ALGEBRAIC CHARACTERIZATION OF DISTRIBUTIONS OF RAPID GROWTH

SALEH ABDULLAH

ABSTRACT. In this paper we obtain algebraic characterization of the space \mathcal{K}_M' of distributions which grow no faster than $\exp(M(kx))$, and the space $O_c'(\mathcal{K}_M':\mathcal{K}_M')$ of its convolution operators; where M is an index function and k is a positive integer. We show that $\mathcal{K}_M', O_c'(\mathcal{K}_M':\mathcal{K}_M')$ are homeomorphic to the vector spaces of module homeomorphisms $\operatorname{Hom}_{\mathcal{K}_M}(\mathcal{K}_M,O_c)$ and $\operatorname{Hom}_{\mathcal{K}_M}(\mathcal{K}_M,\mathcal{K}_M)$, respectively. The relation between these results and invertibility of convolution operators in \mathcal{K}_M' is being discussed.

1. Introduction. Algebraic characterization of the space \mathcal{D}' of Schwartz distributions was obtained by Struble [7], he proved that \mathcal{D}' is homeomorphic to the vector space of homeomorphisms from \mathcal{D} into \mathcal{E} over \mathcal{D} , when both spaces are provided with the topology of pointwise convergence, where \mathcal{D} and \mathcal{E} are the Schwartz spaces of test functions. Abdullah [1] obtained algebraic characterizations of the space \mathcal{K}'_p of distributions which grow no faster than $\exp(k|x|^p)$; $p \geq 1$, $k \geq 0$ and the space $O'_c(\mathcal{K}'_p:\mathcal{K}'_p)$ of its convolution operators. It has been shown that \mathcal{K}_p' is homeomorphic to the vector space $\operatorname{Hom}_{\mathcal{K}_p}(\mathcal{K}_p, O_c(\mathcal{K}_p':\mathcal{K}_p'))$ of homeomorphism from \mathcal{K}_p into $O_c(\mathcal{K}_p':\mathcal{K}_p')$ over \mathcal{K}_p and that $O_c'(\mathcal{K}_p':\mathcal{K}_p')$ \mathcal{K}_p' is homeomorphic to the ring $\operatorname{Hom}_{\mathcal{K}_p}(\mathcal{K}_p,\mathcal{K}_p)$ of homeomorphisms from \mathcal{K}_p into itself over \mathcal{K}_p . All the spaces involved were provided with their strong topologies. In this paper we extend the results of [1] to the spaces \mathcal{K}_M' and $O_c'(\mathcal{K}_M':\mathcal{K}_M')$, where \mathcal{K}_M' is the space of distributions which grow no faster than $\exp(M(kx))$ and $O'_c(\mathcal{K}'_M:\mathcal{K}'_M)$ is the space of its convolution operators (see the next section for definitions). We show that \mathcal{K}_M' is homeomorphic to the vector space Hom $_{\mathcal{K}_M}(\mathring{\mathcal{K}}_M, O_c(\mathcal{K}'_M : \mathcal{K}'_M))$ of module homeomorphisms from \mathcal{K}_M into $O_c(\mathcal{K}'_M : \mathcal{K}'_M)$ over \mathcal{K}_M , and that $O'_c(\mathcal{K}'_M : \mathcal{K}'_M)$ is homeomorphic to the ring $\operatorname{Hom}_{\mathcal{K}_M}(\mathcal{K}_M,\mathcal{K}_M)$ of module homeomorphisms from \mathcal{K}_M into itself over \mathcal{K}_M . On the one hand, the topological spaces \mathcal{K}_M' and $O_c'(\mathcal{K}_M':\mathcal{K}_M')$ are assigned algebraic structures. And, on the other

Received by the editors on April 2, 1990, and in revised form on September 7, 1990.

hand, the purely algebraic structures $\operatorname{Hom}_{\mathcal{K}_M}(\mathcal{K}_M, O_c(\mathcal{K}_M' : \mathcal{K}_M'))$ and $\operatorname{Hom}_{\mathcal{K}_M}(\mathcal{K}_M, \mathcal{K}_M)$ are assigned topologies. With the topologies they will be equipped with, both spaces are Montel and bornologic. Moreover, we investigate the relation between the unit elements of $\operatorname{Hom}_{\mathcal{K}_M}(\mathcal{K}_M, \mathcal{K}_M)$ and the invertible convolution operators in \mathcal{K}_M' .

2. Notations and preliminary results. By N^n , R^n , we denote the sets of n-tuples of nonnegative integers and real numbers, respectively. For $\alpha = (\alpha_1, \ldots, \alpha_n)$ in N^n , we denote by $|\alpha|$ the sum $\alpha_1 + \cdots + \alpha_n$. By \mathcal{D} and \mathcal{D}' we denote Schwartz spaces of test functions and distributions, by \mathcal{S} we denote the space of infinitely differentiable functions rapidly decreasing at infinity and its strong dual \mathcal{S}' is the space of tempered distribution. For any distribution T we denote by T its image by symmetry with respect to the origin and by $\tau_h T$, $h \in \mathbf{R}^n$, the translation of T by h. For $\alpha \in N^n$ we denote by D^{α} the differential operator $D_1^{\alpha_1}D_2^{\alpha_2}\cdots D_n^{\alpha_n}$; where $D_j=(1/i)(\partial/\partial x_j)$; $j=1,2,\ldots,n$. Let E be a locally convex topological vector space and E' its strong dual; for a bounded subset B of E we denote by B^O the polar of B, which is the set of all T in E' such that $|\langle T, \varphi \rangle| < 1$ for all φ in B. For a topological vector space V, we denote by $L_b(V)$ the space of all continuous linear maps in V.

The spaces \mathcal{K}_M , $O_c(\mathcal{K}_M', \mathcal{K}_M')$, \mathcal{K}_M' and $O_c'(\mathcal{K}_M' : \mathcal{K}_M')$ of test functions and distributions are the same as in [3]. The index function M is a continuous, increasing and convex function on $[0, \infty)$ with M(0) = 0 and $M(\infty) = \infty$. For negative x we define M(x) to be M(-x). For $x = (x_1, \ldots, x_n)$ in R^n , $n \geq 2$, M(x) is given by $M(x_1) + M(x_2) + \cdots + M(x_n)$. \mathcal{K}_M is the space of all infinitely differentiable functions φ such that

$$\omega_k(\varphi) = \sup_{\substack{x \in \mathbf{R}^n \\ |\alpha| \le k}} e^{M(kx)} |D^{\alpha}\varphi(x)| < \infty, \qquad k = 0, 1, 2, \dots.$$

 \mathcal{K}_M is equipped with the topology generated by the semi-norms ω_k ; $k=0,1,2,\ldots$. It has been proved that \mathcal{K}_M is a Frechet nuclear space, moreover it's Montel (hence reflexive), bornologic and is a normal space of distributions. By \mathcal{K}_M' we denote the strong dual of \mathcal{K}_M provided with the topology of uniform convergence on bounded subsets of \mathcal{K}_M ; \mathcal{K}_M' is the space of distributions which do not grow faster

than $\exp(M(kx))$ for some $k \geq 0$. The elements of \mathcal{K}_M' are called distributions of rapid growth. It turns out that \mathcal{K}_M' is bornologic. For $T \in \mathcal{K}_M'$ and $\varphi \in \mathcal{K}_M$ we define the convolution of T and φ by the relation $(T \star \varphi)(x) = \langle T_y, \varphi(x-y) \rangle$. We denote by $O_c(\mathcal{K}_M' : \mathcal{K}_M')$ the union of the spaces w^k \mathcal{S} ; $k = 0, 1, 2, \ldots$, provided with the inductive limit topology, where w^k denotes $\exp(M(kx))$, and w^{-k} denotes $\exp(-M(kx))$. The space $O_c'(\mathcal{K}_M' : \mathcal{K}_M')$ is defined as the intersection $\cap_{k=0}^{\infty} w^{-k} \mathcal{S}'$ provided with τ_p the projective limit topology of the spaces $w^{-k} \mathcal{S}'$, as $k \to \infty$. $O_c(\mathcal{K}_M' : \mathcal{K}_M')$ is the strong dual of $O_c'(\mathcal{K}_M', \mathcal{K}_M')$ (see [3]). These spaces will be denoted by O_c and O_c' for simplicity. It turns out (see [3]) that on O_c' the topology τ_p coincides with the topology τ_b (induced by $L_b(\mathcal{K}_M : \mathcal{K}_M)$) of uniform convergence on bounded subsets of \mathcal{K}_M . In the case $M(t) = t^p/p$; p > 1, the spaces \mathcal{K}_M , \mathcal{K}_M' are the spaces \mathcal{K}_p and \mathcal{K}_p' of Sampson and Zielezny [6].

The following two theorems will be used later in the proofs. Theorem A is due to Pahk (see [5, Theorem 2, Chapter 1], the proof of Theorem B is similar to a corresponding result for the special case $M(t) = t^p/p$, p > 1, and will be omitted (see [6, Theorem 2]).

Theorem A. Let T be any distribution; the following statements are equivalent.

- i) T is in \mathcal{K}'_M .
- ii) $T = D^{\alpha}[w^k f]$, for some multi-index α , a positive integer k and a bounded continuous function f.
- iii) For every φ in \mathcal{D} there exists a positive integer k_1 so that $(T \star \varphi)(x) = O(w^{k_1})$ as $|x| \to \infty$.

The following theorem characterizes the elements of \mathcal{K}_M' which are in O_c' .

Theorem B. Let S be any element of \mathcal{K}'_M ; the following statements are equivalent.

- (1) S is in O'_c .
- (2) The distributions $w^k S$, $k = 0, 1, 2, \ldots$, are in S'.

(3) For any $k \geq 0$, there exists a nonnegative integer m such that

$$S = \sum_{|\alpha| \le m} D^{\alpha} f_{\alpha}$$

where, for each α , f_{α} is a continuous function such that $w^k f_{\alpha} \in L^{\infty}$.

- (4) For any k, the set of distributions $\{w^{-k}(h)\tau_h S : h \in \mathbf{R}^n\}$ is bounded in \mathcal{D}' .
- (5) $S \star \varphi$ is in \mathcal{K}_M for all φ in \mathcal{K}_M and the map $\varphi \to S \star \varphi$ from \mathcal{K}_M into \mathcal{K}_M is continuous.

We remark that the condition $S \star \varphi \in \mathcal{K}_M$ for all $\varphi \in \mathcal{K}_M$ (by itself) implies (3). Condition (3) implies continuity of the map $\varphi \to S \star \varphi$ from \mathcal{K}_M into \mathcal{K}_M .

For $S \in O'_c$ and $T \in \mathcal{K}'_M$ we define $S \star T$, the convolution of S and T, by $\langle S \star T, \varphi \rangle = \langle T, \overset{\vee}{S} \star \varphi \rangle$; $\varphi \in \mathcal{K}_M$, where $(\overset{\vee}{S} \star \varphi)(x) = \langle S_y, \overset{\vee}{\varphi}(x-y) \rangle$. Let (T_j) be a sequence in \mathcal{K}'_M converging to 0. From property (5) of the above theorem it follows that $S \star B$ is bounded in \mathcal{K}_M for every bounded subset B of \mathcal{K}_M . Hence, $\langle S \star T_j, \varphi \rangle = \langle T_j, \overset{\vee}{S} \star \varphi \rangle \to 0$ uniformly in $\varphi \in B$. Since \mathcal{K}'_M is bornological it follows that the map $T \to S \star T$ from \mathcal{K}'_M into \mathcal{K}'_M is continuous. The space O'_c is the space of convolution operators in \mathcal{K}'_M .

We define the space O_m to be the space of all infinitely differentiable functions f such that for every multi-index α there exists a positive integer k such that $D^{\alpha}f(x) = O(w^k)$ as $|x| \to \infty$. From the definition of \mathcal{K}_M and Leibniz formula, it follows that $f\varphi \in \mathcal{K}_M$ whenever $\varphi \in \mathcal{K}_M$. We provide O_m with the topology τ generated by the semi-norms

$$\rho_{k,\varphi}(f) = \sup_{\substack{x \in \mathbf{R}^n \\ |\alpha| \le k}} w^k |D^{\alpha}(f\varphi)(x)|; \qquad k = 0, 1, 2, \dots, \ \varphi \in \mathcal{K}_M.$$

The following theorem characterizes the elements of O_m .

Theorem C [4, Theorem 7]. Let $f \in \mathbf{C}^{\infty}(\mathbf{R}^n)$. The following statements are equivalent.

(1) f is in O_m .

- (2) The linear mapping $\varphi \to f \varphi$ from \mathcal{K}_M into itself is continuous.
- (3) The linear mapping $T \to fT$ from \mathcal{K}'_M into itself is continuous.

We remark that the topology τ of O_m coincides with the topology τ_b (induced by $L_b(\mathcal{K}_M)$) of uniform convergence on bounded subsets of \mathcal{K}_M and with the topology τ_s of simple (pointwise) convergence on the elements of \mathcal{K}_M (see [4, Theorem 8]).

Denote by $\operatorname{Hom}(\mathcal{K}_M, O_c)$ (respectively, $\operatorname{Hom}(\mathcal{K}_M)$) the space of all module homeomorphisms from \mathcal{K}_M into O_c (respectively, from \mathcal{K}_M into \mathcal{K}_M) where \mathcal{K}_M and O_c are considered as modules over \mathcal{K}_M with convolution as multiplication. Hence, F is in $\operatorname{Hom}(\mathcal{K}_M, O_c)$ (or $\operatorname{Hom}(\mathcal{K}_M)$) if $F(\varphi \star \psi) = F(\varphi) \star \psi$ for all φ, ψ in \mathcal{K}_M .

3. The results. The first result provides the algebraic characterization of the spaces \mathcal{K}_M' and O_c' as the spaces $\operatorname{Hom}(\mathcal{K}_M, O_c)$ and $\operatorname{Hom}(\mathcal{K}_M)$, respectively.

Theorem 1.

- (1) \mathcal{K}'_M is isomorphic to $\operatorname{Hom}(\mathcal{K}_M, O_c)$.
- (2) O'_c is isomorphic to $\operatorname{Hom}(\mathcal{K}_M)$.

Proof. (1) Let $T \in \mathcal{K}'_M$ be given, define the map F_T from \mathcal{K}_M into O_c by $F_T(\varphi) = T \star \varphi$; it is clear that F_T is in $\operatorname{Hom}(\mathcal{K}_M, O_c)$. Conversely, for F in $\operatorname{Hom}(\mathcal{K}_M, O_c)$, the element T_F in \mathcal{K}'_M such that $F(\varphi) = T_F \star \varphi$ is found as follows. Let (ψ_n) be a sequence in \mathcal{D} so that $\psi_n \to \delta$ in $\mathcal{E}' \subset O'_c$; thus, for any φ in \mathcal{K}_M , $\psi_n \star \varphi \to \varphi$ in \mathcal{K}_M . Hence $F(\varphi) = \delta \star F(\varphi) = \lim_{n \to \infty} \psi_n \star F(\varphi) = \lim_{n \to \infty} F(\psi_n) \star \varphi$ where the convergence is in O_c . In particular, this is true when φ is in \mathcal{D} ; thus, the sequence of distributions $(F(\psi_n))$ converges in \mathcal{D}' to a distribution T_F . Hence, $T_F \star \varphi = F(\varphi)$ is in O_c for any φ in \mathcal{D} . By Theorem A, it follows that $T_F \in \mathcal{K}'_M$. One also has $F(\varphi) = T_F \star \varphi$ for all φ in \mathcal{K}_M . T_F is well defined, i.e., if T_F and S_F are elements of \mathcal{K}'_M which correspond to F, then $T_F = S_F$ as elements of \mathcal{K}'_M . Indeed, $(T_F - S_F) \star \varphi = 0$ as an element of O_c , for all φ in \mathcal{K}_M . Hence, $\langle T_F - S_F, \varphi \rangle = 0$ for all φ in \mathcal{K}_M , and $T_F = S_F$. Finally, one can see that the above established

correspondences between \mathcal{K}_M' and $\operatorname{Hom}\left(\mathcal{K}_M,O_c\right)$ are inverses of each other

(2) To every S in O'_c corresponds the homeomorphism F_S , where $F_S(\varphi) = S \star \varphi$ for all φ in \mathcal{K}_M . From Theorem B, it follows that F_S is in $\operatorname{Hom}(\mathcal{K}_M)$. Conversely, given F in $\operatorname{Hom}_{\mathcal{K}_M}(\mathcal{K}_M,\mathcal{K}_M)$, as in the proof of part (1), there exists an S_F in \mathcal{K}'_M such that $F(\varphi) = S_F \star \varphi$ for all φ in \mathcal{K}_M . Once more, Theorem B implies that S_F is in O'_c . Moreover, S_F is well defined. For, if T_F is another element of O'_c which corresponds to F, then, as in part (1), $T_F = S_F$ on \mathcal{K}_M . Since \mathcal{K}_M is dense in O_c , it follows that $T_F = S_F$ on O_c . Thus, O'_c and $\operatorname{Hom}(\mathcal{K}_M)$ are isomorphic. \square

Since \mathcal{K}_M' is a topological space, the isomorphism of part (1) of Theorem 1 induces in a canonical way a unique topology on Hom (\mathcal{K}_M, O_c) —the induced topology—with which it becomes a topological isomorphism. A subset V of Hom (\mathcal{K}_M, O_c) is a member of 0-neighborhood base in the induced topology if its inverse image under the isomorphism of Theorem 1 is a member of 0-neighborhood base of the topology of \mathcal{K}_M' . Similarly, the isomorphism of part (2) of Theorem 1 induces a natural topology on Hom (\mathcal{K}_M) , with which it becomes a topological isomorphism.

Theorem 2.

(1) The topology induced on $\operatorname{Hom}(\mathcal{K}_M, O_c)$ by the isomorphism $F \to T_F$ can be defined by the following base of neighborhoods of 0:

$$W(B, U) = \{ F \in \text{Hom}(\mathcal{K}_M, O_c) : F(\varphi) \in U \text{ for every } \varphi \in B \},$$

where B runs through all the bounded subsets of \mathcal{K}_M and U runs through all neighborhoods of 0 in O_c .

(2) The topology induced on $\operatorname{Hom}(\mathcal{K}_M)$ by the isomorphisms $F \to S_F$ can be defined by the following base of neighborhoods of 0:

$$V(B, W) = \{ F \in \text{Hom}(\mathcal{K}_M) : F(\varphi) \text{ is in } W \text{ for all } \varphi \text{ in } B \},$$

where B runs through all bounded subsets of K_M and W runs through all neighborhoods of 0 in K_M .

Proof. Since (2) follows immediately from the isomorphisms $F \to S_F$, we only need to prove (1). To show that the topology of $\operatorname{Hom}(\mathcal{K}_M,O_c)$ with base of neighborhoods of 0 consisting of the W(B,U)'s is weaker than the induced topology, we prove continuity of the map Λ_1 from \mathcal{K}_M' into $\operatorname{Hom}(\mathcal{K}_M,O_c)$ which takes prove continuity of the map Λ_1 from \mathcal{K}_M' into $\operatorname{Hom}(\mathcal{K}_M,O_c)$ which takes T to F_T . Without loss of generality, we can assume that U is the polar of B' a bounded subset of (O'_c,τ_p) . From [3, Theorem 2] it follows that B' is bounded in (O'_c,τ_b) . Consider the set

$$V(B, U) = \{ T_F \in \mathcal{K}'_M : F \in W(B, U) \}$$

= $\{ T_F \in \mathcal{K}'_M : T_F \star \varphi \in U \text{ for all } \varphi \in B \}.$

It's clear that $V(B,U) = \Lambda_1^{-1}(W(B,U))$ and V(B,U) is the polar of $B' \star B$. The continuity of Λ_1 will be established provided we show that $B' \star B$ is a bounded subset of \mathcal{K}_M . For this, let U_1 be a neighborhood of 0 in \mathcal{K}_M ; we proceed to find $\lambda > 0$ such that $\lambda(B'\star B)\subset U_1$. Consider the set $N(B,U_1)=\{S\in O'_c:S\star\varphi\in U_1\}$ for all φ in B, $N(B, U_1)$ is a member of 0-neighborhood base for the topology τ_b of O'_c . Since B' is bounded in O'_c , there exists a $\lambda > 0$ such that $\lambda B' \subset N(B, U_1)$, i.e., $(\lambda B') \star \varphi \in U_1$ for all φ in B. Hence, $\lambda(B' \star B) = (\lambda B') \star B = \bigcup_{\varphi \in B} ((\lambda B') \star \varphi) \subset U_1$, i.e., $B' \star B$ is bounded in \mathcal{K}_M . Finally, we show that every member of the base of neighborhoods of 0 of the induced topology is W(B, U) for some bounded subset B of \mathcal{K}_M and some U a neighborhood of 0 in \mathcal{K}_M . To establish this, we show that the map Λ_2 from Hom (\mathcal{K}_M, O_c) to \mathcal{K}_M' taking F to T_F is continuous. Let $V(B_1) = B_1^0$, the polar of B_1 a bounded subset of \mathcal{K}_M be a member of 0-neighborhood base in \mathcal{K}'_M ; we find B_2 a bounded subset of \mathcal{K}_M and U_2 a neighborhood of 0 in O_c such that $\Lambda_2^{-1}(V(B_1)) = W(B_2, U_2) = \{ F \in \text{Hom}(\mathcal{K}_M, O_c) : F(\varphi) \in U_2 \text{ for } \}$ all φ in B_2 . Take $B_2 = B_1 = \{ \varphi : \varphi \in B_1 \}$ and $U = \{ \delta \}^O$, the polar of $\{\delta\}$ which is a bounded subset of O'_c . One has

$$W(B_2, U_2) = \{ F \in \operatorname{Hom}(\mathcal{K}_M, O_c) : F(\overset{\vee}{\varphi}) \in \{\delta\}^O \text{ for all } \varphi \in B_1 \};$$

$$= \{ F \in \operatorname{Hom}(\mathcal{K}_M, O_c) \} : |\langle T_F \star \overset{\vee}{\varphi}, \delta \rangle| < 1 \text{ for all } \varphi \in B_1 \};$$

$$= \{ F \in \operatorname{Hom}(\mathcal{K}_M, O_c) : |\langle T_F, \varphi \rangle| < 1 \text{ for all } \varphi \in B_1 \};$$

$$= \Lambda_2^{-1}(V(B_1)).$$

This completes the proof of the theorem.

As a result of theorems (1) and (2), we can provide \mathcal{K}'_M with the topology τ_c , which has as 0-neighborhood base all the sets

$$V(B, W) = \{ T \in \mathcal{K}'_M : T^* \varphi \in W \text{ for all } \varphi \in B \},$$

where B runs through all bounded subsets of \mathcal{K}_M and W runs through all neighborhoods of 0 in O_c . Thus, we have the following

Corollary. On \mathcal{K}'_M , the topologies τ_c and the strong dual topology are equal.

From Theorems 1 and 2, it follows that the elements of Hom (\mathcal{K}_M, O_c) and Hom (\mathcal{K}_M) are linear and continuous.

A convolution operator $S \in O'_c$ is said to be invertible if it maps \mathcal{K}'_M onto itself. In [2] we proved that a convolution operator S is invertible if and only if its Fourier transform \hat{S} is slowly decreasing, i.e., there exist positive constants C, N and A such that

$$\sup_{\substack{|z| \le A\Omega^{-1}[\log(2+|\xi|)]\\ z \in \mathbf{C}^n}} |\hat{S}(z+\xi)| \ge C(1+|\xi|)^{-N}; \qquad \xi \in \mathbf{R}^n,$$

where Ω^{-1} is the inverse function of Ω which is the Young's dual of M. It is natural to ask how invertibility of S is related to invertibility of F_S as an element of the ring of module homeomorphisms $\operatorname{Hom}(\mathcal{K}_M)$. Actually, for F in $\text{Hom}(\mathcal{K}_M)$, we can talk about three types of invertibility: a) invertibility of F as a ring homeomorphism (i.e., F is bijective), b) invertibility of F in the sense that S_F is invertible as a convolution operator on \mathcal{K}_M' , c) invertibility of F as a member of the division ring Hom (\mathcal{K}_M) . It is clear that the third type is the weakest. For, if $F_1F_2 = 0$, then $S_{F_1} \star S_{F_2} = 0$; hence, $\hat{S}_{F_1} \cdot \hat{S}_{F_2} = 0$. Since \hat{S}_{F_1} and \hat{S}_{F_2} are entire functions (by the Paley-Wiener theorem, see [2, p. 199]) it follows that either $\hat{S}_{F_1} = 0$ or $\hat{S}_{F_2} = 0$, i.e., $F_1 = 0$ or $F_2 = 0$. The second type of invertibility is the most interesting one. It would be interesting to know the field of quotients of Hom (\mathcal{K}_M) . This could give new conditions for solvability of convolution equations in \mathcal{K}'_M . The following result asserts that the first type of invertibility is much stronger than the second type.

Theorem 3. Let F be any element in $\operatorname{Hom}(\mathcal{K}_M)$. F is bijective if and only if $S_F \star O'_c = O'_c$.

Proof. Suppose that F is bijective, let F^{-1} denote its inverse. For any φ in \mathcal{K}_M , there exists ψ in \mathcal{K}_M such that $\varphi = S_F \star \psi$. Hence $F^{-1}(\varphi) = \psi, F^{-1} \in \operatorname{Hom}(\mathcal{K}_M)$, and there exists T in O'_c such that $F^{-1}(\varphi) = T \star \varphi$ for every φ in \mathcal{K}_M . Thus F^{-1} is continuous. Define the linear functional u on \mathcal{K}_M by $u(\varphi) = F^{-1}(\varphi)(0)$. Since F is injective, it follows that u is well defined. If (φ_j) is a sequence in \mathcal{K}_M which converges to 0 in \mathcal{K}_M , then $F^{-1}(\varphi_j)(0) \to 0$, hence $u(\varphi_j) \to 0$. Thus, u is continuous, i.e., $u \in \mathcal{K}'_M$. Moreover, $S_F \star u = \delta$. Indeed, for any φ in \mathcal{K}_M one has (assuming without loss of generality $S = S_F$),

$$\langle S_F \star u, \varphi \rangle = \langle u, \overset{\vee}{S}_F \star \varphi \rangle = F^{-1}(F(\varphi)(0)) = \varphi(0) = \langle \delta, \varphi \rangle.$$

Finally, to show that $S_F \star O'_c = O'_c$, it suffices to show that if T is in \mathcal{K}'_M with $S_F \star T = \delta$, then $T^* \varphi$ is in \mathcal{K}_M for every φ in \mathcal{K}_M . Let $\psi = F^{-1}(\varphi)$, then $S_F \star \psi = F(\psi) = \varphi$. Applying T to both sides one gets $T \star (S_F \star \psi) = \psi = T \star \varphi$, hence $T \star \varphi \in \mathcal{K}_M$. Moreover, $F_T = F^{-1}$. Hence, the map $\varphi \to T \star \varphi$ from \mathcal{K}_M into \mathcal{K}_M is continuous, i.e., T is in O'_c .

Conversely, if $S \star O'_c = O'_c$, then there exists a $T \in O'_c$ such that $S \star T = T \star S = \delta$. Hence, $F_T = F_S^{-1}$. Moreover, for any φ in \mathcal{K}_M one has $\varphi = S \star (T \star \varphi) = S \star \psi$. Thus, $S \star \mathcal{K}_M = \mathcal{K}_M$ and F_S is onto. The continuity of F_T is trivial since T is in O'_c . This completes the proof of the theorem. \square

We remark that \mathcal{K}_M is also module with function addition and multiplication. In this case we define $\operatorname{Hom}(\mathcal{K}_M)$ as the set of all continuous module homeomorphisms of \mathcal{K}_M over \mathcal{K}_M , i.e., for all φ, ψ in \mathcal{K}_M , $F(\varphi + \psi) = F(\varphi) + F(\psi)$, $F(\varphi\psi) = \varphi F(\psi)$, and the map $\varphi \to F(\varphi)$ is continuous. The following result characterizes the elements of $\operatorname{Hom}(\mathcal{K}_M)$.

Theorem 4. The homeomorphism F is in $\text{Hom } (\mathcal{K}_M)$ if and only if there exists an f in O_m such that $F(\varphi) = f \varphi$ for every φ in \mathcal{K}_M .

Proof. For any f in O_m , define the linear map F_f from \mathcal{K}_M into itself by $F_f(\varphi) = f\varphi$. From Theorem C, it follows that F_f is in $\operatorname{Hom}(\mathcal{K}_M)$. Conversely, given F in $\operatorname{Hom}(\mathcal{K}_M)$, we proceed to find $f \in O_m$ such that $F(\varphi) = f\varphi$ for all φ in \mathcal{K}_M . Since \mathcal{K}_M is dense in O_m and the constant function 1 is in O_m , there exists a sequence (ψ_j) in \mathcal{K}_M which converges to 1 in O_m . Hence, for every φ in \mathcal{K}_M , the sequence $(\psi_j\varphi)$ converges to φ in \mathcal{K}_M . By continuity of F, it follows that the sequence $(F(\psi_j\varphi)) = (F(\psi_j)\varphi)$ converges to $F(\varphi)$ in \mathcal{K}_M . Hence, the sequence $(F(\psi_j))$ converges in O_m . Let $f(x) = \lim_{j \to \infty} F(\psi_j)(x)$. Thus, for any φ in \mathcal{K}_M , one has

$$F(\varphi) = F(1, \varphi) = F(\lim_{j \to \infty} \psi_j \varphi) = \lim_{j \to \infty} F(\psi_j \varphi) = (\lim_{j \to \infty} F(\psi_j)) \varphi = f\varphi.$$

The isomorphism of Theorem 4 induces in a canonical way a unique topology on $\operatorname{Hom}(\mathcal{K}_M)$ with which it becomes a topological isomorphism. This topology can be described in several ways as the remark which follows Theorem C asserts. \square

Acknowledgment. The author would like to thank the referee for his comments and suggestions which led to a substantial improvement of an earlier form of the paper.

REFERENCES

- 1. S. Abdullah, Algebraic characterization of K_p ; $p \geq 1$, Rev. Roumaine Math. Pures Appl. 34 (1989), 269–276.
- 2. —, Solvability of convolution equations in \mathcal{K}'_M , Hokkaido Math. J. 17 (1988), 197–209.
- 3. ——, On the topology of the space of convolution operators in \mathcal{K}_M' , Proc. Amer. Math. Soc. **110** (1990), 177–185.
 - 4. ——, On distributions of rapid growth, Portugal. Math. 47 (1990), 191–204.
- **5.** D. Pahk, Hypoelliptic convolution operators in the spaces \mathcal{K}_M' , Ph.D. Thesis, State University of New York at Buffalo, N.Y., 1981.
- **6.** G. Sampson and Z. Zielezny, Hypoelliptic convolution equations in K_p , p > 1, Trans. Amer. Math. Soc. **223** (1976), 133–154.
- 7. R. Struble, An algebraic view of distributions and operators, Studia Math. 37 (1971), 103-109.

DEPARTMENT OF MATHEMATICS, KUWAIT UNIVERSITY, P.O. Box 5969, 13060 SAFAT. KUWAIT

Current address: Department of Mathematics, Jordan University of Science & Technology, Irbid, Jordan