A DUAL BASIS FOR THE INTEGER TRANSLATES OF AN EXPONENTIAL BOX SPLINE

RONG-QING JIA

ABSTRACT. Exponential box splines are multivariate compactly supported functions on a regular mesh. Let ϕ be an exponential box spline associated with integer vectors. Then ϕ is piecewise in a space H spanned by exponential polynomials. In this paper we construct a dual basis for the integer translates of ϕ , when these translates are linearly independent. The dual basis is shown to be unique in a certain sense. Our construction is based on a study of the polynomial space F which consists of all polynomials p such that $p(D)\phi$ is a bounded function, where p(D) denotes the partial differential operator induced by p. It turns out that the linear space F is dual to H. Thus, as a by-product, we give a short proof for the formula of the dimension of H.

1. Introduction. As usual, let $\mathbf{N}, \mathbf{Z}, \mathbf{R}$ and \mathbf{C} be the set of nonnegative integers, integers, real and complex numbers, respectively. Let s be a positive integer. Denote by \mathbf{R}^s the s-dimensional Euclidean space. Given two vectors x and y in \mathbf{R}^s , we denote by $x \cdot y$ the inner product of them, and by |x| the norm of $x:|x|=\sqrt{x\cdot x}$. The linear span of a collection X of vectors in \mathbf{R}^s will be denoted by span (X). All the continuous complex-valued functions supported on compact sets in \mathbf{R}^s form a linear space over \mathbf{C} , which we shall denote by $C_c(\mathbf{R}^s)$. Given $\theta \in \mathbf{C}^s$, the exponential function $x \mapsto \exp(\theta \cdot x)$, $x \in \mathbf{R}^s$, is denoted by e_{θ} .

We shall use the standard multi-index notation. For $x = (x_1, \ldots, x_s) \in \mathbf{R}^s$ and $\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbf{N}^s$, x^{α} is the monomial given by

$$x^{\alpha} := x_1^{\alpha_1} \cdots x_s^{\alpha_s}.$$

A polynomial is a complex linear combination of monomials. The total degree of a polynomial p is denoted by deg p. All the polynomials on

Copyright ©1993 Rocky Mountain Mathematics Consortium

Received by the editors on January 30, 1990, and in revised form on April 5,

AMS (MOS) Subject Classifications. Primary 41A63, 41A15, Secondary 41A05, 15A03.

 $^{15\,\}mathrm{A}03.$ $Key\ words.$ box splines, exponential box splines, integer translates, dual bases, Poisson's Summation Formula.

 \mathbf{R}^s form a linear space over \mathbf{C} , which we shall denote by $\pi(\mathbf{R}^s)$, or by π for short. By π_k we denote the subspace of all polynomials of degree at most k. An exponential polynomial is a function of the form $\sum_{\theta \in \Theta} e_{\theta} p_{\theta}$, where Θ is a finite subset of \mathbf{R}^s , and $p_{\theta} \in \pi(\mathbf{R}^s)$ for each $\theta \in \Theta$.

For
$$\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbf{N}^s$$
, let

$$D^{\alpha} := D_1^{\alpha_1} \cdots D_s^{\alpha_s},$$

where D_j denotes the partial differential operator with respect to the jth argument, $j=1,\ldots,s$. If $p\in\pi(\mathbf{R}^s)$, $p(x)=\sum_{\alpha}a_{\alpha}x^{\alpha}$, then the differential operator $\sum_{\alpha}a_{\alpha}D^{\alpha}$ is denoted by p(D). The kernel of p(D), denoted by p(D), is the linear space of all infinitely differentiable complex-valued functions f on \mathbf{R}^s such that p(D)f=0.

During the past decade multivariate spline theory has developed rapidly. In particular, the box spline introduced by de Boor and Höllig [6] has attracted much attention. Recently, Ron [16] initiated the study of exponential box splines, which are a generalization of box splines. Various interesting properties of exponential box splines were developed in [1] and [11].

Let $X = (x^1, \ldots, x^n) \subset \mathbf{R}^s \setminus \{0\}$ and $\mu = (\mu_1, \ldots, \mu_n) \in \mathbf{C}^n$, the exponential box spline $C_{\mu}(\cdot|X)$ is defined to be the linear functional on $C_c(\mathbf{R}^s)$ given by the rule

$$\phi\mapsto \int_{[0,1]^n}e^{-\mu\cdot u}\phiigg(\sum_{j=1}^nx^ju_jigg)\,du,\qquad \phi\in C_c(\mathbf{R}^s).$$

When $\mu = 0$, $C_{\mu}(\cdot|X)$ reduces to the box spline $B(\cdot|X)$. It is known that $C_{\mu}(\cdot|X)$ is a distribution supported on

(1.1)
$$[X] := \left\{ \sum_{j=1}^{n} t_j x^j : 0 \le t_j \le 1, \text{ all } j \right\}.$$

Moreover, if X spans \mathbf{R}^s , then $C_{\mu}(\cdot|X)$ is a piecewise exponential polynomial function.

In the study of univariate splines, de Boor and Fix [5] constructed a dual basis for the sequence of B-splines, which has proved to be very

useful. Thus, it is desirable to extend the construction of de Boor and Fix to the multivariate case.

Consider the integer translates $C_{\mu}(\cdot - \beta | X)$, $\beta \in \mathbf{Z}^s$. A sequence of linear functionals $(\lambda_{\alpha})_{\alpha \in \mathbf{Z}^s}$ is called a dual basis for these translates if

$$\lambda_{\alpha}C_{\mu}(\cdot - \beta|X) = \delta_{\alpha\beta} := \begin{cases} 1, & \text{if } \alpha = \beta; \\ 0, & \text{otherwise.} \end{cases}$$

When $\mu=0$ (the box spline case), Wang [20] (for the case s=2), Dahmen and Micchelli [10] and Jia [14] (for the general case) have constructed such a dual basis. Dahmen and Micchelli [11] also constructed a dual basis for $C_{\mu}(\cdot - \beta | X)$, $\beta \in \mathbf{Z}^s$. However, the use of Poisson's summation formula in [10, 11] was not fully justified. Moreover, the construction given in [11] involves a limit process. It is not clear whether such a limit always exists.

In this paper we shall remedy these problems by extending our previous work [14] to exponential box splines. We not only construct a dual basis for the integer translates of an exponential box spline, but also demonstrate that such a dual basis is unique in a certain sense. Our approach is constructive; in particular, it does not involve any limit process. Furthermore, our construction is a genuine extension of the dual basis constructed by de Boor and Fix in [5].

Our construction of the dual basis is based on a study of the linear space G(X) which consists of all polynomials p such that $p(D)C_{\mu}(\cdot|X)$ is a bounded function. In the box spline case $(\mu=0)$, the space G(X) already appeared in the paper [14], which was received by the editors on July 9, 1987. It was proved there that G is dual to another space D(X) of polynomials associated with the box spline $B(\cdot|X)$. Dyn and Ron in [12] proved a more general result that G(X) is dual to $D_{\mu}(X)$ for any $\mu \in \mathbb{C}^n$ (see Section 4 for the definition of $D_{\mu}(X)$). We shall reprove this result along a different approach. Our approach has the advantage that it does not rely on the dimension formula of $D_{\mu}(X)$. Thus, as a by-product, we are able to give a very short proof for the dimension formula of $D_{\mu}(X)$.

The paper is organized as follows. In Section 2 we introduce the socalled nearly continuous functions and discuss the Poisson summation formula. In Section 3 we extend a part of the Strang-Fix theory [19] to the case in which exponential polynomials occur. In Section 4 we introduce the space G(X) and prove that G(X) is dual to $D_{\mu}(X)$ for any $\mu \in \mathbb{C}^n$. Finally, in Section 5, we complete our construction of the dual basis for the integer translates of an exponential box spline.

2. Poisson's Summation Formula. In this paper the Fourier-Laplace transform of a function ϕ on \mathbf{R}^s is defined as follows:

$$\hat{\phi}(z) := \int_{\mathbf{R}^s} \phi(x) e^{-ix \cdot z} \, dx, \qquad z \in \mathbf{C}^s.$$

Here and in what follows, i stands for the imaginary unit. Restricted on \mathbf{R}^s , $\hat{\phi}$ becomes the Fourier transform of ϕ .

The following form of Poisson's Summation Formula may be found in Stein and Weiss [18, Chapter 7]. Suppose ϕ and its Fourier transform $\hat{\phi}$ are continuous on \mathbf{R}^s , and for some $\delta > 0$,

$$|\phi(x)| \le \operatorname{const} (1+|x|)^{-s-\delta}, \qquad x \in \mathbf{R}^s,$$

 $|\hat{\phi}(y)| \le \operatorname{const} (1+|y|)^{-s-\delta}, \qquad y \in \mathbf{R}^s.$

Then

$$\sum_{j\in\mathbf{Z}^s}\phi(j)=\sum_{j\in\mathbf{Z}^s}\hat{\phi}(2\pi j).$$

On the basis of this result, Dahmen and Micchelli in [9, Lemma 2.1] gave the following form of Poisson's Summation Formula: Suppose $\phi \in C_c(\mathbf{R}^s)$ and

(2.1)
$$\hat{\phi}(2\pi j) = 0 \quad \text{for } j \in \mathbf{Z}^s \setminus \{0\}.$$

Then

(2.2)
$$\hat{\phi}(0) = \sum_{j \in \mathbf{Z}^s} \phi(j).$$

In the following, ϕ may be noncontinuous. Let ϕ be a locally integrable complex-valued function on \mathbf{R}^s . The function ϕ is called *nearly continuous* if for any $x \in \mathbf{R}^s$,

(2.3)
$$\phi(x) = \lim_{\varepsilon \to 0} \frac{1}{m(B(x,\varepsilon))} \int_{B(x,\varepsilon)} \phi(y) \, dy,$$

where $B(x, \varepsilon)$ denotes the ball of radius ε centered x and m denotes the Lebesgue measure. For a piecewise exponential polynomial function ϕ , the limit on the right of (2.3) always exists, and this limit equals $\phi(x)$ if x is not on the mesh. Thus, we may always assume that a piecewise exponential polynomial function is nearly continuous when redefined by (2.3) at mesh points.

Theorem 2.1. Suppose that ϕ is nearly continuous and supported on a compact set in \mathbf{R}^s . If the Fourier transform $\hat{\phi}$ satisfies (2.1), then (2.2) holds.

Proof. For $\varepsilon > 0$, let

$$\phi_{arepsilon}(x) := rac{1}{m(B(x,arepsilon))} \int_{B(x,arepsilon)} \phi(y) \, dy.$$

Fix ε for the moment. Then $\phi_{\varepsilon} \in C_c(\mathbf{R}^s)$. We observe that

$$\hat{\phi}_{\varepsilon}(2\pi j) = \frac{1}{m(B(0,\varepsilon))} \int_{B(0,\varepsilon)} \int_{\mathbf{R}^s} \phi(x+y) e^{-ix\cdot 2\pi j} \, dx \, dy$$
$$= \hat{\phi}(2\pi j) \frac{1}{m(B(0,\varepsilon))} \int_{B(0,\varepsilon)} e^{iy\cdot 2\pi j} \, dy.$$

Hence,

$$\hat{\phi}_{\varepsilon}(2\pi j) = 0, \qquad j \in \mathbf{Z}^s \setminus \{0\},$$

$$\hat{\phi}_{\varepsilon}(0) = \hat{\phi}(0).$$

Since $\phi_{\varepsilon} \in C_c(\mathbf{R}^s)$, (2.2) may apply to ϕ_{ε} ; hence,

(2.4)
$$\hat{\phi}_{\varepsilon}(0) = \sum_{j \in \mathbf{Z}^s} \phi_{\varepsilon}(j).$$

Since ϕ is nearly continuous,

$$\phi(j) = \lim_{\varepsilon \to 0} \phi_{\varepsilon}(j), \qquad j \in \mathbf{Z}^{s}.$$

Letting $\varepsilon \to 0$ in (2.4), we obtain the desired result. \Box

3. The Strang-Fix conditions. In this section we assume that ϕ is a nearly continuous function supported on a compact set in \mathbf{R}^s . Since ϕ is compactly supported, the Fourier-Laplace transform $\hat{\phi}$ of ϕ is an entire function on \mathbf{C}^s . The function ϕ gives rise to a semi-discrete convolution operator $\phi*$:

$$\phi*':f\mapsto \phi*'f:=\sum_{j\in \mathbf{Z}^s}\phi(\cdot-j)f(j),$$

which is well defined for any nearly continuous function f from \mathbf{R}^s to \mathbf{C} .

A subspace P of $\pi(\mathbf{R}^s)$ is called D-invariant, if for any $p \in P$, the derivatives $D_j p$ are again in P, $j = 1, \ldots, s$. P is said to be translation invariant if for any $p \in P$ and $x \in \mathbf{R}^s$, the translate $p(\cdot + x)$ is again in P. It is proved in [3] that P is D-invariant if and only if it is translation invariant. Furthermore, P is called scale-invariant if for any $p \in P$ and any $r \in \mathbf{R}$, $p(r \cdot)$ is again in P. A mapping T on P is called degree-reducing on P, if for any $p \in P$, Tp is again in P and deg $(Tp) < \deg p$. We denote by 1 the identity mapping. The following theorem was proved by Strang and Fix [19] for the case $P = \pi_k$, by Dahmen and Micchelli [9] for the case in which P is D-invariant and scale-invariant, and by de Boor [3] for the case in which P is D-invariant.

Theorem 3.1. Let P be a finite-dimensional D-invariant space of polynomials. Then the mapping $(1 - \phi *')|_P$ is degree-reducing if and only if $\hat{\phi}$ satisfies the following conditions:

- (i) $\hat{\phi}(0) = 1$;
- (ii) $p(-iD)\hat{\phi}(2\pi j) = 0$ for all $p \in P$ and $j \in \mathbf{Z}^s \setminus \{0\}$.

If $P = \pi_{k-1}$, the conditions (i) and (ii) in the above theorem are called the Strang-Fix conditions of order k (see [19]).

In [8] de Boor and Ron considered the action of the operator $\phi*'$ on spaces of exponential polynomials. Also, see the survey paper [4]. Here we take an approach different from theirs. The following theorem is a generalization of Theorem 3.1.

Theorem 3.2. Let $\theta \in \mathbb{C}^s$, and let P be a D-invariant finite-dimensional space of polynomials. Then $\phi *'$ maps $e_{\theta}P$ into itself if

and only if $\hat{\phi}$ satisfies

$$(3.1) p(-iD)\hat{\phi}(2\pi j - i\theta) = 0 for all \ p \in P \ and \ j \in \mathbf{Z}^s \setminus \{0\}.$$

Moreover, in this case, one has

(3.2)
$$\phi *' (e_{\theta}p) = e_{\theta}p(\cdot - iD)\hat{\phi}(-i\theta) = e_{\theta}(\hat{\phi}(-i\theta - iD)p),$$

$$for all \ p \in P.$$

Proof. Fix $x \in \mathbf{R}^s$ for the time being. Given $p \in P$, let ψ_x be the function given by

(3.3)
$$\psi_x(y) := e^{\theta \cdot y} p(y) \phi(x - y), \qquad y \in \mathbf{R}^s.$$

The Fourier transform of ψ_x can be computed as

$$\hat{\psi}_x(\xi) = e^{(\theta - i\xi) \cdot x} p(x - iD) \hat{\phi}(-\xi - i\theta).$$

Since P is D-invariant, it is also translation invariant. Hence, $p \in P$ implies $p(x + \cdot) \in P$. Thus, if $\hat{\phi}$ satisfies the condition (3.1), then

$$\hat{\psi}_x(2\pi j) = e^{(\theta - i2\pi j) \cdot x} p(x - iD) \hat{\phi}(-2\pi j - i\theta) = 0, \quad \text{for all } j \in \mathbf{Z}^s \setminus \{0\}.$$

Hence, Theorem 2.1 (the Poisson summation formula) can be applied to ψ_x , so we obtain

$$\sum_{j \in \mathbf{Z}^s} \psi_x(j) = \hat{\psi}_x(0),$$

that is,

(3.4)
$$\phi *' (e_{\theta}p) = e_{\theta}p(\cdot - iD)\hat{\phi}(-i\theta).$$

By the Taylor theorem, we have

$$p(\cdot - iD) = \sum_{\alpha} \frac{D^{\alpha}p}{\alpha!} (-iD)^{\alpha}.$$

Expand $\hat{\phi}(-i\xi)$ into a power series of $\xi - \theta$:

$$\hat{\phi}(-i\xi) = \sum_{\alpha \in \mathbf{N}^s} a_{\alpha} (\xi - \theta)^{\alpha}.$$

Let $[\theta]D^{\alpha}$ be the linear functional given by $f \mapsto D^{\alpha}f(\theta)$. Applying $[\theta]D^{\alpha}$ to both sides of the above equation, we get

$$(-iD)^{\alpha}\hat{\phi}(-i\theta) = a_{\alpha}\alpha!.$$

It follows that

(3.5)
$$p(\cdot - iD)\hat{\phi}(-i\theta) = \sum_{\alpha} \frac{D^{\alpha}p}{\alpha!} (-iD)^{\alpha} \hat{\phi}(-i\theta)$$
$$= \sum_{\alpha} a_{\alpha} D^{\alpha}p$$
$$= \hat{\phi}(-i\theta - iD)p.$$

We view $\hat{\phi}(-i\theta - iD)$ as a formal power series in D, so it is well defined on $\pi(\mathbf{R}^s)$. Note that (3.5) is true for any polynomial p. Since P is D-invariant, the operator $\hat{\phi}(-iD)$ maps P into itself. This proves the sufficiency part of the theorem. Moreover, (3.2) follows from (3.4) and (3.5).

Conversely, suppose that $\phi *' (e_{\theta}p) \in e_{\theta}\pi$ for all $p \in P$. Given a polynomial $p \in P$, set

$$g(x,y) := \sum_{k \in \mathbf{Z}^s} \psi_x(y+k), \qquad x,y \in \mathbf{R}^s,$$

where $\psi_x(y)$ is as in (3.3). Then $g(x,\cdot)$ is a 1-periodic function for any fixed x, and $g(\cdot,y) \in e_{\theta}\pi$ for any fixed y. The latter statement is true because $\phi *'(e_{\theta}p) \in e_{\theta}\pi$. Consider the Fourier coefficients $a_j(x)$ of $g(x,\cdot)$:

$$\begin{split} a_{j}(x) &:= \int_{[0,1]^{s}} g(x,y) e^{-i2\pi j \cdot y} \, dy \\ &= \sum_{k \in \mathbf{Z}^{s}} \int_{[0,1]^{s}} \psi_{x}(y+k) e^{-i2\pi j \cdot y} \, dy \\ &= \int_{\mathbf{R}^{s}} \psi_{x}(y) e^{-i2\pi j \cdot y} \, dy \\ &= \hat{\psi}_{x}(2\pi j) \\ &= e^{(\theta - i2\pi j) \cdot x} p(x-iD) \hat{\phi}(-2\pi j - i\theta). \end{split}$$

Note that the image of $e_{\theta}P$ under the mapping $\phi *'$ is finite-dimensional. Since $g(\cdot, y)$ is in $e_{\theta}\pi$ for any fixed y, so is a_j for each j. If $j \neq 0$, then $a_j \in e_{\theta}\pi$ can happen only if

$$p(x-iD)\hat{\phi}(-2\pi j - i\theta) = 0,$$
 for all $x \in \mathbf{R}^s$.

Choosing x = 0 in the above equation, we obtain

$$p(-iD)\hat{\phi}(-2\pi j - i\theta) = 0$$
, for all $p \in P$ and $j \in \mathbb{Z}^s \setminus \{0\}$,

as desired.

The following two corollaries are easily derived from Theorem 3.2. We note that Corollary 3.3 is a generalization of a result of Ben-Artzi and Ron in [1], where the mapping $\phi*'$ was considered for an exponential box spline ϕ . Also the sufficiency part of Corollary 3.3 was first proved by de Boor and Ron in [8].

Corollary 3.3. The mapping $\phi *'$ maps $e_{\theta}P$ one-to-one and onto itself if and only if $\hat{\phi}$ satisfies the following conditions:

- (i) $\hat{\phi}(-i\theta) \neq 0$,
- $(\mathrm{ii}) \ \ p(-iD) \hat{\phi}(2\pi j i\theta) = 0 \ \mathit{for all} \ p \in P \ \mathit{and} \ j \in \mathbf{Z}^s \backslash \{0\}.$

Corollary 3.4. The mapping $\phi*'$ is an identity on $e_\theta P$ if and only if

- (i) $p(-iD)\hat{\phi}(-i\theta) = p(0)$ for all $p \in P$;
- (ii) $p(-iD)\hat{\phi}(2\pi j i\theta) = 0$ for all $p \in P$ and $j \in \mathbb{Z}^s \setminus \{0\}$.

We note that if $\hat{\phi}(-i\theta) \neq 0$, then the operator $\hat{\phi}(-i\theta-iD)$ is invertible on $\pi(\mathbf{R}^s)$, and its inverse can be found as follows. Expand $1/\hat{\phi}(-i\theta+\xi)$ into a power series in a neighborhood of the origin:

$$1/\hat{\phi}(-i\theta+\xi) = \sum_{\nu \in \mathbf{N}^s} b_{\nu} \xi^{\nu}.$$

Then the inverse of $\hat{\phi}(-i\theta - iD)$ is

$$(\hat{\phi}(-i\theta - iD))^{-1} = \sum_{\nu \in \mathbf{N}^s} b_{\nu} (-iD)^{\nu}.$$

Let now H be the linear space $\sum_{\theta \in \Theta} e_{\theta} P_{\theta}$ where Θ is a finite subset of \mathbf{R}^s , and P_{θ} is a finite-dimensional D-invariant space of polynomials for each $\theta \in \Theta$. Given a linear functional λ on H, consider the operator Q_{λ} given by

$$Q_{\lambda}: f \mapsto \sum_{j \in \mathbf{Z}^s} \phi(\cdot - j) \lambda f(\cdot + j).$$

We are interested in the conditions on λ under which Q_{λ} is an identity on H. This problem has been discussed in $[\mathbf{2}, \mathbf{8}]$. In particular, a systematic treatment for quasi-interpolation was given in $[\mathbf{8}]$. The following theorem was first proved by Ben-Artzi and Ron in $[\mathbf{2}]$ under the additional condition that the integer translates of ϕ are linearly independent. It turns out that this condition is *not* necessary.

Theorem 3.5. Suppose that the following conditions are satisfied:

- (i) $\hat{\phi}(-i\theta) \neq 0$ for every $\theta \in \Theta$;
- (ii) $p(-iD)\hat{\phi}(-i\theta-2\pi j)=0$ for each $\theta\in\Theta$ and any $p\in P_{\theta}$ and $j\in\mathbf{Z}^s\backslash\{0\}$.

Then the operator Q_{λ} is an identity on $H = \sum_{\theta \in \Theta} e_{\theta} P_{\theta}$ if and only if λ satisfies the following condition:

$$\lambda(e_{\theta}p) = (\hat{\phi}(-i\theta - iD))^{-1}p(0), \quad \text{for all } \theta \in \Theta \text{ and } p \in P_{\theta}.$$

Proof. Given a linear functional λ on H, there corresponds to each θ a polynomial q_{θ} (see [7]) such that

(3.6)
$$q_{\theta}(D)p(0) = \lambda(e_{\theta}p), \quad \text{for all } p \in P_{\theta}.$$

It follows from (3.2) that

$$Q_{\lambda}(e_{\theta}p) = \phi *' (e_{\theta}q_{\theta}(D)p)$$
$$= e_{\theta}(\hat{\phi}(-i\theta - iD)q_{\theta}(D)p).$$

Hence, Q_{λ} is an identity on $e_{\theta}P_{\theta}$ if and only if

(3.7)
$$q_{\theta}(D)\hat{\phi}(-i\theta - iD)p = p, \quad \text{for all } p \in P_{\theta}.$$

Since $\hat{\phi}(-i\theta) \neq 0$, the operator $\hat{\phi}(-i\theta - iD)$ is invertible on P_{θ} . In (3.7), replacing p by $(\hat{\phi}(-i\theta - iD))^{-1}p$, we see that (3.7) is equivalent to

(3.8)
$$q_{\theta}(D)p = (\hat{\phi}(-i\theta - iD))^{-1}p, \quad \text{for all } p \in P_{\theta}.$$

But P_{θ} is translation invariant, hence (3.8) is equivalent to

(3.9)
$$q_{\theta}(D)p(0) = (\hat{\phi}(-i\theta - iD))^{-1}p(0), \quad \text{for all } p \in P_{\theta}.$$

Combining (3.9) with (3.6), we obtain the desired result. \Box

We close this section by proving a result on the commutativity of semi-discrete convolution (cf. de Boor [3]).

Theorem 3.6. Under the condition (ii) of Theorem 3.5,

$$\phi *' f = f *' \phi, \quad for all f \in H.$$

Proof. It suffices to prove the commutativity for $f = e_{\theta}p$, where $\theta \in \Theta$ and $p \in P_{\theta}$. Since ϕ is compactly supported, $f *' \phi \in e_{\theta}P_{\theta}$. Moreover, by the assumption, Theorem 3.2 can be applied to ϕ , so $\phi *' f \in e_{\theta}P_{\theta}$. Hence, $\phi *' f = e_{\theta}q_1$, and $f *' \phi = e_{\theta}q_2$ for some $q_1, q_2 \in P_{\theta}$. But the restrictions of $\phi *' f$ and $f *' \phi$ on \mathbf{Z}^s coincide. It follows that $q_1 = q_2$ on \mathbf{Z}^s , and therefore $q_1 = q_2$, as desired.

4. Dual spaces. Let E and F be two linear spaces over the complex field C. A bilinear function

$$\langle \quad , \quad \rangle : (x,y) \mapsto \langle x,y \rangle$$

from $E \times F$ to **C** is called a scalar product if

- (i) $\langle x, y \rangle = 0$ for all $y \in F$ implies x = 0;
- (ii) $\langle x, y \rangle = 0$ for all $x \in E$ implies y = 0.

If there is a scalar product between E and F, then E and F are said to be dual spaces with respect to this scalar product. Two dual spaces

have the same dimension. If E and F are dual spaces with respect to $\langle \ , \ \rangle$, then for any linear functional λ on F, there exists a unique element $x \in E$ such that

$$\lambda(y) = \langle x, y \rangle,$$
 for all $y \in F$.

Let $X = (x^1, \ldots, x^n) \subset \mathbf{R}^s \setminus \{0\}$ and $\mu = (\mu_1, \ldots, \mu_n) \in \mathbf{C}^n$. Write μ_v for μ_j if $v = x^j$. For $V \subseteq X$, let $p_{\mu,V}$ be the polynomial given by

$$p_{\mu,V} := \prod_{v \in V} p_{\mu_v,v} := \prod_{v \in V} (p_v + \mu_v),$$

where p_v is the linear function given by $p_v(x) := x \cdot v, x \in \mathbf{R}^s$. Let

$$D_{\mu}(X) := \bigcap \{ \ker \left(p_{\mu,V}(D) \right) : V \subseteq X, \operatorname{span}\left(X \backslash V \right) \neq \mathbf{R}^{s} \}.$$

Then $D_{\mu}(X)$ is a linear space of exponential polynomials. When $\mu = 0$, we write p_V for $p_{\mu,V}$, and correspondingly write D(X) for $D_{\mu}(X)$.

If X spans \mathbf{R}^s , then $C_{\mu}(\cdot|X)$ is bounded and piecewise in $D_{\mu}(X)$. More precisely, we let $\mathbf{H}(X)$ be the collection of all (s-1)-dimensional subspaces H which are spanned by elements of X. Furthermore, we set

$$(4.1) c(X) := \bigcup_{H \in \mathbf{H}(X)} H + \mathbf{Z}^s.$$

Then on each connected component of $\mathbf{R}^s \setminus c(X)$, $C_{\mu}(\cdot|X)$ agrees with some element of $D_{\mu}(X)$.

Let us now introduce two subspaces $F_{\mu}(X)$ and $G_{\mu}(X)$ of $\pi(\mathbf{R}^{s})$:

$$F_{\mu}(X) := \operatorname{span} \{ p_{\mu,V} : V \subseteq X, \operatorname{span} (X \setminus V) = \mathbf{R}^s \},$$

$$G_{\mu}(X) := \{ p \in \pi(\mathbf{R}^s) : p(D)C_{\mu}(\cdot | X) \in L^{\infty} \}.$$

When $\mu = 0$, we write F(X) for $F_{\mu}(X)$, and G(X) for $G_{\mu}(X)$, respectively.

For a polynomial p and an exponential polynomial f, we define

$$\langle p, f \rangle := p(D)f(0).$$

In [14], the author introduced two spaces G(X) and F(X) and proved that G(X) = F(X) and G(X) is dual to D(X) with respect to the bilinear function \langle , \rangle given in (4.2). It was pointed out in [11] that the space F(X) had been also investigated by H. Hakopian.

It was observed by Dyn and Ron [12] that $F_{\mu}(X) = F(X)$ for all μ . Indeed, for any $V \subseteq X$, $p_{\mu,V}$ is a linear combination of p_Y , $Y \subseteq V$, because $p_{\mu_v,v} = p_v + \mu_v$. Conversely, since $p_v = p_{\mu_v,v} - \mu_v$, p_V is also a linear combination of $p_{\mu,Y}$, $Y \subseteq V$.

Dyn and Ron proved in [12] that for any $\mu \in \mathbf{C}^n$, F(X) is dual to $D_{\mu}(X)$ with respect to $\langle \ , \ \rangle$. We may apply the technique used in [14] to give a new proof of their result. In contrast to the proof given in [12], our proof does *not* rely on the dimension formula of $D_{\mu}(X)$. Instead, our approach enables us to give a very short proof for the dimension formula of $D_{\mu}(X)$ (see Theorem 4.2 below). This should be compared with the fact that both the proofs given in [1, 11] for the dimension formula of $D_{\mu}(X)$ are very complicated. Also see [15] for some topics related to the spaces F(X) and $D_{\mu}(X)$.

We observe that $F(X) = F_{\mu}(X)$ is a subspace of $G_{\mu}(X)$. This comes from the differentiation formula for exponential box splines given in [16, Theorem 2.2 (a)]. If $V \subseteq X$ and span $(X \setminus V) = \mathbf{R}^s$, then $p_{\mu,V}(D)C_{\mu}(\cdot|X) \in L^{\infty}$ by the differentiation formula mentioned above; hence $p_{\mu,V} \in G_{\mu}(X)$. This shows that F(X) is a subspace of $G_{\mu}(X)$.

Theorem 4.1. For any $\mu \in \mathbb{C}^n$, the space $G_{\mu}(X)$ is dual to $D_{\mu}(X)$ with respect to the bilinear function \langle , \rangle . Moreover, $G_{\mu}(X) = F(X)$ for all $\mu \in \mathbb{C}^n$.

Proof. If X does not span \mathbf{R}^s , then $G_{\mu}(X)$, F(X) and $D_{\mu}(X)$ are all trivial, so there is nothing to prove. Thus, we may assume that span $(X) = \mathbf{R}^s$ in what follows.

First, suppose that $p \in G_{\mu}(X)$ satisfies $\langle p, f \rangle = 0$ for all $f \in D_{\mu}(X)$. Since $D_{\mu}(X)$ is translation invariant, this implies that p(D)f = 0 for all $f \in D_{\mu}(X)$. Let A be a connected component of $\mathbf{R}^s \setminus c(X)$. The restriction of $C_{\mu}(\cdot|X)$ on A is a function in $D_{\mu}(X)$; hence, $p(D)C_{\mu}(\cdot|X) = 0$ on A. This shows that $p(D)C_{\mu}(\cdot|X)$ is a distribution supported on c(X). On the other hand, by the very definition of $G_{\mu}(X)$,

$$p(D)C_{\mu}(\cdot|X) \in L^{\infty}$$
.

Hence, $p(D)C_{\mu}(\cdot|X)=0$. It follows that p=0 because $C_{\mu}(\cdot|X)$ is compactly supported.

Secondly, suppose that $f \in D_{\mu}(X)$ satisfies $\langle p, f \rangle = 0$ for all $p \in F(X)$. We want to prove f = 0. This will be done by induction on #X, the number of elements in X. If #X = s, then $D_{\mu}(X)$ is spanned by an exponential function e_{θ} for some $\theta \in \mathbb{C}^s$. But constants are in F(X); this implies that f(0) = 0 for $f \in D_{\mu}(X)$. Hence, f = 0, as desired. Suppose inductively that our claim has been proved for any X' with #X' < #X and we want to establish it for X. Consider $p_{\mu_v,v}(D)f$, where $v \in X$. We have

$$p_{\mu,V}(D)p_{\mu_v,v}(D)f(0) = 0$$
 for any $V \subseteq X \setminus v$ with span $(X \setminus v \setminus V) = \mathbf{R}^s$.

Hence, by the induction hypothesis, $p_{\mu_v,v}(D)f = 0$. This, together with the fact that f(0) = 0 implies f = 0, since X contains a basis for \mathbf{R}^s .

By what has been proved, we have

$$\dim (G_{\mu}(X)) \leq \dim (D_{\mu}(X)) \leq \dim (F(X)).$$

But F(X) is a subspace of $G_{\mu}(X)$, hence, $F(X) = G_{\mu}(X)$ for all $\mu \in \mathbf{C}^n$. We conclude that $G_{\mu}(X)$ is dual to $D_{\mu}(X)$ with respect to $\langle \ , \ \rangle$.

Now Theorem 4.1 tells us that $\dim(D_{\mu}(X))$ does not depend on μ . One would like to identify those simple cases for which $\dim(D_{\mu}(X))$ can be easily computed. This has already been done by Ben-Artzi and Ron in [1]. Let us describe their approach. Denote by $\mathbf{B}(X)$ the collection of all bases for \mathbf{R}^s contained in X. Given $Z \in \mathbf{B}(X)$, let θ_Z be the unique element in \mathbf{C}^s such that

$$v \cdot \theta_Z + \mu_v = 0,$$
 for all $v \in Z$.

Given an exponential box spline $C_{\mu}(\cdot|X)$, the pair (X,μ) is called its defining set. A defining set (X,μ) is called simple, if for any two

different bases Y and Z contained in X, the corresponding θ_Y and θ_Z are different. If (X, μ) is simple, then

$$D_{\mu}(X) = \operatorname{span} \{e_{\theta_Z} : Z \in \mathbf{B}(X)\}.$$

It follows that for a simple defining set (X, μ) ,

$$\dim (D_{\mu}(X)) = \#\mathbf{B}(X).$$

Given $X \subset \mathbf{R}^s \setminus \{0\}$, it is easily seen that there exists $\mu \in \mathbf{C}^n$ such that (X, μ) is simple (see [12]). Thus we have reproved the following dimension formula, which was first proved in [1,11].

Theorem 4.2. For all $\mu \in \mathbb{C}^n$, dim $(D_{\mu}(X)) = \#\mathbf{B}(X)$.

5. A dual basis. In this final section we assume that $X = (x^1, \ldots, x^n) \subset \mathbf{R}^s \setminus \{0\}$, span $(X) = \mathbf{R}^s$ and $\mu = (\mu_1, \ldots, \mu_n) \in \mathbf{C}^n$. Let

$$X_{\theta} := \{ x \in X : x \cdot \theta + \mu_x = 0 \}, \qquad \theta \in \mathbf{C}^s,$$
$$N(\mu, X) := \{ \theta \in \mathbf{C}^s : \operatorname{span}(X_{\theta}) = \mathbf{R}^s \}.$$

Then $e_{\theta} \in D_{\mu}(X)$ if and only if $\theta \in N(\mu, X)$. The space $D_{\mu}(X)$ has the following decomposition (see [1,11]):

$$D_{\mu}(X) = \bigoplus_{\theta \in N(\mu, X)} e_{\theta} D(X_{\theta}).$$

It follows from [11, (4.8)] that

$$p(-iD)C_{\mu}(\cdot|X)^{\wedge}(2\pi j - i\theta) = 0,$$
 for $p \in D(X_{\theta})$ and $j \in \mathbb{Z}^{s} \setminus \{0\}.$

For $\tau \in \mathbf{R}^s$, let

$$\phi_{\tau} := C_{\mu}(\cdot + \tau | X).$$

Then we have

(5.1)
$$\hat{\phi}_{\tau}(\xi) = e^{i\tau \cdot \xi} C_{\mu}(\cdot | X)^{\wedge}(\xi), \qquad \xi \in \mathbf{C}^{s}.$$

Since $D(X_{\theta})$ is *D*-invariant, by the Leibniz formula for differentiation, we obtain

$$(5.2) \ p(-iD)\hat{\phi}_{\tau}(2\pi j - i\theta) = 0 \quad \text{for } p \in D(X_{\theta}) \quad \text{and} \quad j \in \mathbf{Z}^s \setminus \{0\}.$$

Therefore, by Theorem 3.2 and its corollaries, we see that $\phi_{\tau}*'$ is an invertible mapping on $D_{\mu}(X)$ if and only if

(5.3)
$$C_{\mu}(\cdot|X)^{\wedge}(-i\theta) \neq 0$$
 for all $\theta \in N(\mu, X)$.

Theorem 5.1. Suppose that $C_{\mu}(\cdot|X)$ satisfies (5.3). Let $q_{\tau} \in F(X)$. Then the operator $(q_{\tau}(D)\phi_{\tau})*'$ is an identity on $D_{\mu}(X)$ if and only if q_{τ} satisfies the following condition: (5.4)

$$\langle q_{\tau}, e_{\theta} p \rangle = (\hat{\phi}_{\tau}(-iD - i\theta))^{-1} p(0), \quad \text{for } \theta \in N(\mu, X) \text{ and } p \in D(X_{\theta}).$$

Such a polynomial q_{τ} exists and is unique.

Proof. We observe that $q_{\tau} \in F(X)$ implies that $q_{\tau}(D)\phi_{\tau}$ is a nearly continuous function. Since ϕ_{τ} satisfies (5.2), by Theorem 3.6 we have

$$\phi_{\tau} *' f = f *' \phi_{\tau}, \quad \text{for all } f \in D_{\mu}(X).$$

It follows that, for any $f \in D_{\mu}(X)$,

$$(q_{\tau}(D)\phi_{\tau}) *' f = q_{\tau}(D)(\phi_{\tau} *' f)$$

$$= q_{\tau}(D)(f *' \phi_{\tau})$$

$$= (q_{\tau}(D)f) *' \phi_{\tau}$$

$$= \phi_{\tau} *' (q_{\tau}(D)f).$$

Hence, $(q_{\tau}(D)\phi_{\tau})*'$ is an identity on $D_{\mu}(X)$ if and only if

$$(5.5) \phi_{\tau} *' (q_{\tau}(D)f) = f, \text{for all } f \in D_{\mu}(X).$$

Let $\lambda = [0]q_{\tau}(D)$. Then, by Theorem 3.5, (5.5) is true if and only if

$$\lambda(e_{\theta}p) = (\hat{\phi}_{\tau}(-iD - i\theta))^{-1}p(0), \quad \text{for } \theta \in N(\mu, X) \text{ and } p \in D(X_{\theta}).$$

This is just (5.4). The existence and uniqueness of q_{τ} follow from Theorem 4.1. \square

From now on we assume that $X \subset \mathbf{Z}^s \setminus \{0\}$. X is called unimodular if

(5.6)
$$|\det Z| = 1$$
, for any basis $Z \subseteq X$.

It is known that the integer translates of $C_{\mu}(\cdot|X)$ are linearly independent if and only if (X,μ) satisfies (5.3) and (5.6). When $\mu=0$, this fact was proved in [9, 13]. In general, this was proved in [11, 17]. In fact, it was proved in [11] that the integer translates of $C_{\mu}(\cdot|X)$ are locally linearly independent, that is, if A is a nonempty open set of \mathbf{R}^s , and if

$$\sum_{\alpha \in \mathbf{Z}^s} a_{\alpha} C_{\mu}(\cdot - \alpha | X) = 0 \quad \text{on } A,$$

then $a_{\alpha} = 0$, provided that the support of $C_{\mu}(\cdot - \alpha|X)$ intersects A. Note that the support of $C_{\mu}(\cdot - \alpha|X)$ is $[X] + \alpha$, where [X] is as given in (1.1).

Let A be a connected component of $\operatorname{Int}[X] \backslash c(X)$, where $\operatorname{Int}[X]$ denotes the interior of [X] and c(X) is as given in (4.1). Pick up a point $\tau \in A$. For each $\alpha \in \mathbf{Z}^s$, the restriction of $C_{\mu}(\cdot - \alpha | X)$ on A is a function in $D_{\mu}(X)$, which we shall denote by f_{α} . Note that $f_{\alpha} = 0$ if $[X] + \alpha$ does not intersect A. Suppose now that $C_{\mu}(\cdot | X)$ satisfies (5.3) and (5.6). Then the set $\{f_{\alpha} : ([X] + \alpha) \cap A \neq \emptyset\}$ is a linearly independent subset of $D_{\mu}(X)$. But F(X) is dual to $D_{\mu}(X)$ with respect to the scalar product $\langle \quad , \quad \rangle$, hence there exists a polynomial $q_{\tau} \in F(X)$ such that

$$q_{\tau}(D)f_{\alpha}(\tau) = \delta_{\alpha 0}, \qquad \alpha \in \mathbf{Z}^{s}.$$

It follows that

$$[\alpha + \tau]q_{\tau}(D)C_{\mu}(\cdot|X) = \delta_{\alpha 0}, \qquad \alpha \in \mathbf{Z}^{s}.$$

Now we are in a position to state and prove the main result of this paper.

Theorem 5.2. Suppose that $C_{\mu}(\cdot|X)$ satisfies (5.3) and (5.6). Then for any $\tau \in \text{Int}[X]$, there exists a unique polynomial $q_{\tau} \in F(X)$ such that the functionals λ_{α} given by

(5.7)
$$\lambda_{\alpha} := [\alpha + \tau] q_{\tau}(D)$$

satisfy

(5.8)
$$\lambda_{\alpha}C_{\mu}(\cdot - \beta | X) = \delta_{\alpha\beta}, \quad \text{for all } \alpha, \beta \in \mathbf{Z}^{s}.$$

Moreover, the mapping $\tau \mapsto q_{\tau}$ is continuous from Int [X] to F(X), where the finite-dimensional linear space F(X) is equipped with any norm.

Proof. Let q_{τ} be an element of F(X) such that the functionals λ_{α} given by (5.7) satisfy (5.8). Then for all $\alpha \in \mathbf{Z}^s$,

$$(5.9) (q_{\tau}(D)\phi_{\tau})(\alpha) = [\alpha + \tau]q_{\tau}(D)C_{\mu}(\cdot|X) = \lambda_{\alpha}C_{\mu}(\cdot|X) = \delta_{\alpha 0}.$$

Let $f \in X_{\theta}$, where $\theta \in N(\mu, X)$. Then it follows from (5.9) that

$$(q_{\tau}(D)\phi_{\tau}) *' f(\beta) = f(\beta), \quad \text{for all } \beta \in \mathbf{Z}^{s}.$$

This shows that the operator $(q_{\tau}(D)\phi_{\tau})*'$ is an identity on X_{θ} for every $\theta \in N(\mu, X)$; hence it is an identity on $D_{\mu}(X)$. By Theorem 5.1, such a polynomial q_{τ} is unique. The existence of q_{τ} has been proved for the case $\tau \notin c(X)$. We want to remove this restriction. For this purpose, we first show that the mapping $\tau \mapsto q_{\tau}$ is continuous from Int [X] to F(X).

From (5.4) and (5.1), we observe that, for any $f \in D_{\mu}(X)$,

$$\langle q_{\tau}, f \rangle = q_{\tau}(D) f(0)$$

is an exponential polynomial function of τ . Choose a basis f_1, \ldots, f_m for $D_{\mu}(X)$, and a basis q_1, \ldots, q_m for F(X) such that they are biorthogonal, i.e.,

$$\langle q_i, f_k \rangle = \delta_{ik}, \qquad 1 \le j, k \le m.$$

Suppose

$$q_{ au} = \sum_{j=1}^m a_{j, au} q_j$$
 .

Then $a_{j,\tau} = \langle q_{\tau}, f_j \rangle$ is an exponential polynomial function of τ . This proves that the mapping $\tau \mapsto q_{\tau}$ is continuous from Int [X] to F(X).

Finally, let $\tau \in \text{Int}[X]$, and let q_{τ} be the unique polynomial in F(X) satisfying (5.4). For simplicity, we write C_{μ} for $C_{\mu}(\cdot|X)$. Let λ_{α} be

given by (5.7). Since the mapping $\tau \mapsto q_{\tau}$ is continuous on Int [X], we have

$$\begin{split} \lambda_{\alpha}C_{\mu}(\cdot|X) &= (q_{\tau}(D)C_{\mu})(\alpha+\tau) \\ &= \lim_{\varepsilon \to 0} \frac{1}{m(B(0,\varepsilon))} \int_{B(0,\varepsilon)} (q_{\tau}(D)C_{\mu})(\alpha+\tau+y) \, dy \\ &= \lim_{\varepsilon \to 0} \frac{1}{m(B(0,\varepsilon))} \int_{B(0,\varepsilon)} (q_{\tau+y}(D)C_{\mu})(\alpha+\tau+y) \, dy \\ &= \delta_{\alpha 0}. \end{split}$$

This implies (5.8), as desired. \Box

Acknowledgment. This work was done when the author was invited by Professor S. Riemenschneider to the University of Alberta. The research was partially supported by NSERC Grant #A 7687.

The author also wishes to thank Professor W. Dahmen and Professor A. Ron for their suggestions on this paper.

REFERENCES

- 1. A. Ben-Artzi and A. Ron, Translates of exponential box splines and their related spaces, Trans. Amer. Math. Soc. 309 (1988), 683-710.
- 2. ——, On the integer translates of a compactly supported function: dual bases and linear projectors, SIAM J. Math. Anal. 21 (1990), 1550–1562.
- 3. C. de Boor, The polynomials in the linear span of integer translates of a compactly supported function, Constr. Approx. 3 (1987), 199–208.
- 4. ——, Quasi-interpolants and approximation power of multivariate splines, in Commutation of curves and surfaces, W. Dahmen, M. Gasca and C.A. Micchelli (eds.), Dordrecht, Netherlands, Kluwer Academic Publishers (1990), 313–345.
- 5. C. de Boor and G. Fix, Spline approximation by quasiinterpolants, J. Approx. Theory 8 (1973), 19-45.
- 6. C. de Boor and K. Höllig, B-splines from parallelepipeds, J. Analyse Math. 42 (1982/83), 99–115.
- 7. C. de Boor and A. Ron, On multivariate polynomial interpolation, Constr. Approx. 6 (1990), 287–302.
- 8. ——, The exponentials in the span of the integer translates of a compactly supported function, J. London Math. Soc., to appear.
- 9. W. Dahmen and C.A. Micchelli, *Translates of multivariate splines*, Linear Algebra Appl. **52/53** (1983), 217–234.
- 10. ——, On the local linear independence of translates of a box spline, Studia Math. 82 (1985), 243–263.

- 11. ——, On multivariate E-splines, Adv. in Math. **76** (1989), 33–93.
- 12. N. Dyn and A. Ron, Local approximation by certain spaces of exponential polynomials, approximation order of exponential box splines, and related interpolation problems, Trans. Amer. Math. Soc. 319 (1990), 381–403.
- 13. R.-Q. Jia, Linear independence of translates of a box spline, J. Approx. Theory 40 (1984), 158-160.
- 14. ——, Subspaces invariant under translation and the dual bases for box splines, Chinese Ann. Math. Ser. A. 11 (1990), 733-743.
- 15. ——, Dual bases associated with box splines, in Multivariate Approximation Theory IV, W. Schempp and K. Zeller (eds.), Birkhäuser Verlag, Basel (1990), 209–216.
 - 16. A. Ron, Exponential box splines, Constr. Approx. 4 (1988), 357-378.
- 17. ——, Linear independence for the integer translates of an exponential box spline, Rocky Mountain J. Math. 22 (1992), 331–351.
- 18. E.M. Stein and G. Weiss, Introduction to Fourier Analysis of Euclidean Spaces, Princeton University Press, Princeton, 1971.
- 19. G. Strang and G. Fix, A Fourier analysis of the finite element variational method, in Constructive aspects of functional analysis, G. Geymonat (ed.), C.I.M.E., Roma (1973), 793–840.
- $\bf 20.$ Jianzhong Wang, On dual basis of bivariate box-spline, Approx. Theory Appl. $\bf 3$ (1987), 153–163.

Department of Mathematics, University of Oregon, Eugene, OR 97403

Current Address: Department of Mathematics, University of Alberta, Edmonton, Canada T $6G\ 2G1$