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A REMARK ON L* BOUNDS FOR SOLUTIONS TO
QUASILINEAR REACTION-DIFFUSION EQUATIONS

HENDRIK J. KUIPER

1. Introduction. The objective of this paper is to obtain an a
priori L bound for solutions to certain reaction-diffusion equations.
This is accomplished by transforming the system into a single second
order parabolic equation with a nonlocal nonlinearity to which may
be applied earlier results of the author [3, 4]. This approach makes
it possible to consider systems which involve nonlocal nonlinearities.
We will say that a nonlinearity F is nonlocal if F(u)(x,¢) depends
functionally upon u(-,t). We believe that our result is new even in case
the system has nonlinearities which are local in nature.

The most obvious application of our estimates is to obtain lower
bounds for the blow-up time for a system of quasilinear reaction-
diffusion equations, irrespective of whether or not the system contains
nonlocal terms. However, there are several examples of such systems
which do involve nonlocal terms. In both electrophoresis [1] as well
as models for carrier transport in semiconductors [5], one encounters
systems of the form

ou) ot =V - (dDVu) — Dy Do) + FU) (2, t,u,v),
0= Vuv+ G(u),

together with boundary conditions. We can, of course, solve the last
equation for v in terms of u,

ol 1) = / G, €)G(u(&, 1)) de,

and substitute this into the other equations in order to obtain a system
of the form (10). In the case of carrier transport in semiconductors,
the function F' may contain positive cubic terms (see [5, p. 9], while
the diffusion coefficients d\¥) may depend on v and hence in a nonlocal
way depend on u. Prey-predator equations with nonlocal nonlinearities
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have been studied. One such problem involving both nonlocal as well
as delayed nonlinearities was studied in [2]. In that paper these two
complications were assumed to be of such a nature that they could be
removed at the expense of increasing the size of the system of equations
from two to three. Although we did not look at equations which involve
time delays, our result applies to a fairly large class of reaction-diffusion
equations and may easily be extended in the obvious way to problems
involving constant time delays:

u; = V-N(u,Vu,u,,Vu,) + F(u,u,),

where u, (-, t) = u(-,t — 7).

We will allow nonlinear boundary conditions which are nonlocal and
hope that this may prove to be helpful in the study of reaction-diffusion
equations which describe processes in which some of the reactions take
place on the surface of the container (see [4]).

Consider the system of equations
(1) Ouj/ot =V - MD(z,t,u, Du) + FO(z,t,u), (z,t) € Q,

where u = (uy,u2,... ,um), Du = (Quy/0z1,... ,0u1/0x,, Ous /Ox1,
ceey OU [0y), Q@ = Q x (0,T), 0 < T < o0, and Q is a bounded
open set in R™ with smooth boundary 92 which possesses a uniquely
defined unit outward normal vector field v(z). In order to allow for
mixed boundary conditions, we suppose that for each 1 < 7 < m we
have 002 = BQ(DJ) U 895{,), a disjoint union. Suppose that the following
boundary conditions are imposed on u:

(2) u;(z,t) =0 on QY
(3) v(z) - M(j)(x,t, u, Du) + g(j)(x,t, u)=0 on 8Q%),

where QY = QY x (0,T) and 8QY) = 82 x (0,T).

Let us first transform this to a one-component problem. Let
€W @ ¢(m) be vectors in R™ chosen in such a way that the trans-
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lates 2; = & () 4+ Q of Q are mutually disjoint. Next we define

o =Jo
=1
Q" =Q"x(0,7)
0Q; = | J(0Q%) + (¢9,0))
=1
0Qy = | J0QY + (£9,0)).
=1

We define the function v on Q* as follows
u(x,t) = ui(z — €9, 1) if x € Q.

We define Du(z,t) similarly on Q*. Conversely, given a function w on
Q* we let the corresponding boldface letter, w in this case, represent
the function from 2 into R™ given by w(z,t) = (wy(z,t), wa(z,t),. ..,
Wy (,t)) where w;(z,t) = w(z + €9, 1), z € Q.

We define
M(z + €Dt u, Du) = MD (z,t,u(z,t), Du(z,t), =z

The functions F(z,t,u) and G(z,t,u) are defined similarly from the
given functions F(z,t,u) and G(z,¢,u). Problem (1)-(3) is now, at
least formally, equivalent to the problem

(4) 0Ou/0t =V - M(z,t,u, Du) + F(z,t,u, Du), (x,t) € QF
(5) u(z,t) =0, (z,t) € 0QD
6) v*(z) - M(z,t,u, Du) + G(z,t,u) =0, (z,t) € 0QN

—~

where v*(z) = v(z — £V)) if x € 09;.

The price of this reduction is that M, F and G now depend function-
ally upon v and Du. When, for each j, the functions M) and GU)
are independent of the components u; and Du; for which i # j, then
we say that the equations are weakly coupled. Let us assume that our
equations are weakly coupled. Although we assume that the F() do
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not depend on the derivatives Du, we may allow FU)(z, ¢, u) to depend
functionally upon u(-, t).

2. Results. In this section we state the main hypotheses, the
definition of a solution (weak solution) and our results. Let

Tf)(m, t,u) = max{0, [sgnu;(z, O}FD (z, t,u).
Our main hypotheses are as follows.

(PBY) P -MWD(z,t,5,P)>0 V(x,tsP)c@Q xR xR"
sGW) x,t,s) >0 Y (z,t,5) € Q x R!
- ©6920  VintaeQ
177Gt w)ll < g(@) F(Jal, )]
where || || denotes the Lo (2) norm (||lu(-,t)|| = max;||u;(-,t)|]),
f is a nondecreasing, nonnegative, Lipschitz continuous function on

[0,0) and g is a continuous, nonnegative function on [0, c0) such that
G(t) = fotg(T) dr < oo forall 0 <t <T.

89 is a C' manifold. If 9QY) £ 50 and
(MDN) 895;) # & then 8(895?), the boundary of
99Y) in 09, is a C' submanifold of Q.

Let Qs denote the set Q x (0,s), then L, ,(Qs) denotes the Banach
space of Lebesgue measurable functions A with finite norm

Al = {/0 M h(x,t)|quy/q}1/r.

When h is a function defined on Q; (respectively, Q* = Q* x (0, s))
such that h(-,t) € L,(Q) (respectively, L,.(€2*)), then we use the
corresponding capital letter, in this case H, to denote the function
H(t) = h(-,t) from (0, s) into L, () (respectively, L,(Q2*)).

Let Qg denote the section © x {s}. The space of C*°(Q) functions
whose support does not intersect Q") UQyUQ is denoted by CF;(Q).
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We can similarly define C¥(Q*). By C¥(Q) we will mean the space
of C*° functions h from @ into R™ such that h; € C%,(Q) for each i.

The term solution will denote a distributional solution with a modest
amount of regularity:

Definition. A function u: @ — R™ is a solution of (1)—(3) if
(i) U eLip([0,T),L,()™), p>1.
(ii) For each 0 < s < T, we have u € Ly (Qs)™ and Du €
Ly q.(Qs)™, qi € [0,00],4=1,2.
(iii) For each j and each 0 < s < T, we have MU (z,t,u, Du) €

Ly, (Qs)™ and g(j)(w, t,u) € Ly, ,, (0Q2p % (0, s)), where p; = ¢;/(q; —
1)if ¢; > 1 and p; = 1 if ¢; = c0.

(iv) u is continuous in the interior of @) or u is a member of the
Sobolev space Wi (Q)™. If p = 1, then we also require that U is a
separably valued function into L., (Q)™.

(v) ||U;(¢)|| is continuous from the right for each j.
(vi) For each ¢ € C¥(Q), we have

// u—da:dt

// {ZM(” (z,t,u, Du) - Vap; — (x,t,u)-'l/}}dxdt
+Z//5Q<a> GV (x,t,u)y; dS dt.

A solution of problem (4)—(6) is defined entirely analogously: we
replace Q by Q*, Q by Q*, m by 1, and we drop the superscripts /).
It is obvious that problems (1)—(3) and (4)—(6) are equivalent.

Before we state the result we need to define a quantity p(F) which
has to do with the nonlocal character of F. First we define a subset of
Q"

Q*(p,h) = {z € Q" : |h(z)| > p||h|], f(h(z)) > 0}
x{t:0<t<T,g(t) >0}
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Next we define

(8)  pp(F)= sup  esssup [g(t)f(h(x))] " Fy(z,t,h)|
h€Loo(Q) (2,)€Q* (p,h)

and

u(F) = lim p, (F),
ptl

where F is defined as

Fi(z,t,u) = max{0, [sgn (u(z,t))]} F(z, t,u).

Lemma. Suppose that xf'(px)/f(z) exists and is uniformly bounded
forz >0 and 0 < p <1; then pu(F) < 1.

Proof. Applying the hypothesis (BND) to equation (8), we see that

po < sup esssup [g(t)f(h(z))] " g(t) f(IIR]])
h€Lao(27) (2,)EQ" (p,h)

< sup f([[R[[)/ f(pl|Al])-

IRl

This means that

w(F) < limsup f(s)/f(ps)-

Pl s>0

But we know that there are constants C' > 0 and o € [p, 1] such that

An example of a function which satisfies the hypothesis of the above
lemma is a linear combination of positive powers or, more simply, a
function of the form f(s) = A+ Bs" with A, B and r positive.

Since problem (4)—(6) satisfies the hypotheses of Theorem 2 in [3]
and since ||u|| = ||ul|, we have the following result.
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Theorem 1. Suppose that u is a solution of problem (1)—(3).
Suppose that the problem is weakly coupled and that hypotheses (PBY),
(BND), and (MDN) are satisfied. Then

[u(-8)]l t
s)"'ds < u(F T)dr
o) [y 107t <) [ o

for all t € [0,T). Moreover, when f(s) is a linear combination of
positive powers of s, then u(F) may be taken to be 1.

The requirement that the equations are only weakly coupled excludes
some important problems. However, we believe that this restriction
may be removed. But, in order to do so, we must generalize the
technical Lemma 7 in [3] whose proof is already quite lengthy.

The methods used above may be applied to problems of a somewhat
different form that were treated in [4]. Let us define the elliptic
operators

LD =" 0/0x; AY)(x,t,u, Du)d/dz

i,k=1 7
+ Z ng)(m, t,u, Du)d/0z;
i=1
and the boundary operators

C = 3" vi(ax)AY)(x,t,u, Du)d/dxy.

ik=1

We consider the problem

(10) ouD Jot = LOu + F(z,t,u),  (2,1) € Q,
(11) uD(z,t) = 6D (z,1),  (x,t) € 9QY

(12) COHuD (z,t) + G (z,t,u) =0,  (z,t) € 9QY
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(13) w9 (z,0) = ul? ().

We will not demand weak coupling and we will allow the coefficients
A(]k), and B(J as well as F and G to depend functionally upon u(,t).
However we will restrict ourselves to classical solutions and need the
following hypotheses to be satisfied. Let H denote the space of C*1(Q)
functions w whose derivatives Ow/dt and 8*w/dx;0x) are uniformly
Holder continuous in = with exponent « and whose derivatives Ow/dt,
O0w/0z;, and 0%w/Ox;0;, are uniformly Holder continuous in ¢ with
exponents /2, (14 «a)/2, and «/2, respectively. We assume that the
coefficients are sufficiently well behaved so that for each u € H™ the
following problem has a classical solution:

D ot = LD ), (z,t) € Q,
v (z,t) = ¢(J)(m,t)7 (x,t) € (')Qg),
By =0, (z,t) € 0QY, (,t) € 0QY,
v (z,0) = ul (x).

(XST)

We also assume that there exist nondecreasing Lipschitz continuous
functions f and f on [0, 00) and functions g and g that are continuous

nonnegative functions on [0, 7") whose integrals fo t) dt and fo
are finite, such that

|7t w)l] < g®)F(Ilal- 1))
sGY) (z,t,5) >0 Y (z,t,5) € Q@ x R}
1/2

< 3(&)f(Ju(, )]

(BND*)

n

ZBE”(J;, t,u, Du)?

i=1

We shall also assume uniform parabolicity:

n
(PBY*) S ADpipr > o Zp,,
ik=1
where vq is a positive constant.

As was done before, we can combine the equations into a single
equation on Q*. The resulting equation satisfies the hypotheses of
Theorem 4 in [4]. This yields
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Theorem 2. Suppose that u is a solution of problem (10)—(13).
Suppose that the hypotheses (PBY*), (BND*), and (XST) are satisfied.

Let |u(()j)(m)| <M in Q and |¢) (z,t)| < M in Q, then

[u(-,t)]| t
(14) / F(s) L ds < p(F) / o(r) dr.

M
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