SCHAUDER DECOMPOSITIONS OF NON-ARCHIMEDEAN BANACH SPACES

TAKEMITSU KIYOSAWA

ABSTRACT. Let K be a field with a nontrivial non-Archimedean valuation, under which it is complete. Let E be a non-Archimedean Banach space over K. Some of the main results are:

- (1) (Theorem 13) If $(P_n) \subset L(E,E)$ is a Schauder decomposition, then (P_n) is a (UM)-sequence such that $P_n \to 1$ strongly but not uniformly.
- (2) (Corollary 14) Let K be spherically complete. If E is a G-space, then E admits no Schauder decompositions.
- 1. Introduction. Let K be a field with a nontrivial non-Archimedean valuation, under which it is complete. In this paper we deal with Schauder decompositions of Banach spaces over K.

In Archimedean analysis, many authors treat this decomposition (cf. [1, 4, 5]). In particular, Dean [1] gave the following result.

Theorem [1]. Let E be a Grothendieck space with the Dunford-Pettis property. Then E admits no Schauder decompositions.

Lotz [5] and Leung [4] obtained further results along the same lines as Dean's argument.

In non-Archimedean analysis, however, if K is not spherically complete, then the above theorem is not true. In this paper we give an example to indicate it and show the following theorem.

Theorem (Corollary 14). Let K be spherically complete. If E is a Grothendieck space, then E admits no Schauder decompositions.

To show this, we need the following theorem, which is also one of our main theorems.

Copyright ©1993 Rocky Mountain Mathematics Consortium

Received by the editors on July 27, 1990. AMS Subject Classification (1980). 46P05, 30G05, 12J25.

Theorem (Theorem 13). If $(P_n) \subset L(E,E)$ is a Schauder decomposition, then (P_n) is a (UM)-sequence such that $P_n \to 1$ strongly but not uniformly.

2. Preliminaries. Throughout, by E, F, \ldots , we denote Banach spaces over K, and E' denotes the dual of E. Let L(E, F) be the space of all continuous linear operators from E into F, and let C(E, F) be the subspace of L(E, F) which consists of all compact operators. The identity operator on E is denoted by 1_E or 1 if there is no cause for confusion. By $E \sim F$, we mean that E and F are linearly isometric.

A Banach space E is called a Grothendieck space (G-space) if every sequence $(x'_n) \subset E'$ which converges for weak* topology to zero converges weakly to zero. It is clear that a reflexive space is a G-space. The following are some results on G-spaces.

Proposition 1 (De Grande-de Kimpe [2]). If $L(E, c_0) = C(E, c_0)$, then E is a G-space.

Combining this proposition with Corollary 5.20 in [7] yields the next corollary.

Corollary 2. If the valuation of K is dense and E is weakly injective, then E is a G-space. In particular, if K is spherically complete and its valuation is dense, then every dual space is a G-space.

The following proposition is also obtained in De Grande-de Kimpe [2], but we give another proof here.

Proposition 3. Let K be spherically complete. If E contains a subspace of countable type which is complemented, then E is not a G-space.

(Recall that every Banach space contains a subspace of countable type.)

Proof. We may assume that $E = D \oplus c_0$, where D is a closed subspace

of E. Then there exists a linear isometry

$$S: D' \times l^{\infty} \to E'$$

defined by $\langle (x,y),S(d_1,d_2)\rangle = \langle x,d_1\rangle + \langle y,d_2\rangle \ (d_1\in D',\ d_2\in l^\infty,\ x\in D,\ y\in c_0).$ (See [7, p. 61].) Put $e_n=(0,0,\dots,0,1_{n-{\rm th}},0,\dots)\in l^\infty$ $(n\geq 1)$ and $S(0,e_n)=x'_n\in E'.$ Then, for all $(x,y)\in E$ $(x\in D,\ y\in c_0),\ \langle (x,y),x'_n\rangle =y_n\to 0$ where y_n is the n-th coordinate of y. Therefore, $(x'_n)\in E'$ is weak* convergent to zero. While, since K is spherically complete, there exists $x''\in (l^\infty)'\ (\sim c''_0)$ such that $\langle e_n,x''\rangle\not\to 0$ (see [3]). Now define $y''\in (D'\times l^\infty)'$ by $\langle (z',y),y''\rangle = \langle y,x''\rangle\ (z'\in D',\ y\in l^\infty)$ and put $z''=y''S^{-1}$. Then $z''\in E''$ and $\langle x'_n,z''\rangle = \langle e_n,x''\rangle\not\to 0$. Hence $(x'_n)\subset E'$ does not converge weakly to zero. So E is not a G-space. \square

Corollary 4. Let K be spherically complete. If E has a base, then E is not a G-space. In particular, if the valuation of K is discrete, then every Banach space is not a G-space.

Proof. Combining Proposition 3 with Corollary 3.18 in [7], we can show this corollary. \Box

Corollary 5. (1) The valuation of K is dense if and only if l^{∞} is a G-space.

(2) K is not spherically complete if and only if c_0 is a G-space.

Proof. (1) follows from Proposition 1, Corollary 4 and Corollary 5.19 in [7]. (2) follows from Corollary 4 and from the fact that if K is not spherically complete, then c_0 is reflexive. \Box

A Banach space E is said to have the Dunford-Pettis property (D-P property) if $\lim_n \langle x_n, x'_n \rangle = 0$ whenever $(x_n) \subset E$ tends weakly to zero and $(x'_n) \subset E'$ tends weakly to zero. If K is spherically complete, then every weakly convergent sequence in a Banach space is norm-convergent (see [6, p. 70]). Hence, the following lemma holds.

Lemma 6. If K is spherically complete, then every Banach space has the D-P property.

Theorem 7. c_0 and l^{∞} have the D-P property.

Proof. Suppose that $(x_n) \subset c_0$ tends weakly to zero. Since $c_0' \sim l^{\infty}$, by the same argument as used in proving Theorem 6 in $[\mathbf{6}, \, \mathbf{p}, \, 70]$, we have $\lim_n ||x_n|| = 0$. Further, suppose that $(x_n') \subset c_0'$ tends weakly to zero. Then by the Banach-Steinhaus theorem, $\sup_n ||x_n'|| < \infty$. Therefore, $|\langle x_n, x_n' \rangle| \leq ||x_n'|| ||x_n|| \to 0 \ (n \to \infty)$. So c_0 has the D-P property. We now show that l^{∞} has the D-P property. We may assume that K is not spherically complete. Then c_0 and l^{∞} are reflexive and $(l^{\infty})' \sim c_0$ (see $[\mathbf{7}, \, \mathbf{p}, \, 111]$). Hence, the proof is the same as the proof of c_0 .

Definition (Lotz [5]). A sequence $(P_n) \subset L(E, E)$ is said to be a (weak) Schauder decomposition if the following conditions hold:

- (1) $P_m P_n = P_{\min(n,m)}$ for all n, m.
- (2) $(P_n x)$ converges (weakly) to x for every $x \in E$.
- (3) $P_n \neq P_m$ for $n \neq m$.

Remark. Put $Q_1 = P_1$, $Q_i = P_i - P_{i-1}$ $(i \ge 2)$. Then we see that Q_i is a projection and $E = \bigoplus Q_i(E)$.

Definition (Lotz [5]). A sequence $(S_n) \subset L(E, E)$ is said to be a (UM)-sequence if the following conditions hold:

- (1) $\sup_n ||S_n|| < \infty$.
- (2) $\lim_n ||S_m(S_n 1)|| = 0$ for all m.
- (3) $\lim_n ||(S_n 1)S_m|| = 0$ for all m.

Example 1. (1) Every (weak) Schauder decomposition (P_n) on E is a (UM)-sequence.

(2) Let (α_n) be a sequence in K such that $\alpha_n \to 0$ $(n \to \infty)$. For every $n \in N$, define a linear operator

$$S_n:l^\infty\to l^\infty$$

by $S_n(x_1, x_2, ..., x_n, ...) = (x_1, x_2, ..., x_n, \alpha_{n+1}x_{n+1}, \alpha_{n+2}x_{n+2}, ...)$. Then (S_n) is a (UM)-sequence on l^{∞} . (3) Let $P \in L(E, E)$ be a projection and λ be an element of K with $||P|| < |\lambda|$. Then $1 - \lambda^{-1}P$ is a bijection, and we have the following expansion:

$$(1 - \lambda^{-1}P)^{-1} = 1 + \lambda^{-1}P + \dots + (\lambda^{-1}P)^n + \dots$$

Hence, for every $x \in E$ there exists $y \in E$ such that

$$x = y + (\lambda^{-1}P)y + \dots + (\lambda^{-1}P)^{n}y + \dots$$

For every n, define a linear operator

$$S_n:E\to E$$

by $S_n(x) = y + (\lambda^{-1}P)y + \cdots + (\lambda^{-1}P)^n y$. Then (S_n) is a (UM)-sequence on E.

We observe that if (S_n) is a (UM)-sequence on E, then (S'_n) is a (UM)-sequence on E'.

3. Results. The following lemma is similar to the lemma of Lotz [5].

Lemma 8. Let K be spherically complete and let (S_n) be a (UM)-sequence on E. Put $X = \overline{\bigcup S_n(E)}$ and $Y = \cap S_n^{-1}\{0\}$. Then the following assertions hold:

- (1) $X = \{x \in E \mid \lim_n ||S_n x x|| = 0\}$ and X is a linear subspace of E and weak closure of $\bigcup S_n(E)$.
- (2) If, for every $x \in E$, the sequence $(S_n x)$ has a weak cluster point, then (S_n) converges strongly to a projection P with X as range and Y as kernel.

Proof. Since K is spherically complete, X is weakly closed. Therefore, the proof is the same as the proof of Lemma 1 in [5]. \Box

Lemma 9. Let K be spherically complete, and let E be a G-space. If a sequence $(T_n) \subset L(E,E)$ converges strongly to 1, then the sequence $(T'_n) \subset L(E',E')$ also does.

Proof. For every $x \in E$ and for every $x' \in E'$,

$$|\langle x, (T_n - 1)'(x') \rangle| \le ||x'|| ||(T_n - 1)(x)|| \to 0 \qquad (n \to \infty).$$

Hence, $(T_n-1)'(x') \to 0$ weak*. Since E is a G-space and K is spherically complete, $(T_n-1)'(x') \to 0$ strongly. \square

The following theorem is analogous to Leung's theorem (see [4, p. 24).

Theorem 10. Let K be spherically complete, and let E be a G-space. Then every strongly convergent (UM)-sequence on E converges uniformly.

Proof. Let (S_n) be a strongly convergent (UM)-sequence on E. By Lemma 8, we may assume that $S_n \to 1$ strongly. Assume that $||S_n - 1|| \not\to 0 \ (n \to \infty)$. If, for some m, S'_m is topological isomorphism from E' onto a closed subspace of E', then

$$||S_n - 1|| = ||(S_n - 1)'|| \le ||S'_m|| + ||S_n - 1|| + ||S_n - 1|| \le ||S_m|| \le 0$$
 $(n \to \infty).$

This is a contradiction. Hence, for all n, S'_n is not a topological isomorphism, and so there exists $x'_n \in E'$ such that $||S'_n(x'_n)|| \le ||x'_n||/n$ and $|\pi| < ||x'_n|| \le 1$, where π is an element of K with $|\pi| < 1$. Putting $y'_n = (1 - S_n)'x'_n$, we obtain that

$$|\langle x, y_n' \rangle| \le ||x_n'|| ||(1 - S_n)(x)|| \to 0 \qquad (n \to \infty)$$

for every $x \in E$. Hence, $y'_n \to 0$ weak*. Since E is a G-space, $y'_n \to 0$ weakly. Further, since $||x'_n - y'_n|| \to 0$ $(n \to \infty)$, there exists a positive integer n_0 such that, for all $n > n_0$, $|\pi| < ||y'_n|| \le 1$. Hence, there is $x_n \in E$ such that $|\pi| \le |\langle x_n, y'_n \rangle| \le 1$ and $|\pi| < ||x_n|| \le 1$. Then, by Lemma 9,

$$|\langle (1 - S_n)x_n, x' \rangle| \le ||(1 - S_n)'x'|| ||x|| \to 0 \qquad (n \to \infty).$$

It follows that $(1-S_n)x_n \to 0$ weakly. Since K is spherically complete,

$$|\langle x_n, (1 - S_n)' y_n' \rangle| \le ||(1 - S_n)(x_n)|| ||y_n'|| \to 0 \qquad (n \to \infty).$$

While we have

$$|\langle x_n, S'_n y'_n \rangle| \le ||S'_n y'_n|| = ||(1 - S_n)' S'_n x'_n|| \le ||S'_n x'_n|| \max(1, ||S_n||) \to 0 \qquad (n \to \infty).$$

Hence, $|\langle x_n, y_n' \rangle| \to 0$ $(n \to \infty)$. This contradicts to $|\pi| \le |\langle x_n, y_n' \rangle|$ for all n, and the proof is complete. \square

Corollary 11. Let K be spherically complete. Let E be a G-space, and let (S_n) be a (UM)-sequence on E. Then the following are equivalent:

- (1) $S_n \to 1$ weakly.
- (2) $S_n \to 1$ strongly.
- (3) $S_n \to 1$ uniformly.
- (4) $S'_n \to 1_{E'}$ weak*.
- (5) $S'_n \to 1_{E'}$ weakly.
- (6) $S'_n \to 1_{E'}$ strongly.
- (7) $S'_n \to 1_{E'}$ uniformly.

Proof. It is clear that $(3) \Rightarrow (7) \Rightarrow (6) \Rightarrow (5) \Rightarrow (4)$. Since K is spherically complete, $(1) \Rightarrow (2)$ holds. By Theorem 10, $(2) \Rightarrow (3)$ is true. Finally, by definition, we see that (1) and (4) are equivalent.

By induction, for every positive integer k we define the conjugate space $E^{(k)}$ and the conjugate operator $T^{(k)} \in L(E^{(k)}, E^{(k)})$ as follows:

$$E^{(1)} = E',$$
 $E^{(k+1)} = (E^{(k)})',$
 $T^{(1)} = T',$ $T^{(k+1)} = (T^{(k)})'.$

Then, combining Corollaries 2 and 11, we can obtain the following corollary.

Corollary 12. Let (S_n) be a (UM)-sequence on E. If K is spherically complete and its valuation is dense, then for each k the following are equivalent:

- (1) $S'_n \to 1_{E'}$ weakly.
- (2) $S'_n \to 1_{E'}$ strongly.
- (3) $S'_n \to 1_{E'}$ uniformly.
- (4) $S_n^{(k)} \to 1_{E^{(k)}} weak^*$.
- (5) $S_n^{(k)} \to 1_{E^{(k)}}$ weakly.
- (6) $S_n^{(k)} \to 1_{E^{(k)}}$ strongly.
- (7) $S_n^{(k)} \to 1_{E^{(k)}}$ uniformly.

If K is not spherically complete, then Corollary 11 is not true. This is shown by the following example.

Example 2. Let K not be spherically complete. (Recall that c_0 and l^{∞} are reflexive and are G-spaces.) For each $n \geq 1$, consider the linear operator

$$S_n: l^{\infty} \to l^{\infty}: (x_1, x_2, \dots, x_n, \dots) \to (x_1, x_2, \dots, x_n, 0, \dots).$$

Then (S_n) is a (UM)-sequence on l^{∞} which does not converge to 1 strongly. However, since K is not spherically complete, $(l^{\infty})' \sim c_0$, and we see that $S_n \to 1$ weakly. Further, let T_n be the restriction of S_n to c_0 . Then (T_n) is a Schauder decomposition on c_0 , and $T_n \to 1$ strongly but not uniformly.

Moreover, in Corollary 11, we also need the condition that E is a G-space. This is indicated by the next example.

Example 3. Let K be spherically complete. Then c_0 is not a G-space. Let (T_n) be a (UM)-sequence on c_0 in Example 2. Then (T_n) converges to 1 strongly. On the other hand, since $c'_0 \sim l^{\infty}$, we obtain

$$T'_n: l^{\infty} \to l^{\infty}: (y_1, y_2, \dots, y_n, \dots) \to (y_1, y_2, \dots, y_n, 0, \dots).$$

This implies that (T'_n) does not converge to 1 uniformly.

Theorem 13. If $(P_n) \subset L(E, E)$ is a Schauder decomposition, then (P_n) is a (UM)-sequence such that $P_n \to 1$ strongly but not uniformly.

Proof. It follows from the definition of the Schauder decomposition that (P_n) is a (UM)-sequence which converges to 1 strongly. We now show that it is not uniform. By definition, we have $P_n(E) \subsetneq P_{n+1}(E)$. Then there exists $y \in E$ such that $P_{n+1}(y) \in P_{n+1}(E) \setminus \tilde{P}_n(E)$. Put $x_{n+1} = P_{n+1}(y) - P_n(y)$. Then $P_n(x_{n+1}) = 0$ and

$$||P_n - 1|| \ge \frac{||P_n(x_{n+1}) - x_{n+1}||}{||x_{n+1}||} = 1.$$

This completes the proof.

From the preceding results, the following corollaries are readily deduced.

Corollary 14. Let K be spherically complete. If E is a G-space, then E admits no Schauder decompositions.

Corollary 15. Let K be spherically complete and its valuation dense. Then every dual space and every weakly injective Banach space admit no Schauder decompositions. In particular, l^{∞} and l^{∞}/c_0 admit no Schauder decompositions.

Corollary 16. Let the valuation of K be dense. Let E_1, E_2, \ldots , be an infinite sequence of Banach spaces. Then K is not spherically complete if and only if $(\times E_n)'$ and $\oplus E'_n$ are linearly isometric.

Proof. "If part" follows from Corollary 15 and "only if part" follows from Theorem 4.22 in [7].

In Corollary 14, we need the condition that K is spherically complete. This is induced by Example 2. And this example also leads that in non-Archimedean Banach space, Dean's theorem does not hold, for c_0 is a G-space and has the D-P property.

Combining Corollaries 11 and 14, we obtain the following:

Corollary 17. Let K be spherically complete. If E is a G-space, then E admits no weak Schauder decompositions.

If K is not spherically complete, then the sequence (S_n) on l^{∞} in Example 2 is a weak Schauder decomposition on l^{∞} but not a Schauder decomposition. Hence, in Corollary 16, spherical completeness of K is necessary. In general, the following proposition holds.

Proposition 18. Let K not be spherically complete. Then the Banach space $l^{\infty} \oplus E$ has a weak Schauder decomposition which is not a Schauder decomposition.

Combining Theorem 10 with Theorem 4.39 in [7], the next corollary follows.

Corollary 19. Let K be spherically complete. If E is a G-space, then there is not a (UM)-sequence (S_n) on E such that for each n, S_n is of finite rank and $S_n \to 1$ strongly.

Let K be spherically complete. Then c_0 is not a G-space, and the (UM)-sequence (T_n) in Example 2 converges to 1 strongly and T_n is of finite rank for each n. But it does not converge to 1 uniformly. In general, the following corollary holds.

Corollary 20. Let K be spherically complete. Suppose that E contains a closed subspace D of countable type which is complemented. Then there exists a (UM)-sequence (S_n) on E such that for each n, S_n is of finite rank and $S_n \to P$ strongly but not uniformly, where P is a projection of E onto D.

Proof. Since K is spherically complete and D is of countable type, D has an orthogonal base $\{e_i\}$ such that $|\pi| < ||e_i|| \le 1$ (see [7, p. 169]). Let E_n be a closed linear hull of $\{e_1, e_2, \ldots, e_n\}$. Then $D = \overline{\bigcup E_n}$, and for all $x \in E$ we can write $P(x) = \sum_{i=1}^{\infty} \alpha_i e_i$ ($\alpha_i \in K$, $\alpha_i \to 0$). Define a linear operator

$$S_n : E \to E_n : x \to \sum_{i=1}^n \alpha_i e_i$$
 $(n = 1, 2, ...).$

Then we can see that (S_n) is the required (UM)-sequence. \Box

Acknowledgment. The author wishes to thank the referee for his useful suggestions.

REFERENCES

- 1. D.W. Dean, Schauder decompositions in (m), Proc. Amer. Math. Soc. 18 (1967), 619–623.
- **2.** N. de Grande-de Kimpe, $Structure\ theorems\ for\ locally\ K$ -convex spaces, Indag. Math. **39** (1977), 11-22.
- 3. T. Kiyosawa, On spaces of compact operators in non-Archimedean Banach spaces, Canad. Math. Bull. 32 (1989), 450–458.
- 4. D. Leung, Uniform convergence of operators and Grothendieck space with the Dunford-Pettis property, Math. Z. 197 (1988), 21–32.
- **5.** H.P. Lotz, Tauberian theorems for operators on L^{∞} and similar spaces, Functional Analysis III, Surveys and Recent Results, Amsterdam: North Holland, 1984.
- ${\bf 6.}$ A.F. Monna, $Analyse\ non-Archimedienne,$ Springer-Verlag, Berlin-Heidelberg, 1970.
- 7. A. van Rooij, Non-Archimedean functional analysis, Marcel Dekker, Inc., New York, 1978.
- 8. B.L. Sanders, Decompositions and reflexivity in Banach spaces, Proc. Amer. Math. Soc. 16 (1965), 204–208.
- 9. ——, On the existence of Schauder decompositions in Banach spaces, Proc. Amer. Math. Soc. 16 (1965), 987–990.

FACULTY OF EDUCATION, SHIZUOKA UNIVERSITY, OHYA, SHIZUOKA, 422, JAPAN