DO SUBSPACES HAVE DISTINGUISHED BASES?

DANIEL R. FARKAS AND EDWARD L. GREEN

While trying to develop a computer program to calculate resolutions for modules over path algebras, the second author conjectured the existence of an abstract version of the Gram-Schmidt process. Given a basis for a vector space, there seemed to be an "algorithmically preferred" basis for each subspace. Although this idea is quite simple-minded, it does not appear explicitly in any of the standard treatments of elementary linear algebra. On the other hand, mathematics teachers will recognize our observation as a concrete description of what we have all noticed and tried to explain when teaching Gaussian elimination. In clarifying the obvious we provide some insights into the construction of Gröbner bases, a fundamental tool in computational algebra.

We wish to take advantage of the ordering in an ordered basis for a vector space. Sometimes a concrete space comes equipped with a natural ordered basis and, sometimes, as we shall see in an application to diagonalizability, the ordering can be quite arbitrary.

Example 1. Let K be a field and let $V = K^n$ be the vector space of n-tuples with coordinates from K. The standard basis e_1, \ldots, e_n has a standard well-ordering, namely $e_1 < e_2 < \cdots < e_n$. In our discussion of row echelon form we refer to the reverse ordering on the standard basis: $e_n < e_{n-1} < \cdots < e_1$.

We introduce definitions and notations which will be used in the remainder of the paper. Let V be a vector space over a field K with a given basis B which is well-ordered by \prec. Each $v \in V$ can be written in a unique way as a linear combination of members of B; if $b \in B$ and its coefficient in this linear combination is nonzero, we will say that b occurs in v. The maximal $b \in B$ (by the ordering of B) which occurs in v is called the tip of v. If X is a nonempty subset of V, then $\text{TIP}(X)$ will consist of all basis elements in B which occur as the tip of
some nonzero vector in X. The complement of TIP(X) in B is denoted NONTIP(X).

The novelty of our presentation lies in the utilization of the next definition. Let X be a nonempty subset of V. A vector $x \in X$ is sharp for X provided its tip appears in x with coefficient 1 and no other basis element which occurs in x ever occurs as the tip of any other vector in X. Thus, if b occurs in x and $b < \text{TIP}(x)$, then $b \in \text{NONTIP}(X)$. The collection of vectors sharp for X is denoted by $\text{SH}(X)$. For emphasis, we point out that $\text{SH}(X)$ is a subset of X uniquely determined by the given basis B and its ordering. Our main goal is to prove that the set of sharp vectors for a subspace always constitutes a basis for the subspace. In what follows, W denotes a nonzero subspace of V.

Lemma 1. If $x, y \in \text{SH}(W)$, then $\text{TIP}(x) = \text{TIP}(y)$ if and only if $x = y$.

Proof. If x and y have the same tip b, then $x - y$ is a linear combination of basis vectors smaller than b which occur in either x or y. But these basis elements are in NONTIP(W). Since $x - y$ has no tip, $x - y = 0$.

Lemma 2. $\text{SH}(W)$ is a linearly independent set.

Proof. Let x_1, \ldots, x_n be distinct elements of $\text{SH}(W)$. By Lemma 1, the tip of x_i cannot occur in x_j for $j \neq i$. Consequently, if $\alpha_i \in K$ and $\sum \alpha_i x_i = 0$, then $\sum \alpha_i \text{TIP}(x_i) = 0$. It follows that each α_i is zero.

Theorem 3. Let V be a vector space with a well-ordered basis B and let W be a subspace of V. Then $\text{SH}(W)$ is a basis for W.

Proof. To clarify the argument, we introduce some suggestive notation. If $x \in \text{SH}(W)$ and $w \in W$, let $\langle w, x \rangle$ denote the coefficient of the basis element $\text{TIP}(x)$ in the expansion of w as a linear combination of members of B.
The key step is to observe that each element of $\text{TIP}(W)$ appears as the tip of some sharp vector for W. Indeed, suppose not. By well-ordering, there is a minimal basis vector b which lies in $\text{TIP}(W)$ but not in $\text{TIP}(\text{SH}(W))$; choose $w \in W$ so that b is its tip and b has coefficient 1 in w. The minimal choice of b implies that all other tips of W which occur in w lie in $\text{TIP}(\text{SH}(W))$. Consider

$$w' = w - \sum_{x \in \text{SH}(W)} \langle w, x \rangle \cdot x.$$

Then the unique tip which occurs in w' is b. That is, w' is sharp for W. We reach the contradiction that $b \in \text{TIP}(\text{SH}(W))$.

Now take an arbitrary $u \in W$. Since $u - \sum_{x \in \text{SH}(W)} \langle u, x \rangle \cdot x$ has no tip, we must have

$$(*) \quad u = \sum_{x \in \text{SH}(W)} \langle u, x \rangle \cdot x.$$

\[\square \]

The reader will notice that the formula $(*)$ is some sort of projection formula with $\text{SH}(W)$ playing the role of an orthonormal basis. As an illustration of this analogy, notice that $\text{NONTIP}(W)$ is the basis of a canonical subspace complementary to W in V.

The notion of sharp basis allows us to give a particularly transparent proof that the restriction of a diagonalizable linear transformation to an invariant subspace is diagonalizable. Suppose V is a finite dimensional space with ordered basis v_1, v_2, \ldots, v_n and T is a linear transformation on V such that $T(v_j) = \lambda_j v_j$. Assume that we are given a T-invariant subspace W of V. The proof consists of observing that a sharp vector for W is an eigenvector for T. For suppose that $v = v_k + \sum_{i \in N} \alpha_i v_i \in W$ has tip v_k and $v_i \in \text{NONTIP}(W)$ for each $i \in N$. If the eigenvalue $\lambda_k = 0$, then $T(v)$ is a linear combination of nontips for W and, consequently, $T(v) = 0$. If $\lambda_k \neq 0$, then $(1/\lambda_k)T(v)$ is also a sharp vector for W with the same tip as v; apply Lemma 1.

As another illustration of these results, we show that Gaussian elimination provides a method for finding a basis of sharp vectors, given a subspace spanned by a set of vectors in n-space. We also obtain the
uniqueness of the reduced row-echelon form without any further work. Suppose that we have vectors x_1, \ldots, x_r in Euclidean n-space K^n. Let M be the $r \times n$ matrix whose rows are x_1, \ldots, x_r and let M^* be the reduced row-echelon form of M with nonzero rows x_1^*, \ldots, x_r^*. Giving the reverse ordering to the standard basis of K^n (see Example 1), we see that x_1^*, \ldots, x_r^* are all of the sharp vectors for the row space of M^*. Since Gaussian elimination does not change the row space, we see that Gaussian elimination provides an algorithm to find the basis of sharp vectors for the span of x_1, \ldots, x_n. Moreover, the uniqueness of the set of sharp vectors yields the uniqueness of the reduced row-echelon form.

Finally, the formula (\ast) given at the end of Theorem 3 explicitly states why the basis of sharp vectors is “nice.” That is, if x is in the span of x_1, \ldots, x_r, then $x = \sum_{i=1}^r (x, x_i^*) \cdot x_i^*$.

We now make a jump in sophistication.

Example 2. Consider the commutative polynomial ring $R = K[x_1, \ldots, x_n]$ as a vector space over the field K. It has a basis B which consists of all monomials together with 1. Notice that B is a cancellative monoid: that is, if $ab = ac$, then $b = c$. If we order the variables $1 < x_1 < x_2 < \cdots < x_n$, then B can be totally ordered by using degree and lexicographic ordering. That is, if $m = x_1^{a_1} \cdots x_n^{a_n}$ and $m' = x_1^{b_1} \cdots x_n^{b_n}$, then $m < m'$ if either $\sum a_i < \sum b_i$ or if $\sum a_i = \sum b_i$ and there is a $1 \leq j \leq n$ so that $a_i = b_i$ for $i < j$ and $a_j < b_j$. Notice that \leq is a well ordering and is compatible with multiplication in B.

In this example B comes equipped with an intrinsic partial order, divisibility. Explicitly, $x_1^{e_1} \cdots x_n^{e_n}$ divides $x_1^{f_1} \cdots x_n^{f_n}$ when $e_1 \leq f_1, \ldots,$ and $e_n \leq f_n$. This can also be regarded as the point-wise partial order on the n-fold Cartesian product of the natural numbers with the usual ordering. Divisibility enjoys an often proved property that has been attributed to Dickson (cf. [4]): any infinite subset of B contains two monomials which are comparable by divisibility. Equivalently, \mathbb{N}^n has no infinite antichains. (An antichain is a set of pairwise incomparable elements.) It is not difficult to verify this assertion by induction on n.

Fix a degree-lexicographic order $<$ on B and let I be a nonzero ideal of the polynomial ring R. A finite set of polynomials $G = \{z_1, \ldots, z_m\}$ in I is called a Gröbner basis for I if the ideal generated by the tips of
G contains the tips of all polynomials in \mathcal{I}, i.e.,

$$\text{ideal generated by } \text{TIP}(G) = \text{ideal generated by } \text{TIP}(\mathcal{I}).$$

It is straightforward to show that a Gröbner basis for \mathcal{I} generates \mathcal{I}. A distinguished Gröbner basis is lurking behind all of the clutter which has accumulated to this point. Let $\text{min}\text{TIP}(\mathcal{I})$ denote the collection of those monomials which are minimal in $\text{TIP}(\mathcal{I})$ with respect to divisibility. As we observed in the previous paragraph, $\text{min}\text{TIP}(\mathcal{I})$ is finite. A polynomial in $\text{SH}(\mathcal{I})$ is \textit{minimally sharp} provided its tip lies in $\text{min}\text{TIP}(\mathcal{I})$; obviously, there are finitely many of these.

\textbf{Theorem 4.} Let \mathcal{I} be a nonzero ideal of R. If $<$ is a degree-lexicographic ordering on the monomials, then the finite set of minimally sharp polynomials of \mathcal{I} constitutes a Gröbner basis for \mathcal{I}.

\textit{Proof.} It suffices to prove that every member of $\text{TIP}(\mathcal{I})$ is divisible (in the monoid B) by some element in $\text{min}\text{TIP}(\mathcal{I})$. If $b \in \text{min}\text{TIP}(\mathcal{I})$, choose $c \in \text{min}\text{TIP}(\mathcal{I})$ minimal with respect to c dividing b. We know from Theorem 3 that c is the tip of some sharp polynomial which is, necessarily, minimally sharp. \hfill \Box

The astute reader will notice that Theorem 4 is a constructive proof of the Hilbert Basis Theorem. It is the first step of a theory initiated by Hermann and developed by Buchberger \cite{4}, providing a framework for machine computations which answer questions about commutative rings.

Our construction of the set of minimally sharp polynomials illustrates the concept of a \textit{reduced} Gröbner basis as described in \cite[Theorem 8.3]{4}. It is worth noting that $\text{NONTIP}(\mathcal{I})$ is determined by the minimally sharp polynomials and vice versa. This can be stated more precisely in the next result whose proof is left to the reader.

\textbf{Proposition 5.} Let R, \mathcal{I}, and $<$ be as in Theorem 4. Then $\text{NONTIP}(\mathcal{I})$ is the set of monic monomials which are not divisible by an element in $\text{min}\text{TIP}(\mathcal{I})$. Furthermore, $\text{min}\text{TIP}(\mathcal{I})$ is the set of monomials not in $\text{NONTIP}(\mathcal{I})$ whose proper divisors all lie in $\text{NONTIP}(\mathcal{I})$.
Example 3. Let $R = K[x,y]$ where K is a field of characteristic zero, and let B be the ordered monoid described in Example 2, subject to $x < y$. Suppose \mathcal{I} is the ideal generated by $xy^2 - x^2$ and $x^2y - y^2$. The minimally sharp polynomials for \mathcal{I} turn out to be $xy^2 - x^2,$ $x^3y - y^3$, $y^3 - x^3,$ and $x^4 - y^2$. The point, of course, is that this list can be calculated algorithmically where, after comparing common factors of the tips of a generating set of polynomials, simple operations on polynomials are used to create a new generating set from the previous one [3, Section 3]. Having the minimal sharp polynomials we conclude $\text{minTIP}(\mathcal{I}) = \{xy^2, x^3y, y^3, x^4\}$. By Proposition 5, we see that $\text{NONTIP}(\mathcal{I}) = \{1, x, x^2, x^3, y, y^3, xy\}$. As observed earlier, the K-linear span of $\text{NONTIP}(\mathcal{I})$ is complementary to the subspace \mathcal{I}. (Each polynomial $f \in R$ decomposes uniquely as $f_1 + f_2$ where $f_1 \in \mathcal{I}$ and f_2 lies in this complement, an example of the so-called “rest of f” or normal form of a polynomial [3, Definition 2.3 or 2, Corollary 8.2].) In particular, R/I is seven-dimensional.

We close this note by clarifying the noetherian argument which appeared implicitly in Theorem 4. Recall that if \leq is a partial order on a set Y then a subset $X \subseteq Y$ is an order ideal provided that $x \in X$ and $y \geq x$ imply that $y \in X$. The next lemma is due to Higman; a partial order satisfying any of the equivalent properties is called a well partial ordering.

Lemma 6 ([1]). The following conditions on a partially ordered set Y are equivalent:

(i) The ascending chain condition holds for the order ideals of Y.

(ii) Every infinite sequence of elements of Y has an infinite ascending subsequence.

(iii) Every infinite sequence of elements of Y has an ascending subsequence of length 2.

(iv) There exist in Y neither an infinite strictly descending sequence nor an infinite antichain.

In Example 2, divisibility on B is a well partial order. The degree-lexicographic order is monoidal in the following sense: $1 \leq a$ for all
$a \in B$ and $b \leq c$ implies $bd \leq cd$ (and $db \leq dc$) for all $d \in B$. There is a lovely interconnection between these properties.

Lemma 7 ([3, Lemma 1.3]). Assume that M is a monoid which is cancellative on each side and that \leq is a monoidal total order on M.

1. If a divides b, then $a \leq b$.

2. If left divisibility on M is a well partial order, then \leq is a well order.

Proof. (1) We are supposing that $ac = b$ for some $c \in M$.

If $a > b$, then $ac > bc$. But $c \geq 1$ implies that $bc \geq b$. Hence, $b = ac > b$, a contradiction. Therefore, $a \leq b$.

(2) Apply (1) and, for example, (iii) of Lemma 6. □

As one consequence, the assumption that \leq is a degree-lexicographic ordering in Theorem 4 can be replaced with the hypothesis that \leq is a monoidal total order on the collection of monomials. These same ideas can be exploited to give a very short proof for a theorem of J. Lewin.

Example 4. Consider the free algebra $F = K\langle x_1, \ldots, x_n \rangle$. As a vector space over K, it has a basis B consisting of all words in the alphabet x_1, \ldots, x_n. Now suppose that L is a semigroup ideal of B, a nonempty subset closed under left and right multiplication by elements in B. Let \overline{F} be the monomial algebra obtained by factoring out the two-sided algebra ideal generated by L. It is not difficult to check that \overline{F} has as basis $\overline{B} = B \setminus L$. Moreover, one can obtain the multiplication table for \overline{B} by contracting L to zero; if the product of two words in \overline{B} lies in L, their product in \overline{F} is 0.

Theorem 8 ([2]). If a monomial algebra F is right noetherian, then it is finitely presented. That is, the ideal generated by the collection of monomial relations, L, is finitely generated as a bimodule or two-sided ideal.
Proof. Given $a, b \in B$ we say that b is a subword of a when there exist $u, v \in B$ such that $a = uvb$. The partial order of being a subword is the noncommutative analogue of divisibility. Thus the role of the minimal tips for the ideal generated by L is played by

$$\min(L) = \{a \in L \mid \text{no proper subword of } a \text{ lies in } L\}.$$

It suffices to prove that $\min(L)$ is finite.

Let \leq denote the partial order of left divisibility on B. If X is an order ideal of B, then the vector space span of X is a right ideal of F. Since F is right noetherian, condition (i) of Lemma 6 tells us that \leq is a well partial order. Consequently, B has no infinite antichains under \leq.

Suppose $\min(L)$ is infinite. If $a \in \min(L)$ write $a = \tilde{i}(a)r(a)$ where $\tilde{i}(a)$ is the initial letter of a. Then $r(a) \in B$. Since the alphabet is finite, there exists a member x_j of the alphabet such that

$$\{r(a) \mid x_j r(a) \in \min(L)\}$$

is infinite. It follows that at least two elements in this set are comparable, say $r(a) < r(b)$. Then $x_j r(a) < x_j r(b)$ and, so, $a < b$. But now a is a proper subword of b while both lie in $\min(L)$. \qed

REFERENCES

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061