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ON JACOBIAN n-TUPLES IN CHARACTERISTIC p
JEFFREY LANG AND SATYAGOPAL MANDAL

0. Introduction. Let k be a field and A = k[zy,...,z,]. For
(Fy,...,F,) € A", let j(F,...,F,) denote the determinant of the
n X n Jacobian matrix of Fi,... , F,, with respect to the x;, 1 <i < n.
We say that (Fi,..., F,) € A™ is a Jacobian n-tuple if j(Fy,... ,F,) €
k*, the multiplicative group of nonzero elements in k. The Jacobian
conjecture states:

(0.1) If char (k) = 0, then j(Fy,...,F,) € k* implies k[F}, ..., F,] =
A.

This conjecture, introduced by O.H. Keller [5] in 1939, has remained
unsolved, for n > 2, and (0.1) is not true if the characteristic of k is
positive ([1, p. 118]). Nonetheless, we feel that the study of Jacobian
n-tuples when the characteristic is positive may contribute to a better
understanding of Jacobian n-tuples in characteristic 0 for two reasons.
Firstly, E. Connell and L. van den Dries have shown that the general
Jacobian conjecture is equivalent to proving (0.1) for the case where
Fy, ..., F, are cubic polynomials with integer coefficients (see (1.1) be-
low); thus, information we obtain in characteristic p on cubic Jacobian
n-tuples may be related backwards to the characteristic 0 situation.
Secondly, S. Abhyankar proved various equivalent formulations of (0.1)
in the n = 2 case in terms of Newton Polygons, points at infinity, and
the degrees of F; and F, in [1] (see (1.3) below). Since for each Ja-
cobian pair in characteristic 0, there are corresponding Jacobian pairs
with matching supports in characteristic p for almost all p, our hope
is to eventually shed some light on the n = 2 case of (0.1) (see (1.2)
below).

In this paper we give some new characterizations of Jacobian n-
tuples in characteristic p in terms of the differential operator V =
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§™P=1) /928t ... 9B~ 1; which leads to a method of testing the mono-
mials F|'...Fi" one at a time (see (2.1) and (2.2)). The task of
relating this new information to Jacobian n-tuples in characteristic 0

is still ahead.
1. Preliminaries.

(1.0.1) We let Z denote the integers, Z™ the nonnegative integers,
Q the rationals and C the complex numbers.

(1.0.2) Let & be a field. k™ denotes the set of n-tuples of elements of
k, A} denotes affine n-space over k.

(1.0.3) Let A = E[x1,...,z,] be the polynomial ring in n indetermi-
nates over k. Let L be the field of quotients of A.

Given f € A, deg.,(f) denotes the degree of f in x;, deg, ., (f) is
the degree of f in x; and z;, etc.

(1.04) For 1 < i < m,let D, = 0/0x;. Given f1,...,fn € A, let
J(f1,.--, fn) be the n X n matrix,

Di(f1) -+ Dn(f1)

and let j(fi1,..., fn) be the determinant of J(f1,...,fn). (f1,---, fn)
is called a Jacobian n-tuple if j(f1,..., fn) is a nonzero element of k.

(1.0.5) @ will denote a generic (i.e., unspecified) nonzero element of
k.

(1.0.6) If the characteristic of k is p # 0, V denotes the differential
operator V = DP~" ... pp=1,

The following theorem of Connell and van den Dries and our own
proposition (1.2) when coupled with Abhyankar’s theorem (1.3) sug-
gests that information on Jacobian n-tuples in positive characteris-
tic may be useful via a reduction modulo p approach. In the next
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section we give some new characterizations of such n-tuples. As-
sume F' : C™ — C™ is a polynomial map defined by Fi,...,F,, €
C[z1,...,Zmy). Let T be the ring of algebraic integers. Let p C T be a
nonzero prime ideal and A = T,,.

Theorem 1.1 (E. Connell and L. van den Dries). If there is a
counterexample F' to the Jacobian conjecture, F : C™ — C™, then
for some n > m, there is a counterexample F' : C* — C" where
the coefficients of each F; are in Z and F : A™ — A™ is injective.
Furthermore, it may be assumed that F; = x1 + u;, where u; € Z[" s
a form of degree 3. ([4, Theorem (1.5)]).

Assume now that k is a field and f = 31" ;_, aijz'y’ € k[z,y] is a
polynomial of degree n. Define S(f) = {(i,7) € ZT xZ* :i+j < nand
ai; # 0} and N(f) to be the smallest convex subset of R? containing
S(f)U{(0,0)}. S(f) is called the support of f and N(f) is the Newton-
Polygon of f. We then have

Proposition 1.2. Let f,g € Clz,y]. If J(f,g9) = 1, then for all
but a finite number of prime numbers p > 0, there exists a finite field
k of characteristic p and a pair of elements f,g € k[z,y] such that
S(f) = 5(1),5(3) = 5(g) and j(f,3) = 1. (Clearly N(f) = N(f) and
N(g) = N(g) as well.)

Proof. Let f =Y a;jz'y’ and g = Y B;;x'y? belong to Clz,y| with
j(f,g) = 1. If we think temporarily of the a;; and §;; as variables and
equate coefficients on both sides of the equality j(f,g) = 1, then we
obtain a system of equations

(1.2.1) Fi=---=F, =0 with Fy,...,F, € Z]aj, 8i;]-

For each a;; # 0 and ;- # 0 the equations o;ju;;—1 and By jrvsjr —1
has a solution in C. Let G1,...,G, be a listing of these equations.
Then the G;’s belong to Z[wij,Bij, uij,vij] = S. Combine these
equations with those of (1.2.1) to obtain a system
(1.2.2)

Fi=---=F,=G;=---=G4=0 with the F’s and G’s in S.
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Since (1.2.2) has a solution in C™ (M, the number of variables),
(1.2.2) has a solution in a finite field of characteristic p > 0 for all but
a finite number of primes p and such solution will yield a pair f,§ with

J(f,3) =1and S(f) = S(f), S(g) = S()-

Theorem 1.3 (Abhyankar). Let k be a field of characteristic 0. Then
the following statements are equivalent.

(i) If f,g € klz,y] and j(f,g) = 0, then k[f, g] = klz,y].
(ii) If f,g € klz,y] and j(f,g) = 0, then f has one point at infinity.
(i) If f,g € klz,y] and J(f,g) = 0, then the Newton-Polygon of f

is a triangle with vertices (n,0), (0,n), and (0,0) for some nonnegative
integers n and m.

(iv) If f,g € k[z,y] and j(f,g) = 6, then deg f divides deg g or degg
divides deg f. ([1, Theorem (19.4)]).

We will also make use of a theorem of P. Samuel. Assume R is a Krull
ring of characteristic p # 0. Let A be a derivation on FE, the quotient
field of R such that A(R) C R. Let FF =ker(A) and S =RNS. We
have,

Theorem 1.4 (Samuel). (a) If [E : F] = p, then there exists a € S
such that AP = aA,

(b) t € E is equal to u Au for some u € E if and only if
AP~ 1t —at +tP = 0 ([7, Propositions (3.1) and (3.2)]).

2. The Jacobian condition in characteristic p. Assume in this
section that the characteristic of k£ is p # 0 and that Fi,...,F, are
elements of A. For each i = 1,...,n, let d; be the k-derivation on L
defined by d;(h) = j(Fy,...,Fi1,h, Fiy1,...,F,). It is well known
that j(Fy,...,F,) =6 does not imply A = k[Fy,...,F,] ([1, p. 118]).
The following characterization of Jacobian n-tuples in characteristic p
by P. Nousainen appears in [3].

Theorem 2.1 (Nousainen). The following conditions are equivalent.
(1) j(F1,...,F,)=06.
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2) A=klzb,... 22, F1,... F,l.

(3) The monomials F* ---Fi», 0 < ¢; <p—1, form a free basis of
the k[z¥, ... module A. ([3, Theorem (2.2)]).

’ ’I’L]

Our main result extends Nousainen’s theorem and gives us a way to
test the monomials F* - - Fd» individually.

Theorem 2.2. The following are equivalent.
(1) j(F1,...,F,) =6.

(4) For each i = 1,... ,n, and each h € L, h = 025;3 F{df71
(FP~"""h).

(5) V=0d0""-.ap"

(6) V(F& ... Fin) = {0, z:f0§qi <p-—1, forsomei=1,...,n
b, fqr=-=qg=p—L
Lemma 2.3. Let R be Krull ring of characteristic p # 0 with quotient
field F and D: F — F a derivation. Let F' = D '(0). Assume
D(R)C R, [F:F'|=p, R =FNR and f € R. Then D(f) € F}, the
multiplicative group of nonzero elements of the prime subfield of R, if
and only if Df € R’ and for alla € R, a = — Zf:_ol fPimtDr=1(fia).

Proof. (=). Assume Df = b € Fy. Then 0 = D(1) = D(b* ') =
—bP=2Db, which shows that D(b) = 0 By (1.4), D? = aD for some
a € R'. Then DPf = aDf implies a = 0. Therefore, DP~'c € R’ for
all c€ R.

Let a € R. Let 8 = Y.P_) f»~""1D?~'(f%a). Then

f= Zf2< Y pitrypr i

=ZOZO (;) Do f7= 1P a)
=p1 v () o)
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(We are following the convention that (;) =0ifj>i.)

P

B

1(—1)7'(j!)bjf””Dplj(“)z;1 (;)

N,
= o

Cpa o (7).

.
Il
=)

Since char (4) = p, (;1) = 0 unless j = p — 1. Therefore,
B= (=P tp-1)WP 1 f°D°%a) = —a.

(). Ifa = —Zfz_ol fp""’lD?”’l('fia) for all @ € A, then in
particular, 1 = _Zf:—ol P =1DP=Y(f%). Since Df € R' we obtain
1=—(p—1)(Df)P~*. Therefore, (Df)?"' =1and Df € F,. O

Lemma 2.4. Let R,R',D, and f be as in (2.3). If Df € R*, the
group of units in R, then R = R'[f].

Proof. Let A = (Df)"'D. By (2.3), we have for all a € R,
a= Y 70 fPrittAP-1(fiq). By (1.4), there exists an a € R’ such
that A? = aA. Since Af = 1, a = 0. Thus, AP"!(a) € R’ for all
a € R. ]

Lemma 2.5. Let R,R',D, and f be as in (2.3). Assume that the
ideal D(R) - R is not contained in any height one prime and Df # 0.
Then the following are equivalent.

(1) Df € (R")*, the multiplicative group of units in R’.
(2) Df € R and R'[f] = R.
(3) Df € R" and there exists 5 € (R')* such that for all a € R,

p—1
a=BY_ fri D (fla).

=0

Proof. (1) = (3) = (2): Repeat the proof of (2.4) noting by (1)
that Df € R'. (2) = (1): Df € R’ and R'[f] = R implies that
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D(R) C (Df) - R. Since D(R)R is not contained in any height one
prime of R, Df e R*"NR = (R)*. =D

(2.6).  Assume that k is algebraically closed. Let A’ =
AP[Fy, ... ,F,_1] and L' = LP[Fy,...,F,] be the quotient field of A’.
Let I be the ideal in A generated by the n — 1 X n — 1 minors of the
matrix

Dy(Fy) .- D, (Fy)

Di(Fy 1) - Dn(li“n,l)

That is, I is generated by d,(z;), 1 < < n. We say that Fy,... ,F, 1
satisfy condition (*) if the dimension of A/T is at most n — 2.

Lemma 2.7. Let X C Ai”f1 be the variety defined by the equations
y? = F;, 1 <i<n-—1. If the F; satisfy (x), then the coordinate ring
of X is isomorphic to A'.

Proof. Let ¢ : A — A’ be the ring homomorphism that sends x; to
z?, wjto Fjand atoa? forall1<i<n,1<j<n-1,ack. (Note
that ¢ is not a k-homomorphism.) Then w;) —Fjckerg. Let QC A
be the ideal generated by w? — F;, 1 < j <n —1. By (*) F1 ¢ AP and
Fj ¢ AP[Fy,... ,F;_1],2 <j <n—1. It follows that @ is a prime ideal
of height n — 1. Therefore, ker ¢ = Q. u]

Lemma 2.8. If the F; satisfy (), then ANd;1(0) = A’

Proof. Let B = d,'(0)N A. Then A? C A’ C B C A. By (x),
each F; ¢ LP(Fy,...,F;_1). Thus, [L' : LP] = p"~ 1. Also, by (x),
dn(x;) # 0 for some i. Therefore, the quotient field of B is not L and
hence A’ and B have the same quotient field. Clearly, B is integral
over A’. By (2.7), A’ is isomorphic to the coordinate ring of X, which
is regular in codimension one by (x). Therefore, A’ is normal, which
proves A’ = B. O

The proof of the next lemma appears in [6].
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Lemma 2.9. Without the assumption of (x),
(1) there exists 8 € A’ such that d2, = Bd,,. B is given by the formula

n—1 p—1

B= (1" Y P BTV T p Y,

j:l Tj=0

(2) furthermore, for allt € L,

n—1 p—1

i) Bt = (D)"Y Y e EVET T ET ),

j:l T‘j=0

Proof of Theorem (2.2). (1) = (4): (1) is true up to a permutation of
the Fj; thus, it is enough to prove (4) for ¢ = n. (1) implies (x). Now
use (3) of (2.5).

(4) = (5): For all h € L, h = 93P} Fr(de-*(FP~"~'h) —
BFP="=1h), where d?, = fd,,, since SP_8 BFP~'h = 0. By (2.9), we
see that for all h € L,

n p—1
(A) hzez ZF{IFé‘nv(Ff’_rn_lFs—rn—lh)

j:l 7‘_7':0

(A) implies (2) of (2.1), hence (1). By (1), d;(F;) = 0,1 < i < n.
Apply d®~' ... d2~! to both sides of (A) and use the fact that

0, ifi#j,
di(Fj):{e ifi=j
and V(A4) C AP to obtain (5).

(5)= (1): Assume V=d?'...d2 ! Letg=dl 2d5 *...de-1(ab !
---zP=1). Then dy(g) = (—1)". Therefore, d] = 0 and by (2) of (2.1),
A= AP[F;,... ,F,,g]. Thus, [L: Ly| = p, where Ly = LP(F5,... , Fy,).
If Fi € Ly, then d,,(F,,) = £d1(F1) = 0. Then for all 7, i1, ... ,i, € F,
we have V(FIzl...zin) = 0d8~ " ... dp-Y(Frait .. xin) = QFrd"
coedP (2l gin) = QFIV (28 - - ). Therefore, V(Fizl - xin) =

n
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0 for all r and (i1,...,%,) # (p —1,...,p —1). When r = 1, this
gives F, € AP. Then d; = 0, 1 < i < n — 1, which is a contra-
diction. Therefore, F; ¢ Ly and hence L = LP(F,...,F,). This
shows that the d;, 1 < ¢ < n, commute on L, so that for any
permutation ¢ € S, d’;(—ll)--- 2(_711) = @V. Then by the same ar-

gument we used for di, we get df =0,1< 14 < n By com-
mutivity, d2(g) = 0. By (2.8), g € AP[Fy,...,F,_1]. Therefore,
A = AP[F,,... ,F,,g] C AP[Fy,...,F,] C A, which by (2.1) implies
(1). The equivalence of (1) and (6) is a simple corollary to the equiva-
lence of (1) and (5). O
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