AUTOMORPHISMS OF THE INTEGRAL GROUP RING OF THE WREATH PRODUCT OF A p-GROUP WITH S_n

ANTONIO GIAMBRUNO AND SUDARSHAN K. SEHGAL

Introduction. Let S_n be the symmetric group on n symbols, and let $G = H \text{wr } S_n$ be the wreath product of a finite p-group H and S_n . Then G is the semidirect product $H^n \times S_n = \{(a_1, \ldots, a_n; \sigma) \mid a_i \in H, \sigma \in S_n\}$ with the product rule

$$(a_1,\ldots,a_n;\sigma)(b_1,\ldots,b_n;\tau)=(a_1b_{\sigma^{-1}(1)},\ldots,a_nb_{\sigma^{-1}(n)};\sigma\tau).$$

Let $\mathbf{Z}G$ be the integral group ring and $\mathbf{Q}G$ the rational group algebra of G. If u is a unit of $\mathbf{Q}G$, denote by τ_u the inner automorphism of $\mathbf{Q}G$ induced by u. In this paper, we verify a conjecture of Zassenhaus for these groups G by proving the

Theorem. Let G be the wreath product $Hwr S_n$ of a finite p-group H and S_n , $n \geq 3$. Then every normalized automorphism θ of $\mathbb{Z}G$ can be written in the form $\theta = \tau_u \circ \lambda$ where λ is an automorphism of G and u is a suitable unit of $\mathbb{Q}G$.

This result is known if $G = A \operatorname{wr} S_n$ where A is abelian [1] and if $G = S_k \operatorname{wr} S_n$ [5]. In order to prove the theorem, it suffices [4, Proposition III.7.2] to find an automorphism $\mu \in \operatorname{Aut}(G)$ such that for all $g \in G$, $\theta(C_g) = C_{\mu(g)}$. Here, by C_g is understood the sum of elements in the conjugacy class $\mathcal{C}(g)$ of g in G. We shall find in Section 3, as a consequence of a Theorem of Weiss [6], $\lambda \in \operatorname{Aut}(H^n)$ such that $\theta(C_h) = C_{\lambda(h)}$ for all $h \in H^n$. However, it is not at all clear if one can extend λ to an automorphism of G. Due to the special structure of G, it is possible to use λ to construct an automorphism of G having the desired effect on the classes in H^n . Then we invoke a result of Valenti [5] to complete the proof.

Research supported by NSERC Canada and MPI Italy. Received by the editors on September 5, 1990.

Copyright ©1992 Rocky Mountain Mathematics Consortium

2. Some basic lemmas. We describe the conjugacy classes $C_G(g)$, of elements g of G. Let $\sigma \in S_n$ and let $c(\sigma)$ denote the number of disjoint cycles of σ , including 1-cycles, and s_{μ} their lengths $(\mu = 1, \ldots, c(\sigma))$. If i_{μ} is the smallest number appearing in the μ^{th} cycle, then we can write

$$\sigma = \prod_{\mu=1}^{c(\sigma)} (i_{\mu}\sigma(i_{\mu})\cdots\sigma^{s_{\mu}-1}(i_{\mu})).$$

For each μ , define the product

$$b^{\mu} = a_{i_{\mu}} a_{\sigma(i_{\mu})} \cdots a_{\sigma^{s_{\mu}-1}(i_{\mu})},$$

and if C_1, \ldots, C_t are the distinct conjugacy classes of H, for every k with $1 \leq k \leq n$ and $1 \leq j \leq t$, set

$$x_{jk}(a_1, \ldots, a_n; \sigma) = |\{b^{\mu} \mid s_{\mu} = k \text{ and } b^{\mu} \in \mathcal{C}_j\}|.$$

These elements determine the conjugacy classes of G, in fact, by $[\mathbf{2}, \text{ Theorem } 4.2.8]$ two elements $(a_1, \ldots, a_n; \sigma)$ and $(b_1, \ldots, b_n; \tau)$ are conjugate in G if and only if the matrices $x_{jk}(a_1, \ldots, a_n; \sigma)$ and $x_{jk}(b_1, \ldots, b_n; \tau)$ are equal. In particular for an element $h = (h_1, \ldots, h_n; I)$ to be conjugate to $h' = (h'_1, \ldots, h'_n; I)$ it is necessary and sufficient that for every $g \in H$, the number of $h_i \sim g$ equals the number of $h'_i \sim g$. We shall often write (h_1, \ldots, h_n) for $(h_1, \ldots, h_n; I)$. The next three lemmas are obvious. All automorphisms we consider are normalized, i.e., they preserve augmentation.

Lemma 2.1. Let $a = (h_1, \ldots, h_n) \in H^n$ and suppose $h_1 \sim h_2 \cdots \sim h_{t_1}$, $h_{t_1+1} \sim \cdots \sim h_{t_2}, \ldots, h_{t_{m-1}+1} \sim \cdots \sim h_{t_m} = h_n$ belong to m distinct conjugacy classes in H. Then

$$\begin{aligned} |\mathcal{C}_{G}(a)| &= \binom{n}{t_1} \binom{n-t_1}{t_2} \cdots \binom{n-(t_1+\cdots+t_{m-1})}{t_m} \\ &\cdot |\mathcal{C}_{H}(h_{t_1})|^{t_1} \cdots |\mathcal{C}_{H}(h_{t_m})|^{t_m} \\ &= \frac{n!}{t_1! \cdots t_m!} |\mathcal{C}_{H}(h_{t_1})|^{t_1} \cdots |\mathcal{C}_{H}(h_{t_m})|^{t_m}. \end{aligned}$$

Lemma 2.2. Let $t_1 \geq t_2 \geq \cdots \geq t_m \geq 0$ be integers such that $t_1 + \cdots + t_m = n > 1$. If m > 1, then $n \leq n!/(t_1! \cdots t_m!)$ and equality holds if and only if $t_1 = (n-1)$, $t_2 = 1$.

Proof. Induction on n.

Lemma 2.3. For $x, y \in G$, $|\mathcal{C}_G(xy)| \leq |\mathcal{C}_G(x)||\mathcal{C}_G(y)|$.

Lemma 2.4. Let $\theta \in \text{Aut}(\mathbf{Z}G)$. Then we have

- (i) $g \in G \Rightarrow \theta(C_g) = C_x$ for some $x \in G$ with 0(g) = 0(x), $|\mathcal{C}(g)| = |\mathcal{C}(x)|$.
 - (ii) $\theta(C_q) = C_x \Rightarrow \theta(C_{q^k}) = \theta(C_{x^k})$ for all integers k.
- (iii) If $\theta(C_g)=C_x$, $\theta(C_h)=C_y$ then for some $t,z\in G$, we have $\theta(C_{gh})=C_{xy^t}=C_{x^zy}$.

Proof. See [3].

Denote by $\zeta(G)$ the center of G and let θ be a normalized automorphism of $\mathbf{Z}G$.

Lemma 2.5. If $a \in \zeta(H^n)$, then $\theta(C_a) = C_b$ for some $b \in \zeta(H^n)$.

Proof. First observe that if $g \in G$ then $|\mathcal{C}_G(g)| = n$ if and only if $g \sim (z, z', \ldots, z')$ with $z, z' \in \zeta(H)$, $z \neq z'$. As a consequence, if we write $a = (z_1, \ldots, z_n)$, $z_i \in \zeta(H)$, then for all i,

$$C_{(z_i,1,...,1)} \stackrel{\theta}{\longrightarrow} C_{(z_i',s_i,...,s_i)}, \quad \text{for some} \quad z_i',s_i \in \zeta(H).$$

Thus, since $(z_1, \ldots, z_n) = (z_1, 1, \ldots, 1)(1, z_2, \ldots, 1) \cdots (1, 1, \ldots, z_n)$, we have $C_a = C_{(z_1, \ldots, z_n)} \stackrel{\theta}{\to} C_b$ when $b = (z'_1, s_1, \ldots, s_1)(z'_2, s_2, \ldots, s_2)^{x_2} \cdots (z'_n, s_n, \ldots, s_n)^{x_n} \in \zeta(H^n)$ by (2.4), proving the result. \square

For a normal subgroup N of G, denote by $\Delta(G, N)$ the kernel of the natural map $\mathbf{Z}G \to \mathbf{Z}(G/N)$. Thus, $\Delta(G, N)$ is the ideal generated by all $1-x, x \in N$. We have

Lemma 2.6. Suppose that H is nilpotent and $\theta \in \operatorname{Aut} \mathbf{Z}G$, $G = H \operatorname{wr} S_n$. Then

- (i) $\theta(\Delta(G, H^n)) = \Delta(G, H^n)$.
- (ii) if $\theta(C_{(a_1,\ldots,a_n;\sigma)}) = C_{(b_1,\ldots,b_n;\tau)}$ then σ is conjugate to τ ($\sigma \sim \tau$).
- Proof. (i) We use induction on |H|. If H=1, then $\Delta(G,1)=\Delta(G)$, the augmentation ideal of $\mathbf{Z}G$, and $G=S_n$. Since θ is normalized we have nothing to prove. Now let $\zeta=\zeta(H)$, $\overline{H}=H/\zeta$, $\overline{G}=G/\zeta^n=(H/\zeta)\mathrm{wr}\,S_n=\overline{H}\mathrm{wr}\,S_n$. Let $h\in H^n$. We know by (2.5) that $\theta(\Delta(G,\zeta^n))=\Delta(G,\zeta^n)$. This gives an induced automorphism $\overline{\theta}$ of $\mathbf{Z}\overline{G}$. Then, by induction, $\overline{\theta}(\overline{h}-1)\in\Delta(\overline{G},\overline{H}^n)$. So $\theta(h-1)\in\Delta(G,H^n)+\Delta(G,\zeta^n)=\Delta(G,H^n)$ as desired.
- (ii) Since θ induces an automorphism of $\mathbf{Z}S_n$ by (i), the claim follows by Peterson [3]. \square
- 3. A consequence of a theorem of Weiss. We fix notation and recall some known facts. For an element $\alpha = \sum \alpha(g)g$ of a group ring RG of G over a commutative ring R, we set $\tilde{\alpha}(g) = \sum_{h \sim g} \alpha(h)$, the sum of coefficients of α over the conjugacy class of g. We denote by [RG, RG] the additive group generated by the Lie products $[\alpha, \beta] = \alpha\beta \beta\alpha$, α , $\beta \in RG$. Then

$$(3.1) \qquad [RG,RG] = \bigg\{ \sum_{x \in G} \alpha(x) x \in RG \mid \tilde{\alpha}(g) = 0 \text{ for all } g \in G \bigg\}.$$

Moreover, if we pick a set of representatives T of the conjugacy classes of G, then we have as modules

(3.2)
$$RG/[RG, RG] \cong \sum_{x \in T}^{\oplus} Rx.$$

Let $M = (a_{ij}) \in (RG)_m$ be an $m \times m$ matrix over, the not necessarily commutative ring, RG. Then the trace, namely the sum of diagonal elements modulo [RG, RG],

$$\operatorname{tr}\left(M\right) = \sum_{i} \overline{a_{ii}} \in RG/[RG, RG]$$

is well defined and has the expected properties

(3.3)
$$\operatorname{tr}(M_1 + M_2) = \operatorname{tr}(M_1) + \operatorname{tr}(M_2)$$

$$(3.4) tr(rM) = rtr(M), r \in R$$

(3.5)
$$\operatorname{tr}(M_1 M_2) = \operatorname{tr}(M_2 M_1).$$

Now, let G be a split extension $A \rtimes X$ where |X| = m and A is not necessarily abelian. Then there is an imbedding β of RG into $(RA)_m$. We shall describe this map. We have $RG = \sum_{i=1}^m RAx_i$, where $X = \{x_1, \ldots, x_m\}$ and $x_1 = 1$. Let $u = \sum u(g)g \in RG$. Suppose

$$x_i u = \sum_j f_{ij}(u) x_j.$$

Then $u \stackrel{\beta}{\to} U = [f_{ij}(u)] \in (RA)_m$. In particular, for $a \in A$,

$$a \stackrel{eta}{\longrightarrow} \left[egin{matrix} a^{x_1} & & & & & & \\ & a^{x_2} & & & & & \\ & & & \ddots & & \\ & & & a^{x_m} \end{array}
ight].$$

We write $u=\sum_g u(g)g\equiv\sum_{g\in T} \tilde{u}(g)g \mod [RG,RG]$ by (3.1). We need a formula for tr U:

Lemma 3.6. Let T' be a set of class representatives of A. Then

$$\operatorname{tr} U = \sum_{h \in T'} s_h \tilde{u}(h) h$$

where s_h is the index of the centralizers $(C_G(h):C_A(h))$.

Proof. We have $u \equiv \sum_{g \in T} \tilde{u}(g)g \mod [RG, RG]$. Further, $\operatorname{tr} \beta[RG, RG] \subseteq [RA, RA]$ as $\operatorname{tr} \beta[\alpha_1, \alpha_2] = \operatorname{tr} \beta(\alpha_1\alpha_2 - \alpha_2\alpha_1) = \operatorname{tr} (\beta(\alpha_1)\beta(\alpha_2) - \beta(\alpha_2)\beta(\alpha_1)) = 0$ by (3.5). To prove the lemma, it suffices to do so for $u = g \in G, \ U = \beta(g)$. Since both sides of the formula are zero for $g \notin A$, we may assume that $u = a \in A$. Then

$$u = a \to U = \begin{bmatrix} a^{x_1} & & \\ & a^{x_2} & \\ & & \ddots \end{bmatrix}$$

 $x_1 = 1$ and $\operatorname{tr} U = \sum_{x \in X} a^x$. Suppose that $\{a^{x_1}, \dots, a^{x_{r_1}}\}$ are A-conjugates of a among the a^x , $x \in G$ and $\{a^{x_{r_1+1}}, \dots, a^{x_{r_1+r_2}}\}$ are A-conjugates of $a^{x_{r_1+1}}$ among the a^x , $x \in G$, etc. Then we write

$$\operatorname{tr} U = (a + a^{x_2} + \dots + a^{x_{r_1}}) + (a^{x_{r_1+1}} + \dots + a^{x_{r_1+r_2}}) + \dots$$

$$= r_1 a + r_2 a^{x_{r_1+1}} + \dots$$

$$= r_1 \tilde{u}(a) a + r_2 \tilde{u}(a^{x_{r_1+1}}) a^{x_{r_1+1}} + \dots, \quad \text{as } \tilde{u}(a^x) = \tilde{u}(a) = 1.$$

It remains to observe that $r_1 = (C_G(a) : C_A(a))$ and similarly for the other r_i . This we do now.

(3.7) The number of conjugates of a fixed element $a \in A$ by $x \in X$ which are conjugate in A is $(C_G(a) : C_A(a))$.

Proof. It suffices to set up a 1-1 correspondence between $S_1 = \{\text{right cosets of } C_A(a) \text{ in } C_G(a)\}$ and $S_2 = \{x \in X \mid a^x = a^h \text{ some } h \in A\} = \{x \in X \mid x \in C_G(a)h \text{ some } h \in A\}$. Let $C_A(a)b \in S_1$. Write $b = x_1h_1 \in C_G(a)$ with $x_1 \in X$, $h \in A$. Then set $\phi: C_A(a)b \to x_1$. Notice that $x_1 = bh_1^{-1} \in C_G(a)h_1^{-1}$ and thus $x_1 \in S_2$. One now verifies easily that indeed ϕ is 1-1 and onto. \square

We need the strong form of a Theorem by Weiss [6]. Let ε be the augmentation map of a group ring. We may extend it to matrices over the group ring by applying it to the entries and call it ε^* . An invertible matrix M such that $\varepsilon^*(M)$ is the identity matrix is called an I-unit. The result then is

Lemma 3.8. Let $\mathbf{Z}_p P$ be the group ring of a finite p-group P over the p-adic integers \mathbf{Z}_p . Suppose that Q is a finite p-group of I-units contained in $(\mathbf{Z}_p P)_m$. Then there exists a matrix $M \in (\mathbf{Z}_p P)_m$ such that every element $M^{-1}qM$, $q \in Q$ is a diagonal matrix (g_1, \ldots, g_m) , $g_i \in P$.

Lemma 3.9. Let $G = P \times X$ where P is a p-group. Suppose that θ is an automorphism of $\mathbb{Z}G$ such that $\theta(\Delta(G, P)) = \Delta(G, P)$. Then there is a group automorphism λ of P such that

$$\theta(C_q) = C_{\lambda(q)}$$
 for all $g \in P$.

Proof. Write |X|=m and let β be as defined. We know $\theta(P)\in 1+\Delta(G,P)$. It follows by the definition of β that $\beta\Delta(G,P)\subseteq (\Delta P)_m$. Thus, $\beta\theta(P)\subseteq I+(\Delta P)_m$ and we can apply Weiss's theorem. It follows that there exists $M\in (\mathbf{Z}_pP)_m$ such that

(3.10)
$$M\beta\theta(P)M^{-1} \subseteq \begin{bmatrix} P & & & \\ & P & & \\ & & \ddots & \\ & & & P \end{bmatrix}.$$

For $g \in P$, we have $M\beta\theta(g)M^{-1} = \text{diag}(g_1, \ldots, g_m)$. Moreover,

$$\theta(g) = u = \sum_{x \in G} u(x)x \equiv \sum_{x \in T} \tilde{u}(x)x \mod [\mathbf{Z}G, \mathbf{Z}G].$$

We observe that $\operatorname{tr}(\beta\theta(g)) = \sum_{i=1}^m g_i$ and, by (3.6), $\operatorname{tr}(\beta\theta(g)) = \sum_{x \in T'} s_x \tilde{u}(x) x$, s_x natural numbers, T' representatives of classes of P.

Compare the two expressions for $\operatorname{tr}(\beta\theta(g))$ and use (3.2) to conclude that $\tilde{u}(x)$ are natural numbers for $x \in P$. Thus we can write

$$\theta(g) \equiv \sum_{x \in P} \tilde{u}(x)x + \sum_{x \notin P} \tilde{u}(x)x \mod [\mathbf{Z}G, \mathbf{Z}G].$$

Since $\theta(g) \in 1 + \Delta(G, P)$, it follows that the augmentation contribution from the second sum, $\sum_{x \notin P} \tilde{u}(x)$, is zero. We conclude that there is a unique $\tilde{u}(x_0)$, $x_0 \in T$, $x_0 \in P$ which equals one and the other $\tilde{u}(x)$ for $x \in T$, $x \in P$ are zero. We have thus

$$\theta(g) = x_0 + \sum_{y \notin P} \tilde{u}(y)y + \lambda_0, \qquad \lambda_0 \in [\mathbf{Z}G, \mathbf{Z}G].$$

Writing $x^G = \sum_{g \in G} x^g$, we have

$$\begin{split} \theta(g^G) &= \theta(g)^{\theta(G)} = x_0^{\theta(G)} + \sum_{y \notin P} \tilde{u}(y) y^{\theta(G)} + \lambda_1, \qquad \lambda_1 \in [\mathbf{Z}G, \mathbf{Z}G] \\ &= |G| x_0 + \sum_{y \notin P} |G| \tilde{u}(y) y + \lambda_2, \qquad \lambda_2 \in [\mathbf{Z}G, \mathbf{Z}G]. \end{split}$$

The left hand side is a multiple of a class sum $\theta(C_g)$; so should be the right hand side. Also, $x_0 \in P$ and its class does not disappear from the right hand side. Therefore, $\theta(C_g) = C_{x_0}$. Moreover, $\sum_{y \notin P} |G|\tilde{u}(y)y \in [\mathbf{Z}G,\mathbf{Z}G]$ which implies that $\tilde{u}(y) = 0$ for all $y \notin P$. Hence, we may write

$$\theta(g) = x_0 + \lambda_0, \qquad \lambda_0 \in [\mathbf{Z}G, \mathbf{Z}G], \qquad \theta(C_x) = C_{x_0}.$$

We may replace x_0 by any element conjugate to it. We shall fix this choice by

$$M^{-1}\beta\theta(g)M = \begin{bmatrix} x_0 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & \ddots \end{bmatrix},$$

namely, we take x_0 to be the first entry in the matrix $M^{-1}\beta\theta(g)M$. Define

$$\lambda: P \to P$$
 by $\lambda(g) = x_0$.

Then λ is a homomorphism. Suppose $\lambda(g)=1$, then $\lambda(g)-1\in [\mathbf{Z}G,\mathbf{Z}G]$ and $\theta(g)=\sum \alpha_g g,\ \alpha_1\neq 0.$ It follows by $[\mathbf{4},\ \mathbf{p}.\ 45]$ that $\theta(g)=1,\ g=1.$ Thus, λ is an automorphism of P and $C_{\lambda(g)}=C_{x_0}=\theta(C_g)$ for all $g\in P$ as desired. \square

4. Proof of the theorem. We need to find $\mu \in \text{Aut}(G)$ such that $\theta(C_g) = C_{\mu(g)}$. This we proceed to do in a number of steps. We shall let θ denote a normalized automorphism of $\mathbf{Z}G$.

Lemma 4.1. For $h \in H$, we have $\theta(C_{(h,1,\ldots,1)}) = C_{(h',x,\ldots,x)}$ for some $h', x \in H$.

Proof. We may clearly assume that $h \neq 1$ and n > 2. Let $C_{(h,1,\ldots,1)} \stackrel{\theta}{\to} C_{(h_1,\ldots,h_n)}$; since $|\mathcal{C}_G(h,1,\ldots,1)| = |\mathcal{C}_G(h_1,\ldots,h_n)|$, by (2.1), we get

$$n|\mathcal{C}_{H}(h)| = \frac{n!}{t_{1}! \cdots t_{m}!} |\mathcal{C}_{H}(h_{t_{1}})|^{t_{1}} \cdots |\mathcal{C}_{H}(h_{t_{m}})|^{t_{m}}.$$

If m=1, then $h_1 \sim h_2 \sim \cdots \sim h_n$ and we are done. If m>1, then $n!/(t_1!\cdots t_m!)\geq n$ and this implies $|\mathcal{C}_H(h)|\geq |\mathcal{C}_H(h_{t_1})|^{t_1}\cdots |\mathcal{C}_H(h_{t_m})|^{t_m}$. If we prove that $|\mathcal{C}_H(h)|=|\mathcal{C}_H(h_{t_1})|^{t_1}\cdots |\mathcal{C}_H(h_{t_m})|^{t_m}$, then $n!/(t_1!\cdots t_m!)=n$, and so, by (2.2), it will follow that $t_1=n-1$, $t_2=1$, $t_3=\cdots=t_n=0$, the desired conclusion. The proof will be by induction on $|\mathcal{C}_H(h)|$. If $|\mathcal{C}_H(h)|=1$, then $h\in \zeta(H)$ and, by Lemma 2.5, $|\mathcal{C}_H(h_1)|=\cdots=|\mathcal{C}_H(h_n)|=1$. Since $|\mathcal{C}_G(h,1,\ldots,1)|=n$, we are done in this case. Suppose now that $|\mathcal{C}_H(h)|>1$ and assume, by contradiction, that for some $\theta\in \operatorname{Aut}\left(\mathbf{Z}G\right),\ m>1$ and

$$|\mathcal{C}_H(h)| \geq |\mathcal{C}_H(h_{t_1})|^{t_1} \cdots |\mathcal{C}_H(h_{t_m})|^{t_m}.$$

This implies that $|\mathcal{C}_H(h_{t_i})| \leq |\mathcal{C}_H(h)|$, for all i; hence, by induction, $C_{(h_{t_i},1,\ldots,1)} \stackrel{\eta}{\to} C_{(h'_{t_i},x_{t_i},\ldots,x_{t_i})}$ for all i, for all $\eta \in \operatorname{Aut}(\mathbf{Z}G)$, where h'_{t_i},x_{t_i} depend upon η . Thus, in particular, by taking $\eta = \theta^{-1}$, one gets:

$$C_{(h,1,\ldots,1)} \xrightarrow{\theta} C_{(h_1,\ldots,h_n)} = C_{(h_1,1,\ldots,1)(1,h_2,1,\ldots,1)\cdots(1,\ldots,1,h_n)}$$

$$\xrightarrow{\theta^{-1}} C_{(h'_1,x_1,\ldots,x_1)(h'_2,x_2,\ldots,x_2)^{k_2}} \cdots (h'_n,x_n,\ldots,x_n)^{k_n}$$

for suitable elements h'_i , $x_i \in H$, $k_i \in H^n$. Thus,

$$(h'_1, x_1, \dots, x_1)(h'_2, x_2, \dots, x_2)^{k_2} \cdots (h'_n, x_n, \dots, x_n)^{k_n} \sim (h, 1, \dots, 1)$$

and this implies that $u_1u_2\cdots u_n\sim h$ where, for all i, either $u_i\sim h_i'$ or $u_i\sim x_i$. Also, notice that, since $C_{(h_i,1,\dots,1)}\stackrel{\theta^{-1}}{\to} C_{(h_i',x_i,\dots,x_i)}$, then $|\mathcal{C}_G(h_i,1,\dots,1)|=|\mathcal{C}_G(h_i',x_i,\dots,x_i)|$. Now, if $h_i'\sim x_i$, then we get $n|\mathcal{C}_H(h_i)|=|\mathcal{C}_H(x_i)|^n$, whereas if $h_i'\not\sim x_i$, then $|\mathcal{C}_H(h_i)|=|\mathcal{C}_H(h_i')||\mathcal{C}_H(x_i)|^{n-1}$. In any case, since n>2, $|\mathcal{C}_H(u_i)|\leq |\mathcal{C}_H(h_i)|$, for all i. From the above relations, we obtain:

$$\begin{aligned} |\mathcal{C}_{H}(h)| &= |\mathcal{C}_{H}(u_{1}u_{2}\cdots u_{n})| \leq |\mathcal{C}_{H}(u_{1})|\cdots|\mathcal{C}_{H}(u_{n})| \\ &\leq |\mathcal{C}_{H}(h_{1})|\cdots|\mathcal{C}_{H}(h_{n})| = |\mathcal{C}_{H}(h_{t_{1}})|^{t_{1}}\cdots|\mathcal{C}_{H}(h_{t_{m}})|^{t_{m}}, \end{aligned}$$

a contradiction. \Box

Lemma 4.2. Let n > 2, and suppose that for every $\theta \in \text{Aut}(\mathbf{Z}G)$ and $h \in H$, $\theta(C_{(h,\ldots,h)}) = C_{(xz_1,xz_2,\ldots,xz_m)}$, for some $x \in H$, $z_i \in \zeta(H)$. Then $\theta(C_{(h,1,\ldots,1)}) = C_{(h',z,\ldots,z)}$ where $h' \in H$, $z \in \zeta(H)$.

Proof. By the previous lemma, $C_{(h,1,\ldots,1)} \stackrel{\theta}{\to} C_{(h',x,\ldots,x)}$; notice that if $h' \sim x$, then $C_{(x,\ldots,x)} \stackrel{\theta^{-1}}{\to} C_{(h,1,\ldots,1)} = C_{(yz_1,\ldots,yz_n)} \Rightarrow yz_i = 1$ for some $i \Rightarrow y \in \zeta(H) \Rightarrow$ by Lemma 4.1, $x \in \zeta(H)$ and we are done. Thus, we may assume that $h' \not\sim x$, and so, since $|\mathcal{C}_G(h,1,\ldots,1)| = |\mathcal{C}_G(h',x,\ldots,x)|$, we get $|\mathcal{C}_H(h)| = |\mathcal{C}_H(h')| |\mathcal{C}_H(x)|^{n-1}$. The proof will be by induction on $|\mathcal{C}_H(h)|$. If $|\mathcal{C}_H(h)| = 1$, then $h \in \zeta(H)$ and, by Lemma 4.1, $h', x \in \zeta(H)$, proving the lemma. Suppose $|\mathcal{C}_H(h)| > 1$ and write $(h',x,\ldots,x) = (h'x^{-1},1,\ldots,1)(x,x,\ldots)$. Since n > 2, by applying (2.3), we get

$$|\mathcal{C}_{H}(h'x^{-1})| \leq |\mathcal{C}_{H}(h')||\mathcal{C}_{H}(x^{-1})| = |\mathcal{C}_{H}(h')||\mathcal{C}_{H}(x)|$$

$$\leq |\mathcal{C}_{H}(h')||\mathcal{C}_{H}(x)|^{n-1} = |\mathcal{C}_{H}(h)|.$$

Hence, by induction we can write

$$C_{(h'x^{-1},1,\ldots,1)} \stackrel{\theta^{-1}}{\to} C_{(h'',z,\ldots,z)}$$
 for some $z \in \zeta(H), h'' \in H$.

Also, by hypothesis, $C_{(x,\ldots,x)} \stackrel{\theta^{-1}}{\to} C_{(yz_1,\ldots,yz_n)}$ where $y \in H$, $z_i \in \zeta(H)$. Thus,

$$C_{(h',x,\dots,x)} = C_{(h'x^{-1},1,\dots,1)(x,\dots,x)} \overset{\theta^{-1}}{\to} C_{(h'',z,\dots,z)(yz_1,\dots,yz_n)^a}.$$

It follows that $(h,1,\ldots,1) \sim (h'',z,\ldots,z)(yz_1,\ldots,yz_n)^a = (h'',z,\ldots,z)(y^{a_1}z_{i_1},\ldots,y^{a_n}z_{i_n}) = (h''y^{a_1}z_{i_1},y^{a_2}zz_{i_2},\ldots,y^{a_n}zz_{i_n})$ where $a_1,\ldots,a_n\in H$ and $\{i_1,\ldots,i_n\}$ is a permutation of $\{1,\ldots,n\}$. Hence, since n>2, $y^{a_j}zz_{i_j}=1$, for some j; this forces $y\in \zeta(H)$, and so, since $C_{(x,\ldots,x)}\stackrel{\theta^{-1}}{\to} C_{(yz_1,\ldots,yz_n)}$, by Lemma 2.5, $x\in \zeta(H)$. This completes the proof of the lemma. \square

Lemma 4.3. Let n > 2 and suppose that H is a nilpotent group. Then, for all $\theta \in \text{Aut}(\mathbf{Z}G)$ and $h \in H$,

$$\theta(C_{(h,\ldots,h)} = C_{(x,\ldots,x)}, \text{ for some } x \in H.$$

Proof. The proof will be by induction on |H|. If |H| = 1, the lemma is trivially true. Suppose then that |H| > 1. By looking at class orders,

one immediately checks the lemma when $h \in \zeta(H)$. Suppose then that $h \notin \zeta(H) = \zeta$.

If $\theta \in \text{Aut}(\mathbf{Z}G) = \text{Aut}(H\text{wr}\,S_n)$, then θ induces an automorphism $\bar{\theta}$ of $\mathbf{Z}[(H\text{wr}\,S_n)/(\zeta^n\text{wr}\,\{1\})] \cong \mathbf{Z}[H/\zeta\text{wr}\,S_n]$: if $C_{(h,\dots,h)} \stackrel{\theta}{\to} C_{(x_1,\dots,x_n)}$ and $-: H \to H/\zeta$ is the projection map, then $C_{(\bar{h},\dots,\bar{h})} \stackrel{\bar{\theta}}{\to} C_{(\bar{x}_1,\dots,\bar{x}_n)}$; also, since $|H/\zeta| \not\subseteq |H|$, by the inductive hypothesis $C_{(\bar{h},\dots,\bar{h})} \stackrel{\bar{\theta}}{\to} C_{(\bar{y},\dots,\bar{y})}$ for some $\bar{y} \in H/\zeta$. It follows that $(\bar{x}_1,\dots,\bar{x}_n) \sim (\bar{y},\dots,\bar{y})$; hence, $\bar{x}_1 \sim \bar{x}_2 \sim \dots \sim \bar{x}_n \sim \bar{y}$ and this says that there exist $z_1,\dots,z_n \in \zeta$ such that $x_i \sim yz_i$ for $i=1,\dots,n$. Thus, $C_{(h,\dots,h)} \stackrel{\theta}{\to} C_{(yz_1,\dots,yz_n)}$, $z_i \in \zeta$. By the previous lemma, then $C_{(h,1,\dots,1)} \stackrel{\theta}{\to} C_{(h',z,\dots,z)}$ where $h' \in H, z \in \zeta$. Thus

$$\begin{split} C_{(h,\ldots,h)} &= C_{(h,1,\ldots,1)(1,h,1,\ldots,1)(1,\ldots,1,h)} \\ &\stackrel{\theta}{\to} C_{(h',z,\ldots,z)(h',z,\ldots,z)^{a_2}\cdots(h',z,\ldots,z)^{a_n}}. \end{split}$$

It follows that

$$(h', z, \ldots, z)(h', z, \ldots, z)^{a_2} \cdots (h', z, \ldots, z)^{a_n} \sim (yz_1, \ldots, yz_n).$$

Now, if for some $i, yz_i \sim z^n$, then $y \in \zeta$ and by Lemma 2.5, $h \in \zeta$, a contradiction. Thus, $yz_i \not\sim z^n$, for all i. It follows that $yz_i \sim h'^{b_j}z^{n-1}$ for all i, for some $b_j \in H$. Thus, for all $i, k, yz_i \sim h'^{b_j}z^{n-1} \sim h'^{b_l}z^{n-1} \sim yz_k$; this says that $(yz_1, \ldots, yz_n) \sim (yz_1, \ldots, yz_1)$ and the lemma is proved. \square

A consequence of the last two lemmas is the

Corollary. Let n > 2 and suppose that H is a nilpotent group. Then, for all $\theta \in \text{Aut}(\mathbf{Z}G)$ and $h \in H$, $\theta(C_{(h,1,\ldots,1)}) = C_{(h',z,\ldots,z)}$, for some $h' \in H$, $z \in \zeta(H)$.

We recall

Lemma 3.9. Let H be a p-group. If $\theta \in \operatorname{Aut}(\mathbf{Z}G)$, then there exists $\lambda \in \operatorname{Aut}(H^n)$ such that if $\theta(C_{(h_1,\ldots,h_n)}) = C_{(x_1,\ldots,x_n)}$, then $\lambda(h_1,\ldots,h_n) = (y_1,\ldots,y_n)$ where $(y_1,\ldots,y_n) \sim (x_1,\ldots,x_n)$.

Now let H be a p-group, $\theta \in \operatorname{Aut}(\mathbf{Z}G)$ and n > 2. If $h \in H$, by the Corollary above, we can write $\theta(C_{(h,1,\ldots,1)}) = C_{z_h(k,1,\ldots,1)}$ where $k \in H$ and $z_h \in \zeta(H)$. Then, by (3.9), there exists $\lambda \in \operatorname{Aut}(H^n)$ such that $\lambda(h,1,\ldots,1) = z_h(1,\ldots,1,h'_i,1,\ldots,1)$ where $h' \sim k$.

We claim that i is independent of the element h; in fact, let $x, y \in H$, $x \neq 1, y \neq 1$ and suppose by contradiction that $\lambda(x, 1, \dots, 1) = z_x(1, \dots, 1, x_i', 1, \dots, 1)$ and $\lambda(y, 1, \dots, 1) = z_y(1, \dots, 1, y_j', 1, \dots, 1)$ with $i \neq j$. Since λ is a homomorphism we get

$$z_{xy}(1,\ldots,1,(xy)',1,\ldots,1) = z_x z_y(1,\ldots,1,x_i',1,\ldots,1,y_i',1,\ldots,1).$$

Since n > 2, $z_{xy} = z_x z_y$ and, therefore, either x' = 1 or y' = 1. Suppose x' = 1; since $\theta(C_{(x,1,\ldots,1)}) = C_{z_x}$, by Lemma 4.1, x = 1, a contradiction; same for y.

Let η be the automorphism of H^n which switches the first and the i^{th} component of H^n . By working with $\eta \circ \lambda$ instead of λ , we may assume that

$$\lambda(h,1,\ldots,1)=z_h(h',1,\ldots,1)$$

for all $h \in H$, where $z_h \in \zeta(H)$ and $h' \in H$.

Let now $\mu: H^n \to H^n$ be the map defined by $\mu(h_1,h_2,\ldots,h_n) = z_{h_1}z_{h_2}\cdots z_{h_n}(h'_1,h'_2,\ldots,h'_n)$ where $\lambda(h_i,1,\ldots,1) = z_{h_i}(h'_i,1,\ldots,1)$. Since λ is a homomorphism, μ is also a homomorphism. Also, μ is injective; in fact, suppose $z_{h_1}\cdots z_{h_n}(h'_1,\ldots,h'_n)=(1,\ldots,1)$; then $z_{h_1}\cdots z_{h_n}h'_i=1$ for all i and this forces $h'_1=\cdots=h'_n=h'\in\zeta(H)$. Hence, because $\lambda\in \operatorname{Aut}(H^n),\ z_{h_1}=\cdots=z_{h_n}=z_h$ and $z_h^nh'=1$. Now, since $\lambda(h,1,\ldots,1)=z_h(h',1,\ldots,1)$, then $C_{(h,1,\ldots,1)}\stackrel{\theta}{\to} C_{z_h(h',1,\ldots,1)}$, it follows that $C_{(h,h,\ldots,h)}=C_{(h,1,\ldots,1)(1,h,1,\ldots,1)\cdots(1,\ldots,1,h)}\stackrel{\theta}{\to} C_{z_h}(h',1,\ldots,1)z_h(h',1,\ldots,1)^{a_2}\cdots z_h(h',1,\ldots,1)^{a_n}$. Since, by Lemma 4.4, $C_{(h,\ldots,h)}\stackrel{\theta}{\to} C_{(x,\ldots,x)}$, for some $x\in H$, and $h'\in\zeta(H)$ we get $z_h^n(h',\ldots,h')\sim(x,\ldots,x)$. Thus, since $z_h^nh'=1$, x=1. This implies that h=1 and the claim is established. We have proved that $\mu\in\operatorname{Aut}(H^n)$.

We now extend μ to an automorphism of $H \text{wr } S_n$ by defining $\bar{\mu}(h_1,\ldots,h_n;\sigma) = \mu(h_1,\ldots,h_n)\cdot (1,\ldots,1;\sigma)$. It is easy to check that $\bar{\mu} \in \text{Aut } (H \text{wr } S_n) = \text{Aut } (G)$. Also, for each $h \in H$,

$$\bar{\mu}^{-1} \circ \theta(C_{(h,1,\ldots,1)}) = \bar{\mu}^{-1}(C_{z_h(h',1,\ldots,1)}) = C_{(h,1,\ldots,1)}.$$

Therefore, by working with $\bar{\mu}^{-1} \cdot \theta$ instead of θ , we will assume from now on that $\theta(C_{(h,1,\ldots,1)}) = C_{(h,1,\ldots,1)}$ for all $h \in H$.

Lemma 4.4. If n>2 and H is a p-group, then $\theta(C_{(h_1,\ldots,h_n)})=C_{(h_1,\ldots,h_n)}.$

Proof. Let s be such that for all $h_1, \ldots, h_s \in H$, $\theta(C_{(h_1, \ldots, h_s, 1, \ldots, 1)}) = C_{(h_1, \ldots, h_s, 1, \ldots, 1)}$ and $\theta^{-1}(C_{(h_1, \ldots, h_s, 1, \ldots, 1)}) = C_{(h_1, \ldots, h_s, 1, \ldots, 1)}$. The proof will be by induction on s.

If s=1, this is the previous result. So, suppose s>1 and let $h_1,\ldots,h_s\in H.$ Then, by induction,

$$\begin{split} C_{(h_1,\ldots,h_s,1,\ldots,1)} &= C_{(h_1,\ldots,h_{s-1},1,\ldots,1)(1,\ldots,1,h_s,1,\ldots,1)} \\ &\stackrel{\theta}{-} C_{(h_1,\ldots,h_{s-1},1,\ldots,1)(1,\ldots,1,h_s^x,1,\ldots,1)} \end{split}$$

for some $x \in H$. Now if $(h_1, \dots, h_{s-1}, 1, \dots, 1)(1, \dots, h_s^x, \dots, 1) \sim (h_1, \dots, h_s, 1, \dots, 1)$, we are done; so suppose $(h_1, \dots, h_{s-1}, 1, \dots, 1) \cdot (1, \dots, h_s^x, \dots, 1) \sim (h_1, \dots, h_i h_s^x, \dots, h_{s-1}, 1, \dots, 1)$ for some $i, 1 \leq i \leq s-1$. But then, by induction, $C_{(h_1, \dots, h_i h_s^x, \dots, h_{s-1}, 1, \dots, 1)} \overset{\theta^{-1}}{\to} C_{(h_1, \dots, h_i h_s^x, \dots, h_{s-1}, 1, \dots, 1)}$ which implies that $(h_1, \dots, h_i h_s^x, \dots, h_{s-1}, 1, \dots, 1) \sim (h_1, \dots, h_s, 1, \dots, 1)$, a contradiction. \square

We have proved that $\theta(C_a) = C_a$ for all $a \in H^n$, after θ has been modified by a suitable automorphism of G. It follows by the Proposition in Valenti [5] that $\theta(C_g) = C_g$ for all $g \in G$. The theorem is proved by [4, Proposition III.7.2].

Added in proof. The case n=2 has now been proved by M. Parmenter and S.K. Sehgal and will appear in the same journal.

REFERENCES

- 1. A. Giambruno, S.K. Sehgal and A. Valenti, Automorphisms of the integral group ring of some wreath products, Comm. Algebra 19 (1991), 519–534.
- ${\bf 2.}$ G. James and A. Kerber, The representation theory of the symmetric group, Addison-Wesley, Reading, Mass., 1981.

- **3.** G.L. Peterson, Automorphisms of the integral group ring of S_n , Proc. Amer. Math. Soc. **59** (1976), 14–18.
 - 4. S.K. Sehgal, Topics in group rings, Marcel Dekker, New York, 1978.
- **5.** A. Valenti, On the automorphism group of the integral group ring of $S_k \operatorname{wr} S_n$, J. Pure and Applied Algebra (to appear).
 - 6. Alfred Weiss, $Rigidity\ of\ p\ -adic\ p\ -torsion,\ Ann.\ Math.\ 127\ (1988),\ 317-332.$

DIPARTIMENTO DI MATEMATICA, UNIVERSITÁ DI PALERMO, 90123 PALERMO, ITALY

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T $6G\ 2G1$