 2) (y21,m yzn)o

It follows that (h,1,...,1) ~ (h",z,...,2)(yz1,... ,yzn)* = (K", 2,
ey 2) (Y 2iyy Y% 2) = (WY 2,y 220,, ... Y 22;,) Where
ai,...,a, € H and {iy,...,4,} is a permutation of {1,... ,n}. Hence,

since n > 2, y%i zz;, = 1, for some j; this forces y € ((H), and so, since

—1
Cla,... 2) o, Clyzr,... yzn), Dy Lemma 2.5, x € ((H). This completes
the proof of the lemma. a

Lemma 4.3. Let n > 2 and suppose that H is a nilpotent group.
Then, for all 6 € Aut (ZG) and h € H,

0(Cn,....n) = Cla,... o)y for somex € H.

Proof. The proof will be by induction on |H|. If |H| = 1, the lemma
is trivially true. Suppose then that |H| > 1. By looking at class orders,
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one immediately checks the lemma when h € ((H). Suppose then that
h ¢ C(H) = .

If 0 € Aut (ZG) = Aut (Hwr S,,), then 0 induces an automorphism
8 of Z[(Hwr S,,)/(¢™wr {1})] = Z[H/Cwr Spl: i Cin ) 2 Clan )

and — : H — H/( is the projection map, then C;, 5 A Clay,. z0)}
also, since |[H/C| S |H|, by the inductive hypothesis C; ) 4

C....y for some y € H/(. It follows that (Z1,...,Zn) ~ (¥,.-.,9);
hence, £y ~ Xy ~ --- ~ T, ~ ¥ and this says that there exist
21,.++ y2n € ¢ such that z; ~ yz; for ¢ = 1,... ,n. Thus, C(y . p 2,

Clyz,... yzn)» % € (. By the previous lemma, then C 1, .. 1) RN
C z,... ) where h' € H, z € . Thus

C,....ny = Ch1,... 1)(L,h,1,. 1)(L,.. ,1,R)
4 Ch 2y 2) (W 12000 2)32 oo (B 2.y 2) 0 -
It follows that

(Wyzyoooy2) (B 2y 2)% - (W 2y, 2)" ~ (Y21, oo, Y2n)-

Now, if for some i, yz; ~ z", then y € ( and by Lemma 2.5, h € (, a
contradiction. Thus, yz; o 2", for all . It follows that yz; ~ h'%iz"1
for all i, for some b; € H. Thus, for all i, k, yz; ~ k%2771 ~ pP12n=1 ~
yzy; this says that (yz1,...,y2zs) ~ (y21,...,yz1) and the lemma is
proved. a

A consequence of the last two lemmas is the

Corollary. Letn > 2 and suppose that H is a nilpotent group. Then,
for all 0 € Aut (ZG) and h € H, 0(Cp1.... 1)) = Cw z,... z), for some
h' e H, z € ((H).

We recall

Lemma 3.9. Let H be a p-group. If 0 € Aut(ZG), then there
exists A € Aut (H") such that if 0(Cn,,... 1)) = Clas,.. zn), then
ARy ooy hn) = (Y1, -+ s Yn) where (Y1, ,Yn) ~ (T1,-.. ,Zy).
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Now let H be a p-group, 6 € Aut(ZG) and n > 2. If h € H, by
the Corollary above, we can write 8(Cx1,... 1)) = C.,(k,1,...,1) Where
k € H and zj, € ((H). Then, by (3.9), there exists A € Aut (H™) such
that A(h,1,...,1) = zp(1,...,1,A/,1,...,1) where ' ~ k.

We claim that i is independent of the element h; in fact, let z,y € H,
x # 1, y # 1 and suppose by contradiction that A(z,1,...,1) =
zg(L,...,1,2',1,...,1) and A(y,1,...,1) = z(1,...,1,9,1,...,1)

¢ J

with ¢ S j. Since A is a homomorphism we get

Zoy(L, ..., 1, (y) 1,000, 1) = 2oz (1,..., 12", 1,00 1,y 1,000 ).
v J

Since n > 2, 2y = 2z, and, therefore, either 2’ = 1 or y/ = L
Suppose ' = 1; since §(C(z,1,..,1)) = C-,, by Lemma 4.1, z = 1, a
contradiction; same for y.

Let 17 be the automorphism of H™ which switches the first and the 7*!
component of H". By working with 7o A instead of A, we may assume

that
Ah,1,...,1) = z,(R,1,...,1)

for all h € H, where z, € ((H) and b’ € H.

Let now p : H® — H™ be the map defined by u(hy,ha,... ,h,) =
ZhyZhy * Zh, (R, Rh, ..oy hY) where A(hi, 1,...,1) = 2z, (R}, 1,...,1).

Since A is a homomorphism, g is also a homomorphism. Also, y is
injective; in fact, suppose zp, ---zp,(hY,... k) = (1,...,1); then
2hy - 2p, b = 1 for all ¢ and this forces by = --- = hl, = b’ € ((H).
Hence, because A € Aut (H"), zp, =---=2zp, =25 and z;’h' =1. Now,
since A(h,1,...,1) = z,(R,1,...,1), then Cin1. 1) = Cophra,.. 1)
. 6
it follows that Cupn,..n) = Cmi,.. 1)Lk, 1)(1,..,1,h) —
C., (R, 1, .., D)zp(h, 1, ..., )%z (R,1,...,1)%. Since, by

Lemma 4.4, Cp,... n) 2, Cl.... x), for some z € H, and h' € ((H)

we get zp'(h',... ,h') ~ (z,...,x). Thus, since zj'h’ = 1, z = 1. This
implies that h = 1 and the claim is established. We have proved that
€ Aut (H™).

We now extend p to an automorphism of HwrS, by defining
glhi, ... shn;o) = p(h, ... yhn)-(1,...,1;0). It is easy to check that
i € Aut (Hwr S,,) = Aut (G). Also, for each h € H,

B ob0(Cpn,.. 1) =0 "(Copnn,..)) =Cnn,... 1)-
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Therefore, by working with ! - 6 instead of #, we will assume from
now on that (Cp1,... 1)) = Cip,1,... 1) for all h € H.

Lemma 4.4. Ifn > 2 and H is a p-group, then 0(C,,... h,)) =
Clhyyenn hn)-

Proof. Let s be such that for all hy,... ,hs € H,0(Cp,,.. ho1,.. 1)) =
Clhryo o,y and 075(Chynoty 1)) = Clharhot,..,1y-  The
proof will be by induction on s.

If s = 1, this is the previous result. So, suppose s > 1 and let
hi,...,hs € H. Then, by induction,

Clhr,o haty 1) = Clha, by 1,1, 1)1, LR 1, 1)

EREEEE

0
— Clhyyo b1, 1)(Lye J1AZ, 1,000 1)

PLLO-RY T

for some © € H. Now if (hy,...,hs—1,1,...,1)(1,... A%, ..., 1) ~

(h1,...,hs,1,...,1), we are done; so suppose (hi,... ,hs_1,1,...,1)-
(1,...,h%,...,1) ~ (hy,... ,hh%, ... yhs_1,1,...,1) for some i, 1 <
i < s— 1. But then, by induction, C,, .. nhe,.. ho_1.1,..,1) 9;1
Clhy,... \hih,... )ho_1,1,...,1) Which implies that (hi,...,hRS,...  he_1,

1,...,1) ~ (hy,... ,hs,1,...,1), a contradiction. o

We have proved that 8(C,) = C, for all a € H", after 6 has been
modified by a suitable automorphism of G. It follows by the Proposition
in Valenti [5] that 8(Cy) = C, for all g € G. The theorem is proved by
[4, Proposition II1.7.2].

Added in proof. The case n = 2 has now been proved by M. Parmenter
and S.K. Sehgal and will appear in the same journal.
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