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RELATING DIFFERENT CONDITIONS FOR
THE POSITIVITY OF THE SCHRODINGER OPERATOR

CAROLINE SWEEZY

ABSTRACT. The following article directs proofs that suffi-
cient conditions for the positivity of the Schrédinger operator
due to C. Fefferman and Chang, Wilson, and Wolff imply a
necessary and sufficient condition of Kerman-Sawyer. The
method is by reduction to dyadic case, Calderon-Zygmund
decomposition, and, in one case, the use of Orlicz norms.

This article presents some direct proofs between several different
conditions which imply the positivity of the Schrédinger operator,
— (1/¢)v, where v > 0. If L = —A — (1/c)v is essentially self-
adjoint, then L being a positive operator is equivalent to the following
inequality:

(%) /R W2(2)o(x) dz < c/m Vu(@)?dz  VueCy,

as can be seen by an integration by parts:

(-8~ To)u,u) = /(—Au)u - l/u%

c

Jtf o

> 0 < () holds.

In his paper, “The Uncertainty Principle,” [5], C. Fefferman raises
the question: What conditions on v imply (*)? In [5] the following
condition (a) is shown to be sufficient for (x):

(a) There exists p > 1 for all cubes Q

() <o
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(where |@Q| = Lebesgue measure of ) and [(Q)) = side length of Q).
The proof in [5] that (a) = (%) uses A, weight theory since if

M,(v)(x) = :gg <ﬁ /vp>l/p

then M, (v)(x) € A for any v; then it is shown that

JEREY AR IOy ELONAL

for M,(v) € Aw, this gives (x).

Two other conditions for (x) were found by Kerman and Sawyer [7]
and Chang, Wilson and Wolff [3]!. The proofs that these conditions
imply (%), although differing from each other in method, are both more
direct in that A, weights are not used. The Kerman-Sawyer condition
(b) (see below) is shown to be necessary and sufficient for () by a good
A inequality, while Chang, Wilson, Wolff condition (C) is a sufficient
condition for (x) which is weaker than Fefferman’s condition (a) (in fact,
as is easily seen, (c) = (a)). The proof is by dyadic decomposition and
L? projection of the function u.

(b) If

1
(e = . e | swas
any cube

/QMf(XQv) < c/Qv.

(This is shown to be equivalent to having [, M (Xqv) on the left hand
side by an earlier argument of Sawyer—this seemingly stronger form of
inequality (b) is proved below.)

then for all cubes @,

(c) If () is increasingly on [0,00) and [, dz/(z¢(x)) < oo, then
for all cubes

ﬁ /Q o(@)2(Q)p(v(2)*(Q)) dz < c.
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Obviously a) and ¢) imply b) using (*). Also see [7] for a direct proof
that a) = b) for A> weights!. Following are direct proofs that (a) and
a particular form of (c) imply (b) and thus give a way to obtain (x)
without using either A., weights or the Haar-type decomposition of u
used in both [3] and [5]. The method of proof in both cases is reduction
to the dyadic case, using a Calderon-Zygmund type decomposition (see
argument in [2] for this part of the proof) then using Hélder’s inequality
for (a) = (b) while (¢) = (b) requires Orlicz norms. Then the extension
to the continuous case is by standard arguments.

Theorem 1. (a) = (b) with (a) and (b) as above.

Theorem 1 will be proved by first replacing M; in condition (b) by

1
M 0gu)(e) = swp ot [ o)y
! @ zeq |QI'4 Jq

Q dyadic

to get condition (b’), and then proving (a) = (b'), (b’) is (b) with M{
in place of M;.
Lemma 1. There is a Calderon-Zygmund decomposition of
Dy = {z | M{(Xqu)(z) > Ri}

where Ry, = 28@+Y) such that Dy, = UjQ? where Q;? are the mazimal
dyadic cubes for which

1
(A) Ri < i [, (ev)(u)dy < 2R
|Q;§|1—1/d oF
and
1
(B) ‘D;Hl m Qf < ?‘Qﬂ for each [ > 0.

Proof. (A). Divide R? into dyadic cubes {Q,,} so large that

1
Qi o, (e < 1
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and so that for any dyadic cube Qy D Qm,

1
ot o, Y0 R

This is always possible since Xgv € L' and has compact support.
Now bisect each @,, into {Q¢,} and if

1
W/Q'L (XQ’U) > Rk,

put Q¢ into a set, call it . If

1
W/@z (XQv) < Ry,

continue to bisect Q! and repeat the selection process. For Q;? € Q,
there exist Q%,, Q@ C Q}, and |Q%| = (1/29)|Q},| and

1
W/Qz (Xqv) < Ry.

Then

! |Qz'n|>1‘”d 1
PARRE /Q;(XQ”)S (IQ? Qi l/d/Q (Xav)

S (2d)171/de — 2d71Rk

since Xqu > 0.

Then Q = {M{Xgv > Ry}, since clearly  C {M{iXQv > Ry}, and
conversely if z € {M{Xqv > Ry}, there exists a dyadic Q, z €@, and

1
W/@X@U>Rk.

So there is such a maximal dyadic cube Q which must belong to (2 by
the way R? was decomposed. So {MIxqv > Ri} C Q.
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Note. This decomposition differs from the Calderon-Zygmund de-
composition for the Hardy-Littlewood maximal operator in that it is
not necessarily true that Xgv < Ry, on Q°.

So Dy, = Uij where Q;? are dyadic, disjoint and

1

(B). Dy N Q? = Ume:l for some i, since Dyy; = UiQf’H and
dyadic cubes are either nested or disjoint.

Then

|Dryi N QY| = UQ’“”

Z ‘qutl‘

_ Z |Qk+l 1— l/d k+l|1/d
< Z |Qk+l 1— 1/d|Qj|1/d7 since QZ;H g Q?a

1
k|1/d
< |Qj] Em Frnt /Q'?H Xou by (A)
1 Z
3] Rk+l - /Q?“X ’

< |QE|M /XQ”
Rivi Jox

since Xgv > 0 and |J,, Qf;rl C Qf,

< |Qk|1/dR 2d lR |Qk:|1 1/d by (A)
_ 2d 12(d+1)k|Qk| B 2d—1 |Qk‘

T 9(d+1) (kD) (d+1)l

<

§|Q§-’\ fori>1. O
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To summarize the notation and facts obtained so far:

Dy = {M1XQU > Rk} = UQ?
J

Er = Dp\Dgy1 = Dy = U By
1>0

and Ej, are disjoint, {MiXqv > 0} = U2 ___ Dy and

1
(A) Rk < Wék XQ’U S 2d*1Rk < Rk+1
J i
1
(B) ‘DkHﬂQ? < §|Q?|-

Proof of Theorem 1 a) = b’). (See [2] for the following proof.) Now

/Rd[MleU]2 > Y R}|Di\Dyyl

k=—o0

=Y Ri(IDx| = |Dusr]) = Y (RE — Ri_1)| Dyl
k k

— 2(22k(d+1) _ 22(k_1)(d+1))|Dk‘
k
— ZQQk(d+1)(l _ 272(d+1))|Dk| =c ZRi‘Dk|
k k
Also,
[ pxgu < 3 BIDA D

k=—o0

=Y Ri(IDkl — 1Disa]) = Y (R, — BR)IDxl
k k

_ Z(2Z(k+1)(d+1) _ 22k(d+1))‘Dk|
k

— Z 22k(d+1)(22(d+1) _ 1)|Dk|

k
=c2»  Rp|Dyl.
k
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So one obtains

R:|Dy| < M 2 < RZ|Dy|.
(+) Y RADI< [ DheoF<e 30 RHD

k=—oc0 k=—oc0

Now
> BDd =Y B Y10k
k=—o0 k J
1
<y (S (s f, o)) s
:ZRkZ@ﬂl/dZ/ XQv:(*)
% j E

1>0 k+tNQK

since Qf =Dp N Q? = Ui>0(Ert N Q?) and {Ej}i°, are disjoint.

Using Hoélder’s inequality with three exponents 1/24+1/(2p)+1/r =1
(p > 1 = r exists),

1/2 1/2p
Loy (o)
ErpiNQY ErpiNQ¥ EppiNQY

1/r

(L)
EpinQk 7

and for p as in condition (a), then

1/p
( /Q E(w)”) < QP vy Qk

and, using

[ s [ oy
ErpiNQ¥Y QY

J

and

1/r 1 1/r
([ ) =manaiirs (@) o
E’kHI’WQ? J
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then

1/2
- 1 r
/ Xqu < </ XQU> C\Qﬂl/&p) wa\@ﬂl/ :
Ek+an? Ek+zﬂQ?
So, putting this into (*), one obtains (since 1/(2p) + 1/r = 1/2)

(f )

<o > mYIQHM <
Enzerg(]

_ 1>0 k-HOQ_?
DTS DT/ )
c oU/r k : j o QU .

1>0 2 j k411165
Now, using Cauchy-Schwarz on the sum over j, the above is
1 1/2
k

Y e Te) (S )

k j F; k+1NQ]

1>0
1/2
XQU)

1 1/2

Y g S rnl ([
1>0 k

since |Dy| = 3, |Q;“| and U;Ep N Qf = Eyti, {Q?} disjoint for k

fixed.

Then, using Cauchy-Schwarz again on the sum over k, the above is

/2 4
XQU> W\Qﬂl/%l/d

1/2

k41

1/2 1/2

SCZ;7<;Rka|> <;/Ek+l XQ”)

1>0

1 1/2 1/2
g (gan)”(fe)
k

1>0
since Ej; are disjoint for [ fixed, k = —o0,... , 4+00;

. C(Z <2%> </R[M{1XQU]2>1/2</QU>1/2>

1>0
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by the first inequality in (+).

Thus,
/Rd[M{’lXQv]2 < c</Rd[MleQv]2>1/2</Qv>l/2
)" )

when ([g.[M{xqv]*)!/? is finite, which it is for Xgv being of compact
support and satisfying either (a) or (c), since

(MiXxqu)*(z) :iﬁg <|c?|1;2/d/cv?XQ’U> (é/QXQ’U>

< ¢- M(xgv)(x)

where M is the Hardy-Littlewood maximal function, and the condition
for M f being L*(3Q) is |f|log(2+ |f|) € L*(3Q) (Stein [10]). Both a)

and c) imply
1
Y~ . . < .
(g fyxer) =

Obviously, fRn\3Q(M1XQU)2 is bounded, since M;(Xqv) < I1(Xqv)
pointwise almost everywhere where I (Xquv) is the Riesz potential of
Xqv (Adams [1, p. 15]), and

I (X@u)llz < c-[IXqulley  1/g=1/2+1/n

(Stein [10]).
Thus, condition (b) holds for the dyadic maximal function.

Using a standard argument for extending from the dyadic to the
continuous case, Theorem 1 holds for M; [6]. O

Theorem 2. If, for all cubes Q,

(@) al /Q P(Q)u(y) log® (1 + 2(Q)v(y)) dy <
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then

JmntenE) e < | o)y

Note. In Theorem 2, condition (d) is the Chang, Wilson, Wolff
condition (c) with ¢(z) = log®t®(1 + z).

To prove Theorem 2, a lemma is needed:

Lemma 2. Condition (d) in Theorem 2 implies

</Q§_:0Ek+l Q%) (xqu) () dy) v <c (%) 1/2

where Q;“ and Ey; are the same sets as in the proof of Theorem 1.

Proof. Let ®(z) = zlog?*(1 + z) and ¥(y) be Youngs’ functions,

A [ o w00= [ o

where ¢ o 9(t) = ¢t. The function ¥ exists if ®(z) is > 0, convex for
z >0, ®(0) =0 and lim,_,o, ®(x)/z = co. These conditions hold for
®(z) = xlog’ (14 z) (Zygmund [12, p. 24]).

If X is a given space, then the two norms for Orlicz space L*(X, dm)
are

lzlle = su z(t)y(t) dm(t)
fX\If(S)g/X !

" |zl ne = inf{u : /X ©(2(t)/ ) dm(t) = (1)(1)}'

The two norms are equivalent; ||z||¢ < c¢||z||nve where ¢ depends only
on ®(1) (Zygmund [12, p. 174]).

For v >0, v € L] .(X) and X = Q% a cube then
[ B@mar =108 | Xasnm, 0)P(@) (Xev) i/ QL]
Q*¥NEky Q? !

< clQ}l IXqrns, . |l
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by definition of || ||¢ since (d) implies
e, 2@ xav W)/ @] <1

Here the measure on X is d:v/\Qf\ =dm.

Now

IXqrnEellw < ciXqrnp,,,|Ive

Xapn,., ()1
_inf{u:/ /QJ s \If(t)dtda:/Qﬂg\I/(l)}.

And
(1/m)-X gk z e
Q¥ e
|Q% N By
=L U(1/p);

Q%1
so for || ||nyw one needs
inf (s : W(1/4) < lQ¥1/1QE 0 Epsal}.

This implies
> (Ol QF1/1Q5 N Brl)
since ¥ is increasing and ¥~! is also increasing.

Then, taking the inf of such p,

(4) p< [T (e 297! since |Q;c N Epyq| < 27l|Q?‘-

Sublemma. ¢(z) = zlog? (1 + ) = ¥ () > clog? (1 + z) for
z > 1.

Proof of Sublemma. ®(x) = zlog®™(1 + z) and

o(x) = /Ow o(t) dt =
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p(z) = @' (z) =log" (L +2) + (2+¢)(z/(1 + z)) log (1 + 2)

= o(x) > log®*t(1 + )
= (@) < /@ g
since po(z) =z and p > f = o~ < f7L
then .
= / P(t)dt < ze® T 1
0
< 2oV
= U Yz) >clog?™(1+2z). @
So by (4)

1
< —57—7—.
~ clog®te(1+20)

Finally, one obtains:

Q%) xqu < |QF| —y
~/QkﬁEk+t ( J) ? | J|10g2+6(1+2l)

So, using the same argument as given above in the proof of Theorem
1 for showing (a) = (b'), that is, Ry, Dy = UQY and Ej; are all as
above, then one has at (x) in the proof of Theorem 1,

| o)
R4
<c R 1(QF v
1/2 1/2
2/ Ak
B CZRk ;; (AkﬂEk+l v) </Q?ﬂEk+ll (QJ )XQU>

1/2 1/2
1
Q?ﬂEkJrl @ | J| 10g2+ (l+21)

j >0

—czlogw) L 2 ( ],

J

1/2
ov) Qi

ﬂEk+l
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1/2

: fym ) (S1e0)
<e ——————— v Q5
Zlog1+(6/2)(l+2l <Z QENErs Xo ;' il
1 1/2
c Rk</ XQU) ‘Dk|1/2
IZZO 10g1+(s/2)(1+21) Z o
1/2 1/2
T (2 o) (fer)

c(/Rd[Mfl(XQv)]2>l/2</Qv>l/2

1
< o0
lzzo log't(¢/2) (1 4 21)

IN

IN

IA

since

So, dividing by ([[M{(Xqv)]?)*/2, one obtains
| ixeu@Pde<e [ o) dy
R4 Q

Theorem 2 follows from the dyadic case by standard arguments [6].
]

ENDNOTES

1. Since this paper was written, several improvements and general-
izations on conditions a), b) and ¢) have been obtained by C. Perez [8,
9] and S. Chanillo and E. Sawyer [4]. See also the work of J.M. Wilson
[11].
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