ON JACOBIAN n-TUPLES IN CHARACTERISTIC p

JEFFREY LANG AND SATYAGOPAL MANDAL

0. Introduction. Let k be a field and $A = k[x_1, \ldots, x_n]$. For $(F_1,\ldots,F_n)\in A^n$, let $j(F_1,\ldots,F_n)$ denote the determinant of the $n \times n$ Jacobian matrix of F_1, \ldots, F_n with respect to the $x_i, 1 \leq i \leq n$. We say that $(F_1, \ldots, F_n) \in A^n$ is a Jacobian n-tuple if $j(F_1, \ldots, F_n) \in$ k^* , the multiplicative group of nonzero elements in k. The Jacobian conjecture states:

(0.1) If char
$$(k) = 0$$
, then $j(F_1, \ldots, F_n) \in k^*$ implies $k[F_1, \ldots, F_n] = A$.

This conjecture, introduced by O.H. Keller [5] in 1939, has remained unsolved, for $n \geq 2$, and (0.1) is not true if the characteristic of k is positive ([1, p. 118]). Nonetheless, we feel that the study of Jacobian n-tuples when the characteristic is positive may contribute to a better understanding of Jacobian n-tuples in characteristic 0 for two reasons. Firstly, E. Connell and L. van den Dries have shown that the general Jacobian conjecture is equivalent to proving (0.1) for the case where F_1, \ldots, F_n are cubic polynomials with integer coefficients (see (1.1) below); thus, information we obtain in characteristic p on cubic Jacobian n-tuples may be related backwards to the characteristic 0 situation. Secondly, S. Abhyankar proved various equivalent formulations of (0.1) in the n=2 case in terms of Newton Polygons, points at infinity, and the degrees of F_1 and F_2 in [1] (see (1.3) below). Since for each Jacobian pair in characteristic 0, there are corresponding Jacobian pairs with matching supports in characteristic p for almost all p, our hope is to eventually shed some light on the n=2 case of (0.1) (see (1.2)) below).

In this paper we give some new characterizations of Jacobian ntuples in characteristic p in terms of the differential operator ∇ =

Received by the editors on October 1, 1990, and in revised form on April 29, 1991.
Partially supported by the General Research Fund at the University of Kansas.

 $\partial^{n(p-1)}/\partial x_1^{p-1}\cdots\partial x_n^{p-1}$; which leads to a method of testing the monomials $F_1^{i_1}\dots F_n^{i_n}$, one at a time (see (2.1) and (2.2)). The task of relating this new information to Jacobian n-tuples in characteristic 0 is still ahead.

1. Preliminaries.

(1.0.1) We let \mathbf{Z} denote the integers, \mathbf{Z}^+ the nonnegative integers, \mathbf{Q} the rationals and \mathbf{C} the complex numbers.

(1.0.2) Let k be a field. k^n denotes the set of n-tuples of elements of k, A_k^n denotes affine n-space over k.

(1.0.3) Let $A = k[x_1, \ldots, x_n]$ be the polynomial ring in n indeterminates over k. Let L be the field of quotients of A.

Given $f \in A$, $\deg_{x_i}(f)$ denotes the degree of f in x_i , $\deg_{x_i,x_j}(f)$ is the degree of f in x_i and x_j , etc.

(1.0.4) For $1 \leq i \leq n$, let $D_i = \partial/\partial x_i$. Given $f_1, \ldots, f_n \in A$, let $J(f_1, \ldots, f_n)$ be the $n \times n$ matrix,

$$\begin{bmatrix} D_1(f_1) & \cdots & D_n(f_1) \\ \vdots & & \vdots \\ D_1(f_n) & \cdots & D_n(f_n) \end{bmatrix},$$

and let $j(f_1, \ldots, f_n)$ be the determinant of $J(f_1, \ldots, f_n)$. (f_1, \ldots, f_n) is called a *Jacobian n-tuple* if $j(f_1, \ldots, f_n)$ is a nonzero element of k.

(1.0.5) θ will denote a generic (i.e., unspecified) nonzero element of k.

(1.0.6) If the characteristic of k is $p \neq 0$, ∇ denotes the differential operator $\nabla = D_1^{p-1} \cdots D_n^{p-1}$.

The following theorem of Connell and van den Dries and our own proposition (1.2) when coupled with Abhyankar's theorem (1.3) suggests that information on Jacobian n-tuples in positive characteristic may be useful via a reduction modulo p approach. In the next

section we give some new characterizations of such n-tuples. Assume $F: \mathbf{C}^m \to \mathbf{C}^m$ is a polynomial map defined by $F_1, \ldots, F_m \in \mathbf{C}[x_1, \ldots, x_m]$. Let T be the ring of algebraic integers. Let $p \subseteq T$ be a nonzero prime ideal and $A = T_p$.

Theorem 1.1 (E. Connell and L. van den Dries). If there is a counterexample F to the Jacobian conjecture, $F: \mathbb{C}^m \to \mathbb{C}^m$, then for some n > m, there is a counterexample $F: \mathbb{C}^n \to \mathbb{C}^n$ where the coefficients of each F_i are in \mathbb{Z} and $F: A^n \to A^n$ is injective. Furthermore, it may be assumed that $F_i = x_1 + u_i$, where $u_i \in \mathbb{Z}^{[n]}$ is a form of degree 3. ([4, Theorem (1.5)]).

Assume now that k is a field and $f = \sum_{i+j=0}^{n} \alpha_{ij} x^i y^j \in k[x,y]$ is a polynomial of degree n. Define $S(f) = \{(i,j) \in \mathbf{Z}^+ \times \mathbf{Z}^+ : i+j \leq n \text{ and } \alpha_{ij} \neq 0\}$ and N(f) to be the smallest convex subset of \mathbf{R}^2 containing $S(f) \cup \{(0,0)\}$. S(f) is called the *support* of f and N(f) is the *Newton-Polygon* of f. We then have

Proposition 1.2. Let $f,g \in \mathbf{C}[x,y]$. If J(f,g)=1, then for all but a finite number of prime numbers p>0, there exists a finite field k of characteristic p and a pair of elements $\tilde{f}, \tilde{g} \in k[x,y]$ such that $S(\tilde{f}) = S(f), S(\tilde{g}) = S(g)$ and $j(\tilde{f}, \tilde{g}) = 1$. (Clearly $N(f) = N(\tilde{f})$ and $N(g) = N(\tilde{g})$ as well.)

Proof. Let $f = \sum \alpha_{ij} x^i y^j$ and $g = \sum \beta_{ij} x^i y^j$ belong to $\mathbf{C}[x, y]$ with j(f, g) = 1. If we think temporarily of the α_{ij} and β_{ij} as variables and equate coefficients on both sides of the equality j(f, g) = 1, then we obtain a system of equations

(1.2.1)
$$F_1 = \cdots = F_r = 0 \text{ with } F_1, \ldots, F_r \in \mathbf{Z}[\alpha_{ij}, \beta_{ij}].$$

For each $\alpha_{ij} \neq 0$ and $\beta_{i'j'} \neq 0$ the equations $\alpha_{ij}u_{ij} - 1$ and $\beta_{i'j'}v_{i'j'} - 1$ has a solution in \mathbf{C} . Let G_1, \ldots, G_s be a listing of these equations. Then the G_j 's belong to $\mathbf{Z}[\alpha_{ij}, \beta_{ij}, u_{ij}, v_{ij}] = S$. Combine these equations with those of (1.2.1) to obtain a system (1.2.2)

 $F_1 = \cdots = F_r = G_1 = \cdots = G_s = 0$ with the F's and G's in S.

Since (1.2.2) has a solution in \mathbf{C}^M (M, the number of variables), (1.2.2) has a solution in a finite field of characteristic p > 0 for all but a finite number of primes p and such solution will yield a pair \tilde{f}, \tilde{g} with $J(\tilde{f}, \tilde{g}) = 1$ and $S(f) = S(\tilde{f}), S(g) = S(\tilde{g})$.

Theorem 1.3 (Abhyankar). Let k be a field of characteristic 0. Then the following statements are equivalent.

- (i) If $f, g \in k[x, y]$ and $j(f, g) = \theta$, then k[f, g] = k[x, y].
- (ii) If $f, g \in k[x, y]$ and $j(f, g) = \theta$, then f has one point at infinity.
- (iii) If $f, g \in k[x, y]$ and $J(f, g) = \theta$, then the Newton-Polygon of f is a triangle with vertices (n, 0), (0, n), and (0, 0) for some nonnegative integers n and m.
- (iv) If $f, g \in k[x, y]$ and $j(f, g) = \theta$, then $\deg f$ divides $\deg g$ or $\deg g$ divides $\deg f$. ([1, Theorem (19.4)]).

We will also make use of a theorem of P. Samuel. Assume R is a Krull ring of characteristic $p \neq 0$. Let Δ be a derivation on E, the quotient field of R such that $\Delta(R) \subset R$. Let $F = \ker(\Delta)$ and $S = R \cap S$. We have,

Theorem 1.4 (Samuel). (a) If [E : F] = p, then there exists $a \in S$ such that $\Delta^p = a\Delta$,

- (b) $t \in E$ is equal to $u^{-1}\Delta u$ for some $u \in E$ if and only if $\Delta^{p-1}t at + t^p = 0$ ([7, Propositions (3.1) and (3.2)]).
- **2.** The Jacobian condition in characteristic p. Assume in this section that the characteristic of k is $p \neq 0$ and that F_1, \ldots, F_n are elements of A. For each $i = 1, \ldots, n$, let d_i be the k-derivation on L defined by $d_i(h) = j(F_1, \ldots, F_{i-1}, h, F_{i+1}, \ldots, F_n)$. It is well known that $j(F_1, \ldots, F_n) = \theta$ does not imply $A = k[F_1, \ldots, F_n]$ ([1, p. 118]). The following characterization of Jacobian n-tuples in characteristic p by p. Nousainen appears in [3].

Theorem 2.1 (Nousainen). The following conditions are equivalent.

(1) $j(F_1, \ldots, F_n) = \theta$.

- (2) $A = k[x_1^p, \dots, x_n^p, F_1, \dots, F_n].$
- (3) The monomials $F_1^{q_1} \cdots F_n^{q_n}$, $0 \le q_i \le p-1$, form a free basis of the $k[x_1^p, \ldots, x_n^p]$ -module A. ([3, Theorem (2.2)]).

Our main result extends Nousainen's theorem and gives us a way to test the monomials $F_1^{q_1} \cdots F_n^{q_n}$ individually.

Theorem 2.2. The following are equivalent.

- (1) $j(F_1, \ldots, F_n) = \theta$.
- (4) For each $i=1,\ldots,n$, and each $h\in L$, $h=\theta\sum_{r=0}^{p-1}F_i^rd_i^{p-1}\cdot (F_i^{p-r-1}h)$.
 - $(5) \quad \nabla = \theta d_1^{p-1} \cdots d_n^{p-1}$
 - (6) $\nabla(F_1^{q_1} \cdots F_n^{q_n}) = \begin{cases} 0, & \text{if } 0 \leq q_i < p-1, \text{ for some } i = 1, \dots, n. \\ \theta, & \text{if } q_1 = \dots = q_n = p-1. \end{cases}$

Lemma 2.3. Let R be Krull ring of characteristic $p \neq 0$ with quotient field F and $D \colon F \to F$ a derivation. Let $F' = D^{-1}(0)$. Assume $D(R) \subset R$, $[F \colon F'] = p$, $R' = F' \cap R$ and $f \in R$. Then $D(f) \in \mathbf{F}_p^*$, the multiplicative group of nonzero elements of the prime subfield of R, if and only if $Df \in R'$ and for all $a \in R$, $a = -\sum_{i=0}^{p-1} f^{p-i-1}D^{p-1}(f^ia)$.

Proof. (\Rightarrow). Assume $Df = b \in F_p^*$. Then $0 = D(1) = D(b^{p-1}) = -b^{p-2}Db$, which shows that D(b) = 0. By (1.4), $D^p = \alpha D$ for some $\alpha \in R'$. Then $D^p f = \alpha Df$ implies $\alpha = 0$. Therefore, $D^{p-1}c \in R'$ for all $c \in R$.

Let $a \in R$. Let $\beta = \sum_{i=0}^{p-1} f^{p-i-1} D^{p-1}(f^i a)$. Then

$$\beta = \sum_{i=0}^{p-1} f^{p-i-1} \sum_{j=0}^{p-1} {p-1 \choose j} D^{j}(f^{i}) D^{p-1-j}(a)$$

$$= \sum_{i=0}^{p-1} \sum_{j=0}^{p-1} (-1)^{j} {i \choose j} (j!) b^{j} f^{p-1-j} D^{p-1-j}(a)$$

$$= \sum_{j=0}^{p-1} \sum_{i=0}^{p-1} (-1)^{j} {i \choose j} (j!) b^{j} f^{p-1-j} D^{p-1-j}(a).$$

(We are following the convention that $\binom{i}{j} = 0$ if j > i.)

$$\beta = \sum_{j=0}^{p-1} (-1)^j (j!) b^j f^{p-1-j} D^{p-1-j} (a) \sum_{i=0}^{p-1} {i \choose j}$$
$$= \sum_{j=0}^{p-1} (-1)^j (j!) b^j f^{p-1-j} D^{p-1-j} (a) {p \choose j+1}.$$

Since char (A)=p, $\binom{p}{j+1}=0$ unless j=p-1. Therefore, $\beta=(-1)^{p-1}(p-1)!b^{p-1}f^0D^0(a)=-a$.

(\Leftarrow). If $a = -\sum_{i=0}^{p-1} f^{p-i-1} D^{p-1}(f^i a)$ for all $a \in A$, then in particular, $1 = -\sum_{i=0}^{p-1} f^{p-i-1} D^{p-1}(f^i)$. Since $Df \in R'$ we obtain $1 = -(p-1)!(Df)^{p-1}$. Therefore, $(Df)^{p-1} = 1$ and $Df \in \mathbf{F}_p^*$. \square

Lemma 2.4. Let R, R', D, and f be as in (2.3). If $Df \in R^*$, the group of units in R, then R = R'[f].

Proof. Let $\Delta=(Df)^{-1}D$. By (2.3), we have for all $a\in R$, $a=-\sum_{i=0}^{p-1}f^{p-i-1}\Delta^{p-1}(f^ia)$. By (1.4), there exists an $\alpha\in R'$ such that $\Delta^p=\alpha\Delta$. Since $\Delta f=1$, $\alpha=0$. Thus, $\Delta^{p-1}(a)\in R'$ for all $a\in R$. \square

Lemma 2.5. Let R, R', D, and f be as in (2.3). Assume that the ideal $D(R) \cdot R$ is not contained in any height one prime and $Df \neq 0$. Then the following are equivalent.

- (1) $Df \in (R')^*$, the multiplicative group of units in R'.
- (2) $Df \in R'$ and R'[f] = R.
- (3) $Df \in R'$ and there exists $\beta \in (R')^*$ such that for all $a \in R$,

$$a = \beta \sum_{i=0}^{p-1} f^{p-i-1} D^{p-1} (f^i a).$$

Proof. (1) \Rightarrow (3) \Rightarrow (2): Repeat the proof of (2.4) noting by (1) that $Df \in R'$. (2) \Rightarrow (1): $Df \in R'$ and R'[f] = R implies that

 $D(R) \subseteq (Df) \cdot R$. Since D(R)R is not contained in any height one prime of R, $Df \in R^* \cap R' = (R')^*$. \square

(2.6). Assume that k is algebraically closed. Let $A' = A^p[F_1, \ldots, F_{n-1}]$ and $L' = L^p[F_1, \ldots, F_n]$ be the quotient field of A'. Let I be the ideal in A generated by the $n-1 \times n-1$ minors of the matrix

$$\begin{bmatrix} D_1(F_1) & \cdots & D_n(F_1) \\ \vdots & & \vdots \\ D_1(F_{n-1}) & \cdots & D_n(F_{n-1}) \end{bmatrix}.$$

That is, I is generated by $d_n(x_i)$, $1 \le i \le n$. We say that F_1, \ldots, F_{n-1} satisfy condition (*) if the dimension of A/I is at most n-2.

Lemma 2.7. Let $X \subseteq A_k^{2n-1}$ be the variety defined by the equations $y_i^p = F_i$, $1 \le i \le n-1$. If the F_i satisfy (*), then the coordinate ring of X is isomorphic to A'.

Proof. Let $\phi: A \to A'$ be the ring homomorphism that sends x_i to x_i^p , w_j to F_j and α to α^p for all $1 \le i \le n, 1 \le j \le n-1, \alpha \in k$. (Note that ϕ is not a k-homomorphism.) Then $\omega_j^p - F_j \in \ker \phi$. Let $Q \subseteq A$ be the ideal generated by $w_j^p - F_j, 1 \le j \le n-1$. By (*) $F_1 \notin A^p$ and $F_j \notin A^p[F_1, \ldots, F_{j-1}], 2 \le j \le n-1$. It follows that Q is a prime ideal of height n-1. Therefore, $\ker \phi = Q$.

Lemma 2.8. If the F_i satisfy (*), then $A \cap d_n^{-1}(0) = A'$.

Proof. Let $B = d_n^{-1}(0) \cap A$. Then $A^p \subseteq A' \subseteq B \subseteq A$. By (*), each $F_j \notin L^p(F_1, \ldots, F_{j-1})$. Thus, $[L':L^p] = p^{n-1}$. Also, by (*), $d_n(x_i) \neq 0$ for some i. Therefore, the quotient field of B is not L and hence A' and B have the same quotient field. Clearly, B is integral over A'. By (2.7), A' is isomorphic to the coordinate ring of X, which is regular in codimension one by (*). Therefore, A' is normal, which proves A' = B.

The proof of the next lemma appears in [6].

Lemma 2.9. Without the assumption of (*),

(1) there exists $\beta \in A'$ such that $d_n^p = \beta d_n$. β is given by the formula

$$\beta = (-1)^n \sum_{j=1}^{n-1} \sum_{r_j=0}^{p-1} F_1^{r_1} \cdots F_{n-1}^{r_{n-1}} \nabla (F_1^{p-r_1-1} \cdots F_{n-1}^{p-r_{n-1}-1});$$

(2) furthermore, for all $t \in L$,

$$d_n^{p-1}(t) - \beta t = (-1)^{n-1} \sum_{j=1}^{n-1} \sum_{r_j=0}^{p-1} F_1^{r_1} \cdots F_{n-1}^{r_{n-1}} \nabla (F_1^{p-r_1-1} \cdots F_{n-1}^{p-r_{n-1}-1} t).$$

Proof of Theorem (2.2). (1) \Rightarrow (4): (1) is true up to a permutation of the F_i ; thus, it is enough to prove (4) for i = n. (1) implies (*). Now use (3) of (2.5).

 $(4) \Rightarrow (5)$: For all $h \in L$, $h = \theta \sum_{r=0}^{p-1} F_n^r (d_n^{p-1}(F_n^{p-r-1}h) - \beta F_n^{p-r-1}h)$, where $d_n^p = \beta d_n$, since $\sum_{r=0}^{p-1} \beta F_n^{p-1}h = 0$. By (2.9), we see that for all $h \in L$,

(A)
$$h = \theta \sum_{j=1}^{n} \sum_{r_j=0}^{p-1} F_1^{r_1} \cdots F_n^{r_n} \nabla (F_1^{p-r_n-1} \cdots F_n^{p-r_n-1} h).$$

(A) implies (2) of (2.1), hence (1). By (1), $d_i(F_i) = \theta$, $1 \le i \le n$. Apply $d_1^{p-1} \cdots d_n^{p-1}$ to both sides of (A) and use the fact that

$$d_i(F_j) = \begin{cases} 0, & \text{if } i \neq j, \\ \theta, & \text{if } i = j, \end{cases}$$

and $\nabla(A) \subseteq A^p$ to obtain (5).

 $\begin{array}{c} (5) \Rightarrow (1) \text{: Assume } \nabla = d_1^{p-1} \cdots d_n^{p-1}. \text{ Let } g = d_1^{p-2} d_2^{p-1} \cdots d_n^{p-1} (x_1^{p-1} \cdots x_n^{p-1}). \text{ Then } d_1(g) = (-1)^n. \text{ Therefore, } d_1^p = 0 \text{ and by } (2) \text{ of } (2.1), \\ A = A^p[F_2, \ldots, F_n, g]. \text{ Thus, } [L:L_0] = p, \text{ where } L_0 = L^p(F_2, \ldots, F_n). \\ \text{If } F_1 \in L_0, \text{ then } d_n(F_n) = \pm d_1(F_1) = 0. \text{ Then for all } r, i_1, \ldots, i_n \in \mathbf{F}_p, \\ \text{we have } \nabla (F_n^r x_1^{i_1} \cdots x_n^{i_n}) = \theta d_1^{p-1} \cdots d_n^{p-1} (F_n^r x_1^{i_1} \cdots x_n^{i_n}) = \theta F_n^r d_1^{p-1} \\ \cdots d_n^{p-1} (x_1^{i_1} \cdots x_n^{i_n}) = \theta F_n^r \nabla (x_1^{i_1} \cdots x_n^{i_n}). \text{ Therefore, } \nabla (F_n^r x_1^{i_1} \cdots x_n^{i_n}) = \theta f_n^r \nabla (x_1^{i_1} \cdots x_n^{i_n}) = \theta f_n^r \nabla (x_1^{i_1} \cdots x_n^{i_n}) = \theta f_n^r \nabla (x_1^{i_1} \cdots x_n^{i_n}). \end{array}$

0 for all r and $(i_1,\ldots,i_n) \neq (p-1,\ldots,p-1)$. When r=1, this gives $F_n \in A^p$. Then $d_i \equiv 0, \ 1 \leq i \leq n-1$, which is a contradiction. Therefore, $F_1 \notin L_0$ and hence $L=L^p(F_1,\ldots,F_n)$. This shows that the $d_i, \ 1 \leq i \leq n$, commute on L, so that for any permutation $\phi \in S_n, \ d_{\phi(1)}^{p-1} \cdots d_{\phi(n)}^{p-1} = \theta \nabla$. Then by the same argument we used for d_1 , we get $d_i^p \equiv 0, \ 1 \leq i \leq n$. By commutivity, $d_2(g) = 0$. By $(2.8), \ g \in A^p[F_1,\ldots,F_{n-1}]$. Therefore, $A = A^p[F_2,\ldots,F_n,g] \subseteq A^p[F_1,\ldots,F_n] \subseteq A$, which by (2.1) implies (1). The equivalence of (1) and (6) is a simple corollary to the equivalence of (1) and (5).

REFERENCES

- 1. S.S. Abhyankar, Expansion techniques in algebraic geometry, Tata Lecture Notes, 1977.
- ${\bf 2.}$ —, Lectures in algebraic geometry, Notes by Chris Christiansen, Purdue Univ., 1974.
- 3. H. Bass, E. Connell and D. Wright, The Jacobian conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287–330.
- 4. E. Connell and L. van den Dries, Injective polynomial maps and the Jacobian conjecture, J. Pure Appl. Algebra 28 (1983), 235–239.
- 5. O.H. Keller, Ganze Cremona-Transformationen, Monatsh Math. 47 (1939), 299–306.
- 6. J. Lang, Purely inseparable extensions of unique factorization domains, Kyoto Journal 26 (1990), 453-471.
- 7. P. Samuel, Lectures on unique factorization domains, Tata Lecture Notes, Bombay, 1964.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KS, 66045