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STURMIAN THEORY FOR
NONSELFADJOINT SYSTEMS

E.C. TOMASTIK

ABSTRACT. The theory of pg-positive operators is used to
systematically develop the Sturmian properties of the second
order system (1) (r(¢)z’)’ + g(t)z = 0, where r(¢t) and g(t)
are n X n matrices of continuous functions on [a,b]. Since
no symmetry assumptions are made on either of the matrices
r(t) or g(t), (1) will in general be nonselfadjoint. However,
all results are new even if (1) is selfadjoint. It is assumed
that »~1(¢) and ¢(t) are positive with respect to some cone,
K, in Euclidean space with nonempty interior K°. With
some additional assumptions on r(t), the following basic result
is given. If b is the first conjugate point to a, then there
exists a unique (up to multiplication by a constant) nontrivial
solution, z(t), to (1) with z(a) = 0 = z(b) and z(t) € K° on
(a,b).

1. Introduction. In this paper the theory of pp-positive operators
defined on a Banach space equipped with a cone is used to develop
certain Sturmian properties of the system of second order differential
equations

(1) (r()z")' + q(t)z =0,

where 7(t) and ¢(t) are n x n matrices of continuous functions on [a, ],
a > 0, and r(t) is nonsingular for all ¢ € [a,b] and fat r=1(s)ds is
nonsingular for all ¢ € (a,b]. Since no symmetry assumptions are
made on either of the matrices 7(t) or ¢(¢), (1) will in general be
nonselfadjoint. However, all results presented here are new even if
(1) is selfadjoint.

Equation (1) with r(¢) = E, the identity matrix, has been studied
recently by a number of people (see [1-12, 14, 16-21]). It needs to be
emphasized, however, that nobody has obtained results for conjugate
points for the more general equation (1). Keener and Travis [10] used
po-positive operators to study conjugate and focal points of (1) when
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r(t) = E and the author [19, 21] used po-positive operators to study
focal points of (1) in the general case.

Throughout this paper it is assumed that some cone, K, in the
Euclidean space R™, with nonempty interior, has been given. One
thinks of this cone as the positive cone.

Also, throughout this paper it is assumed that »~!(¢) and ¢(t) satisfy
the following positivity condition. For all ¢ € [a, b],

rHt) : KO — K9, q(t) : K — K;

and given any a < 8 with («,8) C [a,b], there exists 7 € (a, 8) such
that
q(r) : K — {0} = K°,

where K denotes the interior of K. A further condition on r(t) is
given later.

Notice that all these conditions permit r(t) to be the identity matrix.
Also notice that the hypothesis on ¢(t) is not quite as restrictive as
that found in [10], and thus the results are new when r(t) = E.

A number of authors, when considering (1) with r(¢) = E, have
assumed that all the elements of ¢(t) are nonnegative. This is the case
when the cone K is the first quadrant. A more general cone than this
(but along these same lines) is to assume that some partition of {I,J}
of the integers {1,...,n} has been given, i.e.,, TUJ ={1,...,n} with
INJ = ¢, and that the set K is given by

(2) K=A{(z1,...,2n) 1€l =220, i€ J = 2 <0}

Then if ¢ = (g;;), one can assume that for any point at which ¢;; # 0
that sign{g;;} = 6;0; where §; = 1if ¢ € I and §; = -1 if i € J, (see
[19-21]). (In this context, one obtains the first quadrant by having
J = ¢.) Notice that for this type of cone, none of the elements of ¢(t)
can ever be identically zero on any subinterval or change sign. These
latter two facts follow from the simple observation that if e; is the
j-th unit basis vector, then ge; = (g1j,... ,¢n;)* where “«” indicates
transpose.

But notice that, in general, the cone K may overlap quadrants and
some of the components of 7! or ¢ may oscillate, unlike the examples
given in the previous paragraph.
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A point ¢(a) € (a,b] is called the (first) conjugate point of a relative
to (1) if there exists a nontrivial solution z(t) of (1) such that z(a) =
z(c(a)) = 0, and there is no nontrivial solution z(t) of (1) with
z(a) = z(B) = 0 with a < 8 < c(a). If (1) does not possess such a
conjugate point on (a, b], then (1) is said to be disconjugate on [a, b].

Consider now the differential operator
D(t) = —(r()2' (1))
subject to the conjugate point boundary condition
(3) z(a) = z(b) = 0.

It is easy to see that the Green’s matrix for this differential operator
subject to the boundary condition (3) is given by

PN E) de(f) rh(E) de) T [ () de,
bt s)— aS8§t<b

W IOED=ZN e (P et [ (e) e,
agtﬁsﬁb

It has been assumed that fat r~1(€) d¢ is nonsingular for ¢ € (a,b].
This assumption is necessary since there exist examples where 7(t) is
nonsingular on [a,b] and 7“_ 1(t) maps K° into K° and even r(t) is
symmetric but that f r~1(€) d¢ is singular. There is one important
case where this is not so. If r(t) is symmetrlc and positive definite on
[a,b], then it is very easy to see that f r~1(§) d¢ is positive definite
and thus nonsingular for ¢ > a.

Let B be a real Banach space and K a (positive) cone in B. We say
that u < v if v — u € K. A bounded linear operator L : B — B is
said to be po-positive with respect to the cone I provided there exists
a nonzero element pug € K such that for every nonzero element u € K,
there exist positive constants ki and k2 and a positive integer v such
that

kipo < LYu < kapg

with respect to the cone K. The following is a fundamental result on
po-positive operators (cf. [13]).
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Theorem 1. If L is a compact pg-positive linear operator with
respect to the cone K, then L has exactly one (normalized) eigenvector
in IC and the corresponding eigenvalue is simple, positive, and larger
than the absolute value of any other eigenvalue.

2. Additional hypotheses on r(t). One critical fact about the
Green’s matrix, g(b,t, s), that will be needed for the proofs given here
to work is that g(b, ¢, s) must map K° into K°. It is natural to wonder
if r=1(t) : K® — K° for all t € [a, b], then does g(b,t, s) also? Examples

indicate that the answer is no. Additional hypotheses will be needed

on r 1.

Define the sets K; and D; by

K, = < / e dE) (K),
= (f ) d@)lm

The following condition on r(¢) will be assumed throughout the rest of
this paper:

K; C Ky, D, C D; for all t € (a, b].

Examples indicate that these two conditions are independent of each
other.

Also notice that if r(t) is a constant matrix, then K; = K, and
D, = D, for t € (a,b]; thus, these two conditions are trivially true in
this case.

As Lemma 5 indicates, the above conditions are sufficient to assure
that g(b,t,s) maps K° into K° for all s,t € (a,b). The point here
is that these conditions are easily checked for many standard cones.
For example, set n = 2 and K as the first quadrant. Then 0K, the
boundary of K, is determined by (fat r~1(€) d€)ey and (f;5 r=1(€) d€)es,

and these vectors are just the columns of f; r~1(€) d€. Also, in this case,
0Dy is just determined by the columns of (fat r=1(€)d¢)L.

The following example further illustrates these points. Let

Ly (1421
r (t)_< 1 2+2t>



STURMIAN THEORY FOR NONSELFADJOINT SYSTEMS 371

and let a =0, b =1, and let K be the first quadrant. Then

b 1+t 1
[ 1(£)d§=t< ! 2+t)

and K; is the cone in the first quadrant bounded by the two rays
determined by the vectors (1 + ¢,1)* and (1,2 + ¢)*. It follows that
K; C K for all t € (0,1]. Furthermore,

t2(1+3t+t2)</0t7“‘1(€) d5>_1 N <2—+1t 1_+1t>

and D, is the region that includes K and is bounded by the two rays
determined by the vectors (2 +¢,—1)* and (—1,1+¢)*. It follows that
D, C D, for all ¢ € (0, 1].

3. Sturmian theory. Consider now the integral operator

(1)) = [ oot o)) ds
defined on the Banach space
B ={z € C([a,b]) : z(a) = 0}
equipped with the usual sup norm. The cone K(b) C B is defined by
Kb)={zxeB:z(t) € K fort € [a,b]}.

In this section, L will be shown to be compact and po-positive. It is
first convenient to give some lemmas. The first lemma can be found in
[10].

Lemma 2. If f : [a,b] = K is continuous and f(t) € K° for some
t € [a,b], then fabf(s) ds € K°.

Lemma 3. If K; C K, for all s € (a,b], then for s € (a,b],

(/abr—l(s) i)

-1

/S rH ) d¢: K — K.



372 E.C. TOMASTIK

The proof of the lemma follows from the observation that if K; C Ky,

then , .
( / rl(f)d£> (KY) € K.

Lemma 4. If D, C D; for allt € (a,b], then for t € (a,b),
t b -1
/ r1(6) dg(/ 16 d£> L KO = KO,

The proof follows from the observation that if D, C Dy, then

[ e c k.

Lemma 5. For s,t € (a,b),

g(b,t,s): K° — K°.

The proof follows readily from applying Lemmas 1, 2, and 3 to the
expression for g(b,t,s) given by (4).

The following theorem can now be proved.

Theorem 6. The operator L is compact and po-positive with respect
to the cone K(b).

The compactness of L is clear.

To show that L is po-positive with respect to K(b), let © € K(b) — {0},
i.e., z(t) Z 0 on [a,b] and z(t) € K on [a,b]. Notice that

~(Lay®) - [ brl(b)( / ") df)

-1

/S =€) déq(s)x(s) ds.
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Since K, C Ky, it follows from Lemma 2 and the hypothesis on 7!

that for s > a,

rl(b)</abr1(§) d§>1/:r1(f) d¢: K° — K°.

Now z(s) € K and thus ¢(s)z(s) € K for all s € [a,b]. Furthermore,
z(s) # 0, and thus, by the hypothesis on ¢(t), there exists at least
one 7 € [a,b] such that g(7)z(r) € K°. Therefore, from Lemma 1,
—(Lz)'(b) € K°.

Also notice that
b b -1 ;b
Loy = [ @ o) [ e deta as
It will now be shown that if Dy, C D, for all ¢ € (a, b], then
b -1
r_l(a)</ G d§> LK = KO,
To see this, suppose that w € K° and
b -1
rl(a)</ r(€) d§> w=ye oK

Since (fab r (&) dé)"'w=ue DY, r~(a)u=y € K. Now

1

t—a

t
/ rN(€) dé - 0D, 2% 9K

for t € (a,b]. Thus, there exists u(t) € D, such that

tfa(/:rl(f) d€>u(t) .

-1

w = (12 [ @) v

In fact,
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and
lim u(t) = (r(a)) 'y = r(a)y = u € D}.

t—a

But u(t) € D, C (D)), where ““” indicates complement. Since this
last set is closed, one concludes that u € (D)), which is contrary to

what has already been established. Now, proceeding as in the proof of
—(Lz)'(b) € K°, one can conclude that (Lz)'(a) € K°.

Now take any p € K° and define

)= ([ gt.1,5) s ).

Then L is po-positive. To see this, notice that since pg(a) = 0, Taylor’s
Theorem indicates that for any constant &,

(L) (t) = kapo(t) = (t — a){[(Lz)'(a) — kapp(a)] + .. }-
Since (Lz)'(a) € K°, we can pick k, sufficiently small so that
(Lz)'(a) — kapo(a) € K"
and, thus, there exists J, such that
(La)(t) — kapo(t) € K°

for all ¢t € (a,d,]. In the same way, there exists k, and & € (d4,b) such
that
(La)(t) — kppo(t) € K°

for all ¢ € (6, b). Using familiar arguments and Lemma 5, we readily
see that (Lz)(t) € K° on (a,b). Then, by continuity, the graph of
(Lz)(t) is bounded away from the boundary of K on [d4,d)]. Thus
there exists sufficiently small k. > 0 such that (Lz)(t) — kepo(t) € K°
for all t € [dq, 0p].

Then if k1 = min{k,, kb, kc}, (La)(t) — k1po(t) € K for all t € [a,b],
ie.,

kipo < Lz.

In the same way, one can show that there exists k3 > 0 such that

Lz < kapo-
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This then shows that L is pg-positive.

The following theorem is an immediate consequence of Theorems 1
and 6.

Theorem 7. The conjugate point eigenvalue problem
(5) (r@®)y') +Aat)y =0,  y(a) =0=y(b),

has a real eigenvalue \o(b) which is simple, positive and smaller than
the absolute value of any other eigenvalue. The normalized eigenvector
associated with this eigenvalue is contained in the cone K(b) and is the
only etgenvalue with this property.

The following theorem gives an extremal characterization of the
smallest positive eigenvalue A\y(b). The proof follows as in [9, 10] since
L has already been shown to be compact and pg-positive with respect

to K(b).

Theorem 8. The smallest eigenvalue \g(b) of (5) is given by

~1(p) — S22 et (t)g(b,t, s)a(s)a(s) ds dt
O 2O = ™ Peen

The unique vector function, except for a constant multiple, which mazx-
imizes (6) is a positive (with respect to (b)) eigenvector corresponding
to the eigenvalue Ag.

If one is to proceed and prove the theorems that are to follow, then
Ao (b) needs to be a strictly decreasing function of b. A critical factor in
the proof given here of this property is the need for the Green’s matrix
to be nondecreasing with respect to K.

In order to proceed, the following lemma is now needed.

Lemma 9. For all s,t € (a,b),
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To prove the lemma, first notice that a calculation shows that
t b -1 b -1 s
ateo= (L) (L) o) (L)

Then the result follows from an application of Lemmas 2 and 3.

With the previous lemma now established, the following corollary of
Theorem 8 can now be given.

Corollary 10. The smallest positive eigenvalue Ao(b) is a continu-
ous, strictly decreasing function of b with the property that limy_, o4 Ao (b)
= +00.

To prove the corollary, suppose that b; and b; are given such that
a < by < by <b. Fori=1,2, Theorem 7 implies that there exists
Ao(b;) > 0, and nontrivial solutlons z;(t) € K for t € [a,b] of

(r(t)z") + Xo(bi)g(t)z =0, z(a) = 0 = z(b;).

Then N
A bzt = [ gttt a(s)aits) d.
Let
2(t) = {ml(t) a<t<b
0 by <t < bs.
Then

by
)\gl(bl)m(t):/ g(br 1, 8)g(s)a(s) ds
b2
< [ otbart a(s)a(s) ds

by virtue of Lemma 9, which assures that g(b, ¢, s) is strictly increasing
on K. Thus

L2 m*(t)g(bz,t s) (s)z(s) ds dt
[P 2 (t)a(t) dt

a

Ao t(by) <

< gt (b2)
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by Theorem 8.

The main result can now be given. Having established the previous
basic results, the proof now follows along the same lines as found in
[10], and will not be given here.

Theorem 11. If (1) has a conjugate point c(a), then the extremal
solution z(t) of (1) corresponding to the conjugate point is the cone
K(b) and, furthermore, z(t) € K° for t € (a,c(a)).
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