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SCHAUDER DECOMPOSITIONS
OF NON-ARCHIMEDEAN BANACH SPACES

TAKEMITSU KIYOSAWA

ABSTRACT. Let K be a field with a nontrivial non-
Archimedean valuation, under which it is complete. Let E
be a non-Archimedean Banach space over K. Some of the
main results are:

(1) (Theorem 13) If (P,) C L(E, E) is a Schauder decom-
position, then (P,) is a (UM)-sequence such that P, — 1
strongly but not uniformly.

(2) (Corollary 14) Let K be spherically complete. If E is a
G-space, then E admits no Schauder decompositions.

1. Introduction. Let K be a field with a nontrivial non-
Archimedean valuation, under which it is complete. In this paper we
deal with Schauder decompositions of Banach spaces over K.

In Archimedean analysis, many authors treat this decomposition (cf.
[1, 4, 5]). In particular, Dean [1] gave the following result.

Theorem [1]. Let E be a Grothendieck space with the Dunford-Pettis
property. Then E admits no Schauder decompositions.

Lotz [5] and Leung [4] obtained further results along the same lines
as Dean’s argument.

In non-Archimedean analysis, however, if K is not spherically com-
plete, then the above theorem is not true. In this paper we give an
example to indicate it and show the following theorem.

Theorem (Corollary 14). Let K be spherically complete. If E is a
Grothendieck space, then E admits no Schauder decompositions.

To show this, we need the following theorem, which is also one of our
main theorems.
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Theorem (Theorem 13). If (P,) C L(E,E) is a Schauder decom-
position, then (P,) is a (UM)-sequence such that P, — 1 strongly but
not uniformly.

2. Preliminaries. Throughout, by E,F,..., we denote Banach
spaces over K, and E’ denotes the dual of E. Let L(E, F) be the space
of all continuous linear operators from E into F, and let C(E, F) be
the subspace of L(F, F') which consists of all compact operators. The
identity operator on E is denoted by 1g or 1 if there is no cause for
confusion. By E ~ F', we mean that E and F' are linearly isometric.

A Banach space E is called a Grothendieck space (G-space) if every
sequence (z]) C E’ which converges for weak* topology to zero
converges weakly to zero. It is clear that a reflexive space is a G-space.
The following are some results on G-spaces.

Proposition 1 (De Grande-de Kimpe [2]). If L(E,cy) = C(E, cy),
then E is a G-space.

Combining this proposition with Corollary 5.20 in [7] yields the next
corollary.

Corollary 2. If the valuation of K is dense and E is weakly injective,
then E is a G-space. In particular, if K is spherically complete and its
valuation is dense, then every dual space is a G-space.

The following proposition is also obtained in De Grande-de Kimpe
[2], but we give another proof here.

Proposition 3. Let K be spherically complete. If E contains a
subspace of countable type which is complemented, then E is not a G-
space.

(Recall that every Banach space contains a subspace of countable
type.)

Proof. We may assume that £ = D@cy, where D is a closed subspace
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of E. Then there exists a linear isometry
S:D' xI® - E

defined by <(m,y),S(d1,d2)> = <.Z',d1> + (y,d2> (dl c D/, dy € 1°°,
z € D,y € cy). (See [7, p. 61].) Put e, =(0,0,...,0,1,,_¢h,0,...) €
[ (n > 1) and S(0,e,) = !, € E'. Then, for all (z,y) € E
(zx € D,y € ), ((z,y),2,) = yn — 0 where y, is the n-th
coordinate of y. Therefore, (z],) € E’ is weak* convergent to zero.
While, since K is spherically complete, there exists '/ € (I°°) (~ ¢f)
such that (e,,z”) 4 0 (see [3]). Now define y” € (D' x [*®) by
((z",9),y") = (y,2") (' € D', y € I°°) and put 2’ = y”"S~!. Then
2" € E" and (z],7") = (en,z") # 0. Hence (z]) C E’ does not
converge weakly to zero. So E is not a G-space. o

Corollary 4. Let K be spherically complete. If E has a base, then E
is not a G-space. In particular, if the valuation of K is discrete, then
every Banach space is not a G-space.

Proof. Combining Proposition 3 with Corollary 3.18 in [7], we can
show this corollary. o

Corollary 5. (1) The valuation of K is dense if and only if I°° is
a G-space.

(2) K is not spherically complete if and only if ¢y is a G-space.

Proof. (1) follows from Proposition 1, Corollary 4 and Corollary 5.19
in [7]. (2) follows from Corollary 4 and from the fact that if K is not
spherically complete, then ¢q is reflexive. ]

A Banach space F is said to have the Dunford-Pettis property (D-P
property) if lim, (z,,z,) = 0 whenever (z,,) C E tends weakly to zero
and (2]) C E’ tends weakly to zero. If K is spherically complete, then
every weakly convergent sequence in a Banach space is norm-convergent
(see [6, p. 70]). Hence, the following lemma holds.

Lemma 6. If K is spherically complete, then every Banach space
has the D-P property.



252 T. KIYOSAWA

Theorem 7. ¢y and [*° have the D-P property.

Proof. Suppose that (z,) C ¢o tends weakly to zero. Since ¢ ~ [,
by the same argument as used in proving Theorem 6 in [6, p. 70], we
have lim,, ||z,|| = 0. Further, suppose that (z!) C ¢ tends weakly
to zero. Then by the Banach-Steinhaus theorem, sup, ||z,|] < oo.
Therefore, |(xn,z))| < ||z,]]]/zn]] = 0 (n = 00). So ¢¢ has the D-P
property. We now show that [*° has the D-P property. We may assume
that K is not spherically complete. Then ¢y and [*° are reflexive and
(1) ~ ¢y (see [7, p. 111]). Hence, the proof is the same as the proof
of cp. ]

Definition (Lotz [5]). A sequence (P,) C L(E,E) is said to be a
(weak) Schauder decomposition if the following conditions hold:

(1) PP = Puin(n,m) for all n,m.
(2) (P,z) converges (weakly) to x for every z € E.
(3) P, # P, for n # m.

Remark. Put Ql = Pl, Qz = Pl — Pi—l (Z Z 2) Then we see that Qz
is a projection and E = ®Q;(E).

Definition (Lotz [5]). A sequence (S,) C L(E, E) is said to be a
(UM)-sequence if the following conditions hold:

(1) sup,, ||Sn|| < oo.
(2) limy, ||Sm (S, —1)|| = 0 for all m.
(3) limy, |[|(Sp —1)Sy,|| = 0 for all m.

Example 1. (1) Every (weak) Schauder decomposition (P,) on E
is a (UM)-sequence.

(2) Let (o) be a sequence in K such that o, = 0 (n — o0). For
every n € N, define a linear operator

Sy 10— I

by Sn(xlv L2y--- 3 Tn,-- ) = (xlv L2y 3 Tn,; Ont1Tn+1, On42Tn+2; - - - )
Then (S,,) is a (UM)-sequence on [*°.
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(3) Let P € L(E, E) be a projection and A be an element of K with
[|P|| < |A]. Then 1 — A~1P is a bijection, and we have the following
expansion:

A=A"'P) =14 AP+ (AP
Hence, for every z € E there exists y € E such that
z=y+ A 'Py+--+ APy +---
For every n, define a linear operator
S,.:E—F
by Sn(z) = y+ (A"'P)y +---+ (A"'P)"y. Then (S,) is a (UM)-

sequence on FE.

We observe that if (S,) is a (UM)-sequence on E, then (S)) is a
(UM)-sequence on E'.

3. Results. The following lemma is similar to the lemma of Lotz
[5].

Lemma 8. Let K be spherically complete and let (S,) be a (UM)-
sequence on E. Put X = US,(E) and Y = NS;{0}. Then the
following assertions hold:

(1) X ={z € F|lim,||Sy,z —z|| = 0} and X is a linear subspace
of E and weak closure of US,(E).
(2) If, for every x € E, the sequence (Spx) has a weak cluster point,

then (Sy,) converges strongly to a projection P with X as range and Y
as kernel.

Proof. Since K is spherically complete, X is weakly closed. Therefore,
the proof is the same as the proof of Lemma 1 in [5]. u]

Lemma 9. Let K be spherically complete, and let E be a G-space. If
a sequence (T,,) C L(E, E) converges strongly to 1, then the sequence
(T))) C L(E', E') also does.
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Proof. For every x € E and for every =’ € E’,
(@, (T = 1) @D < |2 (T = D)(@)[] = 0 (n — o).

Hence, (T,, — 1)’(z') — 0 weak*. Since F is a G-space and K is
spherically complete, (T}, —1)'(z') — 0 strongly. O

The following theorem is analogous to Leung’s theorem (see [4, p.
24).

Theorem 10. Let K be spherically complete, and let E be a G-
space. Then every strongly convergent (UM)-sequence on E converges
uniformly.

Proof. Let (S,) be a strongly convergent (UM)-sequence on E.
By Lemma 8, we may assume that S, — 1 strongly. Assume that
[|Srn — 1]| % 0 (n — o0). If, for some m, S, is topological isomorphism
from E’ onto a closed subspace of E’, then

180 = Ll = 11(Sn = 1)'[| < 1S5 1[(Sn = 1)Smll = 0 (n — o0).

This is a contradiction. Hence, for all n, S, is not a topological
isomorphism, and so there exists x, € E’ such that [|S],(x})|| <
[|zl||/n and |7| < ||z,,]| < 1, where 7 is an element of K with |r| < 1.

Putting y!, = (1 — S,,)'z!,, we obtain that
(@, )| < Man (1= Sp)(@)[ =0 (n— o0)

for every x € E. Hence, y,, — 0 weak*. Since F is a G-space, y,, — 0
weakly. Further, since ||z], —y,|| = 0 (n — 00), there exists a positive
integer ng such that, for all n > ng, |7| < ||y, || < L. Hence, there is
x, € E such that || < [{z,,y),)| < 1 and |r| < ||zn|| < 1. Then, by
Lemma 9,

(L = Sn)zn, )| < 11— Sp)2'[[[|z]| = 0 (n — o).
It follows that (1 —.5,)x,, — 0 weakly. Since K is spherically complete,

(@, (1= Sn) yp)l < (I(1 = Sn)(@n) [ [lyn]l =0 (n— o0).
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While we have

(@, Sy < 11Spynll = 11— Sn)'Spal,]]
< ISy |[max(L, [[Sn]]) =0 (n — o0).

Hence, [(xn, y,)| = 0 (n — 00). This contradicts to |w| < |(z,, )| for
all n, and the proof is complete. a

Corollary 11. Let K be spherically complete. Let E be a G-
space, and let (S,) be a (UM)-sequence on E. Then the following are
equivalent:

(1) S, — 1 weakly.
2
3

Sn — 1 strongly.
S, — 1 uniformly.
S — 1g weak*.
S/

n

— 1 weakly.

A~ N N N /S /S
(=2} >~
NSNS N N N

S! — 1g strongly.

S! — 1g uniformly.

Proof. It is clear that (3) = (7) = (6) = (5) = (4). Since K is
spherically complete, (1) = (2) holds. By Theorem 10, (2) = (3) is
true. Finally, by definition, we see that (1) and (4) are equivalent. o

By induction, for every positive integer k we define the conjugate
space E(*) and the conjugate operator T%) € L(E(k), E(k)) as follows:

EM = F', Ek+D) — (E(k))',
7)) — T, p(k+1) (T(k))'.

Then, combining Corollaries 2 and 11, we can obtain the following
corollary.

Corollary 12. Let (S,) be a (UM)-sequence on E. If K is
spherically complete and its valuation is dense, then for each k the
following are equivalent:
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SI

n

Sl

n

(1) — 1p weakly.

(2) — 1 strongly.
(3) S/ — 1g uniformly.
(4) S = 1w weak.
(5) SN = 1y weakly.
(6) s g strongly.
(7)

S,(Lk) — 1k uniformly.

If K is not spherically complete, then Corollary 11 is not true. This
is shown by the following example.

Example 2. Let K not be spherically complete. (Recall that ¢y and
[*° are reflexive and are G-spaces.) For each n > 1, consider the linear
operator

Sp i1 =17 (21,22, .« yZTpy ... ) = (T1, @2, ... , 2y, 0,...).

Then (S,) is a (UM)-sequence on [*° which does not converge to 1
strongly. However, since K is not spherically complete, (I°°) ~ ¢y, and
we see that S,, — 1 weakly. Further, let T}, be the restriction of S,, to
¢g- Then (T},) is a Schauder decomposition on ¢y, and T}, — 1 strongly
but not uniformly.

Moreover, in Corollary 11, we also need the condition that E is a
G-space. This is indicated by the next example.

Example 3. Let K be spherically complete. Then ¢j is not a G-
space. Let (T},) be a (UM)-sequence on ¢ in Example 2. Then (7))
converges to 1 strongly. On the other hand, since ¢ ~ [°°, we obtain

T;Lloo =17 (y17y27"' 7yn7"')_>(y17y27"' 7yn707"')'

This implies that (7,) does not converge to 1 uniformly.

Theorem 13. If (P,) C L(E, E) is a Schauder decomposition, then
(P,) is a (UM)-sequence such that P, — 1 strongly but not uniformly.
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Proof. 1t follows from the definition of the Schauder decomposition
that (P,) is a (UM)-sequence which converges to 1 strongly. We now
show that it is not uniform. By definition, we have P,,(E) G Pn+1(E).
Then there exists y € E such that P,11(y) € Ppt1(E)\Po(E). Put
Znt1 = Pnt1(y) — Pu(y). Then P,(z,41) =0 and

||Pn _ ]-H > HPn(anrl) —$n+1” - 1.

|2l

This completes the proof. a

From the preceding results, the following corollaries are readily de-
duced.

Corollary 14. Let K be spherically complete. If E is a G-space,
then E admits no Schauder decompositions.

Corollary 15. Let K be spherically complete and its valuation dense.
Then every dual space and every weakly injective Banach space admit
no Schauder decompositions. In particular, [*° and I*®°/cy admit no
Schauder decompositions.

Corollary 16. Let the valuation of K be dense. Let Ei,Fs,...,
be an infinite sequence of Banach spaces. Then K is not spherically
complete if and only if (xE,)" and ®FE!, are linearly isometric.

Proof. “If part” follows from Corollary 15 and “only if part” follows
from Theorem 4.22 in [7]. ]

In Corollary 14, we need the condition that K is spherically complete.
This is induced by Example 2. And this example also leads that in non-
Archimedean Banach space, Dean’s theorem does not hold, for ¢y is a
G-space and has the D-P property.

Combining Corollaries 11 and 14, we obtain the following:

Corollary 17. Let K be spherically complete. If E is a G-space,
then E admits no weak Schauder decompositions.
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If K is not spherically complete, then the sequence (S,) on [* in
Example 2 is a weak Schauder decomposition on [* but not a Schauder
decomposition. Hence, in Corollary 16, spherical completeness of K is
necessary. In general, the following proposition holds.

Proposition 18. Let K not be spherically complete. Then the
Banach space [*° ® E has a weak Schauder decomposition which is not
a Schauder decomposition.

Combining Theorem 10 with Theorem 4.39 in [7], the next corollary
follows.

Corollary 19. Let K be spherically complete. If E is a G-space,
then there is not a (UM)-sequence (S,) on E such that for each n, Sy,
is of finite rank and S, — 1 strongly.

Let K be spherically complete. Then c¢; is not a G-space, and the
(UM)-sequence (7,) in Example 2 converges to 1 strongly and T;, is
of finite rank for each n. But it does not converge to 1 uniformly. In
general, the following corollary holds.

Corollary 20. Let K be spherically complete. Suppose that E
contains a closed subspace D of countable type which is complemented.
Then there ezists a (UM)-sequence (Sy) on E such that for each n, Sy,
is of finite rank and S, — P strongly but not uniformly, where P is a
projection of E onto D.

Proof. Since K is spherically complete and D is of countable type, D
has an orthogonal base {e;} such that || < ||e;]| < 1 (see [7, p. 169]).
Let E,, be a closed linear hull of {e;,es,...,e,}. Then D = UE,,, and
for all z € E we can write P(z) =Y .o, aje; (a; € K, o; — 0). Define
a linear operator

Sn:E—>En:x—>Zaiei (n=1,2,...).

i=1

Then we can see that (S,,) is the required (UM)-sequence. O
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