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ALGEBRAIC CHARACTERIZATION OF
DISTRIBUTIONS OF RAPID GROWTH

SALEH ABDULLAH

ABSTRACT. In this paper we obtain algebraic characteri-
zation of the space K/, of distributions which grow no faster
than exp(M (kz)), and the space O((KC}, : K!,) of its con-
volution operators; where M is an index function and k is a
positive integer. We show that K, ;, OL (K", : K,) are home-
omorphic to the vector spaces of module homeomorphisms
Hom k., (Kps,Oc) and Hom k., (Kpz, Kpr), respectively. The
relation between these results and invertibility of convolution
operators in IC’M is being discussed.

1. Introduction. Algebraic characterization of the space D’ of
Schwartz distributions was obtained by Struble [7], he proved that D’
is homeomorphic to the vector space of homeomorphisms from D into £
over D, when both spaces are provided with the topology of pointwise
convergence, where D and £ are the Schwartz spaces of test functions.
Abdullah [1] obtained algebraic characterizations of the space Kj, of
distributions which grow no faster than exp(k|z/P); p > 1, k > 0 and
the space O (K}, : K},) of its convolution operators. It has been shown
that K, is homeomorphic to the vector space Hom ., (K, O (K, : K})
of homeomorphism from &, into O.(K, : K},) over K, and that O (K, :
K;,) is homeomorphic to the ring Hom i, (), K;y) of homeomorphisms
from K, into itself over KC,. All the spaces involved were provided
with their strong topologies. In this paper we extend the results of
[1] to the spaces K}, and OL(K', : K',), where K/, is the space of
distributions which grow no faster than exp(M (kz)) and O.(K}, : KYy)
is the space of its convolution operators (see the next section for
definitions). We show that K, is homeomorphic to the vector space
Hom k,, (K, Oc (K'Y, :+ K)y)) of module homeomorphisms from /s
into O.(K', : K;) over Kpr, and that OL(K', : K),) is homeomorphic
to the ring Hom x,, (Cpr, Kpr) of module homeomorphisms from KCps
into itself over Kps. On the one hand, the topological spaces K, and
OL(K%; : KY) are assigned algebraic structures. And, on the other

Received by the editors on April 2, 1990, and in revised form on September 7,
1990.

Copyright ©1992 Rocky Mountain Mathematics Consortium

1217



1218 S. ABDULLAH

hand, the purely algebraic structures Hom x,, (s, O.(K), : KYy))
and Hom x,, (Knr, Kpr) are assigned topologies. With the topologies
they will be equipped with, both spaces are Montel and bornologic.
Moreover, we investigate the relation between the unit elements of
Hom k,, (K, Kar) and the invertible convolution operators in ).

2. Notations and preliminary results. By N", R", we denote the
sets of n-tuples of nonnegative integers and real numbers, respectively.
For o = (aq,...,a,) in N™, we denote by |a| the sum a3 + --- +
a,. By D and D' we denote Schwartz spaces of test functions and
distributions, by & we denote the space of infinitely differentiable
functions rapidly decreasing at infinity and its strong dual S’ is the

space of tempered distribution. For any distribution 7" we denote by %
its image by symmetry with respect to the origin and by 7,7, h € R",
the translation of 7" by h. For « € N™ we denote by D the differential
operator D{* D52 --- D&~; where D; = (1/i)(0/0x;); j = 1,2,... ,n.
Let F be a locally convex topological vector space and E’ its strong
dual; for a bounded subset B of E we denote by B? the polar of B,
which is the set of all T in E’ such that |(T,¢)| < 1 for all ¢ in B.
For a topological vector space V, we denote by L,(V) the space of all
continuous linear maps in V.

The spaces Ku, O (K4, KYy), Ky and OL(K), @ KYy) of test
functions and distributions are the same as in [3]. The index function
M is a continuous, increasing and convex function on [0,00) with
M(0) = 0 and M(c0) = oo. For negative z we define M(z) to
be M(—z). For z = (z1,...,2z,) in R", n > 2, M(z) is given
by M(z1) + M(z2) + -+ + M(z,). K is the space of all infinitely
differentiable functions ¢ such that

wi(p) = sup eM*D)| DY (z)| < oo, k=0,1,2,....

K is equipped with the topology generated by the semi-norms wy;
k = 0,1,2,.... It has been proved that Kjs is a Frechet nuclear
space, moreover it’s Montel (hence reflexive), bornologic and is a normal
space of distributions. By K, we denote the strong dual of K,
provided with the topology of uniform convergence on bounded subsets
of Kar; Ky is the space of distributions which do not grow faster
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than exp(M (kx)) for some k& > 0. The elements of K, are called
distributions of rapid growth. It turns out that K, is bornologic. For
T € K4 and ¢ € Kp we define the convolution of T' and ¢ by the
relation (T'x¢)(z) = (Ty,p(xz — y)). We denote by O (K, : K};)
the union of the spaces w* S; k = 0,1,2,..., provided with the
inductive limit topology, where w* denotes exp(M (kz)), and w—*
denotes exp(—M (kz)). The space OL(K), : K},) is defined as the
intersection ﬂg‘;ow’kS’ provided with 7, the projective limit topology
of the spaces w™*S', as k — 0o. O.(Kh, : K,) is the strong dual of
OL(K';, Khy) (see [3]). These spaces will be denoted by O, and O., for
simplicity. It turns out (see [3]) that on O the topology 7, coincides
with the topology 73 (induced by Ly(Kazs : Kar)) of uniform convergence
on bounded subsets of ps. In the case M(t) = t?/p; p > 1, the spaces
K, Ky are the spaces K, and K, of Sampson and Zielezny [6].

The following two theorems will be used later in the proofs. Theorem
A is due to Pahk (see [5, Theorem 2, Chapter 1], the proof of Theorem
B is similar to a corresponding result for the special case M (t) = t?/p,
p > 1, and will be omitted (see [6, Theorem 2]).

Theorem A. Let T be any distribution; the following statements are
equivalent.

i) T isin K.
ii) T = D*[wkf], for some multi-index o, a positive integer k and
a bounded continuous function f.

ili) For every ¢ in D there exists a positive integer ki so that
(T xp)(z) = O(wk) as |z| — .

The following theorem characterizes the elements of K}, which are in
O..

Theorem B. Let S be any element of K'; the following statements
are equivalent.

(1) S isin OL.
(2) The distributions w*S, k =0,1,2,..., are in S'.
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(3) For any k > 0, there exists a nonnegative integer m such that

§= ) D%

lal<m

where, for each a, f. is a continuous function such that w*f, € L>.
(4) For any k, the set of distributions {w*(h)T,S : h € R"} is
bounded in D’.

(5) Sx¢ isin Ky for all ¢ in Ky and the map o — S* ¢ from Kyy
into KCpr s continuous.

We remark that the condition Sx¢ € Ky for all p € Ky (by itself)
implies (3). Condition (3) implies continuity of the map ¢ — Sx¢p
from KCps into KCpy.

For S € O/ and T € K, we define S % T, the convolution of S and T,

v v
by (S*T, ) = (I, Sxp); ¢ € Kar, where (Sxp)(x) = (Sy,p(z — y)).
Let (Tj) be a sequence in K}, converging to 0. From property (5)
of the above theorem it follows that S*B is bounded in Cp; for

every bounded subset B of Ky;. Hence, (S+Tj,¢) = (Tj,,\S/'*go) -0
uniformly in ¢ € B. Since K}, is bornological it follows that the map
T — S*T from K, into K, is continuous. The space O., is the space
of convolution operators in ).

We define the space O,, to be the space of all infinitely differentiable
functions f such that for every multi-index « there exists a positive
integer k such that D*f(x) = O(w*) as |z| — co. From the definition
of Kps and Leibniz formula, it follows that fo € Ky whenever ¢ € Ky,.
We provide O, with the topology T generated by the semi-norms

P (f) = sup w*|D*(fo)(z)l;  k=0,1,2,..., ¢ € Ku.

The following theorem characterizes the elements of O,,.

Theorem C [4, Theorem 7]. Let f € C>®(R"™). The following
statements are equivalent.

(1) f is in Opy.
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(2) The linear mapping ¢ — fo from Ky into itself is continuous.

(3) The linear mapping T — T from K, into itself is continuous.

We remark that the topology 7 of O,, coincides with the topology
7 (induced by Ly(Kps)) of uniform convergence on bounded subsets of
K and with the topology 75 of simple (pointwise) convergence on the
elements of KCps (see [4, Theorem 8]).

Denote by Hom (KCps, O.) (respectively, Hom (Kps)) the space of all
module homeomorphisms from Kp; into O, (respectively, from Cps
into KCpr) where Kpr and O, are considered as modules over Cps
with convolution as multiplication. Hence, F' is in Hom (Kjps, O.) (or
Hom (KCpr)) if F(p*1) = F(p)x for all ¢, in Kpy.

3. The results. The first result provides the algebraic charac-
terization of the spaces K/, and O/ as the spaces Hom (K7, O.) and
Hom (Kpr), respectively.

Theorem 1.
(1) Ky is isomorphic to Hom (Kpz, O.).
(2) O is isomorphic to Hom (KCpy).

Proof. (1) Let T € K!, be given, define the map Fr from Ky
into O, by Fr(p) = T*p; it is clear that Fr is in Hom (K, O,).
Conversely, for F' in Hom (K, O.), the element Ty in K, such that
F(p) = TF * ¢ is found as follows. Let (¢,,) be a sequence in D so that
Yn, — 6 in & C O.; thus, for any ¢ in Ky, ¥, x¢ — ¢ in Ky Hence
F(p) = 6xF(p) = limy, 00 ¥n * F(p) = limy, 00 F(¢,) x ¢ where the
convergence is in O.. In particular, this is true when ¢ is in D; thus,
the sequence of distributions (F (1)) converges in D’ to a distribution
Tr. Hence, Tr*xp = F(yp) is in O, for any ¢ in D. By Theorem A, it
follows that T € K. One also has F'(¢) = Tpx ¢ for all p in Kps. T
is well defined, i.e., if T and SF are elements of K, which correspond
to F, then Tr = S as elements of K. Indeed, (Ir — Sp)*xp =0 as
an element of O, for all ¢ in Kp;. Hence, (IF — SF,p) = 0 for all ¢
in Ky, and T = Sp. Finally, one can see that the above established
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correspondences between K, and Hom (Cps, O,) are inverses of each
other.

(2) To every S in O, corresponds the homeomorphism Fg, where
Fs(p) = Sx¢ for all ¢ in Kpr. From Theorem B, it follows that Fg
is in Hom (KCpr). Conversely, given F' in Hom x,, (Car, Kar), as in the
proof of part (1), there exists an Sp in K, such that F(p) = Spxp
for all ¢ in Kps. Once more, Theorem B implies that Sz is in O..
Moreover, Sg is well defined. For, if T is another element of O/, which
corresponds to F, then, as in part (1), Tr = Sp on Kjs. Since Ky is
dense in O, it follows that T = SF on O.. Thus, O and Hom (KCps)
are isomorphic. ]

Since K, is a topological space, the isomorphism of part (1)
of Theorem 1 induces in a canonical way a unique topology on
Hom (Kpr, O.)—the induced topology—with which it becomes a topo-
logical isomorphism. A subset V of Hom (Kpz,O.) is a member of
0-neighborhood base in the induced topology if its inverse image under
the isomorphism of Theorem 1 is a member of 0-neighborhood base of
the topology of ;. Similarly, the isomorphism of part (2) of Theorem
1 induces a natural topology on Hom (KCps), with which it becomes a
topological isomorphism.

Theorem 2.

(1) The topology induced on Hom (Kpr,O.) by the isomorphism
F — Tr can be defined by the following base of neighborhoods of 0:

W(B,U) = {F € Hom (K, O.) : F(p) € U for every ¢ € B},

where B runs through all the bounded subsets of Kpr and U runs through
all neighborhoods of 0 in O,.

(2) The topology induced on Hom (Kpr) by the isomorphisms F — Sg
can be defined by the following base of neighborhoods of 0:

V(B,W) ={F € Hom (Kys) : F(p) is in W for all ¢ in B},

where B runs through all bounded subsets of KCpy and W runs through
all neighborhoods of 0 in Kpy.
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Proof. Since (2) follows immediately from the isomorphisms F' — Sp,
we only need to prove (1). To show that the topology of Hom (K, O,)
with base of neighborhoods of 0 consisting of the W (B, U)’s is weaker
than the induced topology, we prove continuity of the map A; from
K, into Hom (ICar, O.) which takes prove continuity of the map Aq
from KXK', into Hom (Cps, O.) which takes T' to Fr. Without loss of
generality, we can assume that U is the polar of B’ a bounded subset of
(O, 1p). From [3, Theorem 2] it follows that B’ is bounded in (O, 7).
Consider the set

V(B,U) = {Tr € Ky : F € W(B,U)}
={Tr €Ky : Trxp €U for all p € B}.

It’s clear that V(B,U) = A7Y(W(B,U)) and V(B,U) is the polar
of B'xB. The continuity of A; will be established provided we
show that B’xB is a bounded subset of K. For this, let U; be
a neighborhood of 0 in KCp;; we proceed to find A > 0 such that
A(B'xB) C Uy. Consider the set N(B,Uy) = {S € O, : Sxp € Uy
for all ¢ in B}, N(B,U;) is a member of O-neighborhood base for
the topology 7, of O,. Since B’ is bounded in O/, there exists a
A > 0 such that AB’ ¢ N(B,Uy), i.e.,, (AB")xp € U for all ¢ in
B. Hence, A(B'*B) = (AB')* B = Upecp((AB') x¢) C Uy, i.e., B'xB
is bounded in Ky;. Finally, we show that every member of the base
of neighborhoods of 0 of the induced topology is W(B,U) for some
bounded subset B of Kj; and some U a neighborhood of 0 in ;. To
establish this, we show that the map Ay from Hom (Kjps, O.) to K,
taking F to Tp is continuous. Let V(B;) = BY, the polar of B; a
bounded subset of ICp; be a member of 0-neighborhood base in K';; we
find B2 a bounded subset of Kjy; and Us a neighborhood of 0 in O, such
that A;'(V(By)) = W(By,Uz) = {F € Hom (K, 0.) : F(p) € U, for

v
all ¢ in By}. Take By = By = {(,vo :p € B} and U = {6}9, the polar
of {0} which is a bounded subset of O.. One has

W (Ba,Us) = {F € Hom (Kas, 0.) : F() € {61° for all ¢ € By };
= {F € Hom (K1, 0.)} : |(Tp % ¢,8)| < 1 for all € By };
={F € Hom (K1, O.) : [{Tr, )| <1 for all ¢ € B;};

= Ay (V(By)).
This completes the proof of the theorem. o
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As a result of theorems (1) and (2), we can provide K, with the
topology 7., which has as 0-neighborhood base all the sets

V(B,W)={T € K}y : T*¢ € W for all ¢ € B},

where B runs through all bounded subsets of s and W runs through
all neighborhoods of 0 in O,.. Thus, we have the following

Corollary. On K, the topologies 7. and the strong dual topology
are equal.

From Theorems 1 and 2, it follows that the elements of Hom (KCps, O,)
and Hom (KCps) are linear and continuous.

A convolution operator S € O, is said to be invertible if it maps K,
onto itself. In [2] we proved that a convolution operator S is invertible
if and only if its Fourier transform § is slowly decreasing, i.e., there
exist positive constants C;, N and A such that

sup 1S(z+ 9| >Ca+Eh™;  €eR,
IZ\SAQ’I[(lé)g(HI&I)]
zeC™

where Q71 is the inverse function of 2 which is the Young’s dual of M.
It is natural to ask how invertibility of S is related to invertibility of
Fs as an element of the ring of module homeomorphisms Hom (Kpy).
Actually, for F' in Hom (K,), we can talk about three types of in-
vertibility: a) invertibility of F' as a ring homeomorphism (i.e., F is
bijective), b) invertibility of F' in the sense that Sy is invertible as a
convolution operator on K, ¢) invertibility of F as a member of the
division ring Hom (ICps). It is clear that the third type is the weakest.
For, if F1F; = 0, then Sg, xSp, = 0; hence, S’pl -SFQ = 0. Since 5’F1
and S F, are entire functions (by the Paley-Wiener theorem, see [2, p.
199)) it follows that either Sz, = 0 or Sp, = 0, i.e., F; = 0 or Fp = 0.
The second type of invertibility is the most interesting one. It would be
interesting to know the field of quotients of Hom (XCpz). This could give
new conditions for solvability of convolution equations in K’,. The fol-
lowing result asserts that the first type of invertibility is much stronger
than the second type.
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Theorem 3. Let F be any element in Hom (KCps). F is bijective if
and only if SpxO, = O.,.

Proof. Suppose that F is bijective, let F~! denote its inverse. For
any ¢ in Ky, there exists ¢ in Ky such that ¢ = Sp*1. Hence
F~1(p) = ¢,F~! € Hom (Kys), and there exists T in O/, such that
F~1(p) = T'x ¢ for every o in Kp;. Thus F~! is continuous. Define the
linear functional u on Ky by u(¢) = F~(¢)(0). Since F is injective,
it follows that u is well defined. If (y;) is a sequence in KCp; which
converges to 0 in Ky, then F~1(yp;)(0) — 0, hence u(p;) — 0. Thus,
u is continuous, i.e., u € K',. Moreover, Spxu = ¢. Indeed, for any ¢

v
in Cps one has (assuming without loss of generality S = Sg),

(Srxt,9) = (u, Spxp) = FL(F(9)(0) = 9(0) = (5, ).

Finally, to show that SpxO, = O/, it suffices to show that if T is
in K, with Sp+xT = 4, then T*¢ is in Ky for every ¢ in Kpr. Let
Y = F71(yp), then Spxp = F()) = ¢. Applying T to both sides
one gets Tx(Spx1¢) = v = T*p, hence Txp € Kp. Moreover,
Fr = F~1. Hence, the map ¢ — T * ¢ from K into K, is continuous,
ie, Tisin O..

Conversely, if SxO. = O, then there exists a T' € O, such that
SxT =T%S = 0. Hence, Fr = Fs_l. Moreover, for any ¢ in s one
has ¢ = Sx (T *p) = S*1. Thus, S*Kpr = Ky and Fs is onto. The
continuity of Fr is trivial since T is in O’. This completes the proof of
the theorem. o

We remark that Kp; is also module with function addition and
multiplication. In this case we define Hom (Kps) as the set of all
continuous module homeomorphisms of Kp; over Ky, ie., for all
0, in Ky, Flo +9) = Flp) + F(¥), F(py) = ¢F(¢), and the
map ¢ — F(yp) is continuous. The following result characterizes the
elements of Hom (KCpz).

Theorem 4. The homeomorphism F is in Hom (Kyr) if and only if
there exists an f in Oy, such that F(p) = fo for every ¢ in K.
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Proof. For any f in Oy, define the linear map Fy from Kjs into itself
by F¢(¢) = fe. From Theorem C, it follows that Fy is in Hom (Kpz).
Conversely, given F in Hom (K,s), we proceed to find f € O,, such
that F(p) = fo for all ¢ in Kps. Since Kpy is dense in O, and the
constant function 1 is in O,,, there exists a sequence (1;) in Ky which
converges to 1 in O,,. Hence, for every ¢ in K7, the sequence (¢;¢)
converges to ¢ in Kps. By continuity of F, it follows that the sequence
(F(vj¢)) = (F(¢¥;)p) converges to F(p) in Kpr. Hence, the sequence
(F(%;)) converges in O,,. Let f(z) = lim;_, o F(¢;)(z). Thus, for any
@ in Kps, one has

F(p)=F(1,p) = F(jlgrﬁgo Yip) = jlgr{go F(jp) = (jlggo F(y;))e = fo.

The isomorphism of Theorem 4 induces in a canonical way a unique
topology on Hom (KCps) with which it becomes a topological isomor-
phism. This topology can be described in several ways as the remark
which follows Theorem C asserts. ]
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