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A DUAL BASIS FOR THE INTEGER TRANSLATES
OF AN EXPONENTIAL BOX SPLINE

RONG-QING JIA

ABSTRACT. Exponential box splines are multivariate com-
pactly supported functions on a regular mesh. Let ¢ be an
exponential box spline associated with integer vectors. Then
¢ is piecewise in a space H spanned by exponential polyno-
mials. In this paper we construct a dual basis for the integer
translates of ¢, when these translates are linearly indepen-
dent. The dual basis is shown to be unique in a certain sense.
Our construction is based on a study of the polynomial space
F which consists of all polynomials p such that p(D)¢ is a
bounded function, where p(D) denotes the partial differential
operator induced by p. It turns out that the linear space F' is
dual to H. Thus, as a by-product, we give a short proof for
the formula of the dimension of H.

1. Introduction. As usual, let N,Z,R and C be the set of
nonnegative integers, integers, real and complex numbers, respectively.
Let s be a positive integer. Denote by R® the s-dimensional Euclidean
space. Given two vectors  and y in R®, we denote by z - y the inner
product of them, and by |z| the norm of = : |z| = \/z - z. The linear
span of a collection X of vectors in R® will be denoted by span (X). All
the continuous complex-valued functions supported on compact sets in
R form a linear space over C, which we shall denote by C.(R®). Given
6 € C*, the exponential function z — exp(6-z), z € R?, is denoted by
€g.

We shall use the standard multi-index notation. For z=(z1,... ,25) €
R® and a = (o, ... ,a5) € N*, % is the monomial given by
¥ =it ade.

A polynomial is a complex linear combination of monomials. The total
degree of a polynomial p is denoted by degp. All the polynomials on

Received by the editors on January 30, 1990, and in revised form on April 5,
1991.
AMS (MOS) Subject Classifications. Primary 41A63, 41A15, Secondary 41A05,
15A03.

Key words. box splines, exponential box splines, integer translates, dual bases,

Poisson’s Summation Formula.
Copyright ©1993 Rocky Mountain Mathematics Consortium

223



224 R.-Q. JIA

R? form a linear space over C, which we shall denote by 7(R?®), or
by 7 for short. By 7w we denote the subspace of all polynomials of
degree at most k. An exponential polynomial is a function of the form
> oco €opg, where O is a finite subset of R®, and py € 7(R?®) for each
0 € 0.

For a = (ai,... ,as) € N°, let
D*:= D¢ ... D%,

where D; denotes the partial differential operator with respect to the
jth argument, j = 1,...,s. If p € 7(R®), p(z) = ) aax®, then the
differential operator ) a,D® is denoted by p(D). The kernel of p(D),
denoted by ker (p(D)), is the linear space of all infinitely differentiable
complex-valued functions f on R? such that p(D)f = 0.

During the past decade multivariate spline theory has developed
rapidly. In particular, the box spline introduced by de Boor and Hollig
[6] has attracted much attention. Recently, Ron [16] initiated the study
of exponential box splines, which are a generalization of box splines.
Various interesting properties of exponential box splines were developed
in [1] and [11].

Let X = (z%,...,2") c R*\{0} and p = (p1,... ,pn) € C", the
exponential box spline C,(-|X) is defined to be the linear functional on
C.(R?®) given by the rule

¢ — e“'uqs(ijuj) du, ¢ € C.(R?).
[0,1]"

Jj=1

When p = 0, C,(-|X) reduces to the box spline B(:|X). It is known
that C\,(-|X) is a distribution supported on

(1.1) (X] = {zn:tjxﬂ' :0<t; <1, all j}.

j=1
Moreover, if X spans R®, then C,(:|X) is a piecewise exponential
polynomial function.

In the study of univariate splines, de Boor and Fix [5] constructed a
dual basis for the sequence of B-splines, which has proved to be very
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useful. Thus, it is desirable to extend the construction of de Boor and
Fix to the multivariate case.

Consider the integer translates C,(- — 3|X), B € Z*. A sequence of
linear functionals (Ay)qcz« is called a dual basis for these translates if

1, if a=p;

AaCi(- = BIX) = Oap = {0, otherwise.

When g = 0 (the box spline case), Wang [20] (for the case s =
2), Dahmen and Micchelli [10] and Jia [14] (for the general case)
have constructed such a dual basis. Dahmen and Micchelli [11] also
constructed a dual basis for C,,(- — 5| X), B € Z°. However, the use
of Poisson’s summation formula in [10, 11] was not fully justified.
Moreover, the construction given in [11] involves a limit process. It is
not clear whether such a limit always exists.

In this paper we shall remedy these problems by extending our
previous work [14] to exponential box splines. We not only construct
a dual basis for the integer translates of an exponential box spline, but
also demonstrate that such a dual basis is unique in a certain sense.
Our approach is constructive; in particular, it does not involve any
limit process. Furthermore, our construction is a genuine extension of
the dual basis constructed by de Boor and Fix in [5].

Our construction of the dual basis is based on a study of the linear
space G(X) which consists of all polynomials p such that p(D)C,,(-|X)
is a bounded function. In the box spline case (1 = 0), the space G(X)
already appeared in the paper [14], which was received by the editors
on July 9, 1987. It was proved there that G is dual to another space
D(X) of polynomials associated with the box spline B(-|X). Dyn and
Ron in [12] proved a more general result that G(X) is dual to D, (X)
for any p € C™ (see Section 4 for the definition of D,(X)). We shall
reprove this result along a different approach. Our approach has the
advantage that it does not rely on the dimension formula of D, (X).
Thus, as a by-product, we are able to give a very short proof for the
dimension formula of D, (X).

The paper is organized as follows. In Section 2 we introduce the so-
called nearly continuous functions and discuss the Poisson summation
formula. In Section 3 we extend a part of the Strang-Fix theory [19]
to the case in which exponential polynomials occur. In Section 4 we
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introduce the space G(X) and prove that G(X) is dual to D,(X) for
any p € C™. Finally, in Section 5, we complete our construction of the
dual basis for the integer translates of an exponential box spline.

2. Poisson’s Summation Formula. In this paper the Fourier-
Laplace transform of a function ¢ on R?® is defined as follows:

b(2) == (z)e™""* dr, z € C*
RS

Here and in what follows, ¢ stands for the imaginary unit. Restricted
on R?, ¢ becomes the Fourier transform of ¢.

The following form of Poisson’s Summation Formula may be found in
Stein and Weiss [18, Chapter 7]. Suppose ¢ and its Fourier transform
¢ are continuous on R®, and for some § > 0,

|p(x)| < const (14 |z])~*°, zeR?,
|6(y)| < const (1+|y))™*7°,  yeR"

> o) = e(2m).

JEZ® JEZ?

Then

On the basis of this result, Dahmen and Micchelli in [9, Lemma
2.1] gave the following form of Poisson’s Summation Formula: Suppose
¢ € C.(R*) and

(2.1) ¢(2mj) =0  for j € Z°\{0}.

Then

(2:2) 6(0) =) 6(j).
jezs

In the following, ¢ may be noncontinuous. Let ¢ be a locally
integrable complex-valued function on R®. The function ¢ is called
nearly continuous if for any = € R?,

. 1
(23) o) = lim —meos [ o
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where B(z, €) denotes the ball of radius ¢ centered « and m denotes the
Lebesgue measure. For a piecewise exponential polynomial function ¢,
the limit on the right of (2.3) always exists, and this limit equals ¢(z)
if x is not on the mesh. Thus, we may always assume that a piecewise
exponential polynomial function is nearly continuous when redefined
by (2.3) at mesh points.

Theorem 2.1. Suppose that ¢ is nearly continuous and supported
on a compact set in R®. If the Fourier transform ¢ satisfies (2.1), then
(2.2) holds.

Proof. For € > 0, let

1
6u(@) = s /B ROLT

Fix e for the moment. Then ¢. € C.(R*). We observe that

i 1
0=(2mi) = B 0,9) /Bm,s) ¢

N 1 . X
— d(27j —/ 2T gy,
@) B0, i

(z +y)e 2™ dx dy

Hence,

¢.(2mj) =0,  j€Z°\{0},

$=(0) = (0).
Since ¢. € C.(R?), (2.2) may apply to ¢.; hence,

(24) $=(0) = Y 6())-

JELS
Since ¢ is nearly continuous,
¢(j) = lim ¢.(j),  j€Z°
e—0

Letting ¢ — 0 in (2.4), we obtain the desired result. O
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3. The Strang-Fix conditions. In this section we assume that
¢ is a nearly continuous function supported on a compact set in R?.
Since ¢ is compactly supported, the Fourier-Laplace transform qg of ¢
is an entire function on C®. The function ¢ gives rise to a semi-discrete
convolution operator ¢*’:

o' fro o fi=> " d(-— ) f(),
JELS
which is well defined for any nearly continuous function f from R* to

C.

A subspace P of 7(R?) is called D-invariant, if for any p € P, the
derivatives D;p are againin P, j = 1,...,s. P is said to be translation
invariant if for any p € P and = € R®, the translate p(- + ) is again in
P. Tt is proved in [3] that P is D-invariant if and only if it is translation
invariant. Furthermore, P is called scale-invariant if for any p € P and
any r € R, p(r-) is again in P. A mapping T on P is called degree-
reducing on P, if for any p € P, Tp is again in P and deg (Tp) < degp.
We denote by 1 the identity mapping. The following theorem was
proved by Strang and Fix [19] for the case P = m, by Dahmen and
Micchelli [9] for the case in which P is D-invariant and scale-invariant,
and by de Boor [3] for the case in which P is D-invariant.

Theorem 3.1. Let P be a finite-dimensional D-invariant space of
polynomials. Then the mapping (1 — ¢+')|p is degree-reducing if and
only if ¢ satisfies the following conditions:

(1) 6(0) =1;

(ii) p(—iD)p(2mj) =0 for allp € P and j € Z°\{0}.

If P = mi_1, the conditions (i) and (ii) in the above theorem are
called the Strang-Fix conditions of order k (see [19]).

In [8] de Boor and Ron considered the action of the operator ¢+ on
spaces of exponential polynomials. Also, see the survey paper [4]. Here
we take an approach different from theirs. The following theorem is a
generalization of Theorem 3.1.

Theorem 3.2. Let § € C*, and let P be a D-invariant finite-
dimensional space of polynomials. Then ¢+’ maps egP into itself if
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and only if ¢ satisfies
(3.1)  p(—iD)¢(2mj —i0) =0 for all p € P and j € Z*\{0}.
Moreover, in this case, one has
(32) ¢+ (egp) = egp(- — iD)$(—if) = eqg(¢(—i — iD)p),
for allp € P.

Proof. Fix x € R? for the time being. Given p € P, let v, be the
function given by

(3.3) Yo(y) ==e"p(y)p(z —y), yeER".

The Fourier transform of v, can be computed as

Py (€) = e p(z — iD)p(—£ — if).

Since P is D-invariant, it is also translation invariant. Hence, p € P
implies p(z + -) € P. Thus, if ¢ satisfies the condition (3.1), then

Ve (2mf) = 072 p(z—iD)p(—2mj—if) =0,  for all j € Z*\{0}.

Hence, Theorem 2.1 (the Poisson summation formula) can be applied

to ¥, so we obtain R
Z ¢z(]) = ¢z(0)a

JEZ®
that is,

(3.4) ¢ *' (eqp) = eqp(- — iD)qAS(—z'G).

By the Taylor theorem, we have

p(-—iD) =" D;p(—iD)a.

Expand q?)(fif) into a power series of £ — 0:

d(—i&) = Y aa(€—0)~.

aENs
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Let [#]D* be the linear functional given by f — D*f(0). Applying
[0]D* to both sides of the above equation, we get

(—iD)*¢(—if) = agal.

It follows that

~

p(- —iD)o (-

)*o(—if)

(3.5)

Z
%
$(~i6 — iD)p.

We view ¢(—if —iD) as a formal power series in D, so it is well defined
on m(R®). Note that (3.5) is true for any polynomial p. Since P is
D-invariant, the operator ¢(—iD) maps P into itself. This proves the
sufficiency part of the theorem. Moreover, (3.2) follows from (3.4) and
(3.5).

Conversely, suppose that ¢ %’ (egp) € egm for all p € P. Given a
polynomial p € P, set

) == Z V(Y + k), z,y € R%,

keZs

where ¢, (y) is as in (3.3). Then g(z,-) is a 1-periodic function for
any fixed z, and g(-,y) € epm for any fixed y. The latter statement is
true because ¢ %' (egp) € egm. Consider the Fourier coefficients a;(x)

of g(xv )
aj(x): = / g(z,y)e Y dy
[0,1]*

keze 7 10:1)°
= | tu(y)e v dy
RS
= e@=2mi) Ty D)d(—2mj — i6).
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Note that the image of e P under the mapping ¢+’ is finite-dimensional.
Since g(+,y) is in egm for any fixed y, so is a; for each j. If j # 0, then
a; € epm can happen only if

p(z —iD)p(—2mj — i0) =0, for all z € R®.

Choosing = 0 in the above equation, we obtain

p(—iD)¢(—2mj — i6) = 0, for all p € P and j € Z°\{0},

as desired. O

The following two corollaries are easily derived from Theorem 3.2. We
note that Corollary 3.3 is a generalization of a result of Ben-Artzi and
Ron in [1], where the mapping ¢*' was considered for an exponential
box spline ¢. Also the sufficiency part of Corollary 3.3 was first proved
by de Boor and Ron in [8].

Corollary 3.3. The mapping ¢+’ maps egP one-to-one and onto
itself if and only if ¢ satisfies the following conditions:

(i) o(—i0) #0,

(ii) p(—iD)¢(27j —i0) =0 for all p € P and j € Z°\{0}.

Corollary 3.4. The mapping ¢*' is an identity on ey P if and only
if
(i) p(~iD)$(~if) = p(0) for all p € P;
(i) p(—iD)¢(2mj — i) =0 for all p € P and j € Z*\{0}.

We note that if ¢(—i6) # 0, then the operator ¢(—if—iD) is invertible
on 7(R?), and its inverse can be found as follows. Expand 1/¢(—if+¢)
into a power series in a neighborhood of the origin:

1/$(—if+€) = Y be”.
vENSs
Then the inverse of ¢(—if — iD) is
(¢(—i0 —iD)) ™ = > b,(~iD)".

vENSs
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Let now H be the linear space 2969 eg Py where O is a finite subset
of R?, and Py is a finite-dimensional D-invariant space of polynomials
for each # € ©. Given a linear functional A on H, consider the operator
Q@) given by

Qx:f Y ¢ —HA(-+3).
jezs
We are interested in the conditions on A under which @) is an identity
on H. This problem has been discussed in [2, 8]. In particular, a
systematic treatment for quasi-interpolation was given in [8]. The
following theorem was first proved by Ben-Artzi and Ron in [2] under
the additional condition that the integer translates of ¢ are linearly
independent. It turns out that this condition is not necessary.

Theorem 3.5. Suppose that the following conditions are satisfied:

(i) G(—if) # 0 for every 6 € ©;

(ii) p(—iD)p(—i0 — 21j) = O for each § € © and any p € Py
and j € Z°\{0}.
Then the operator @y is an identity on H = 4 epPp if and only if
A\ satisfies the following condition:

Aegp) = (¢(—i6 — iD)) ™ 'p(0), for all § € © and p € Py.

Proof. Given a linear functional A on H, there corresponds to each ¢
a polynomial gy (see [7]) such that

(3.6) 4 (D)p(0) = (egp),  forall p € P,
It follows from (3.2) that

Qx(eop) = ¢ +' (eaqo(D)p)

= *l
= eq($(—i0 — iD)qo(D)p)-
Hence, @, is an identity on eg Py if and only if

(3.7) go(D)p(—i0 —iD)p =p,  for all p € Py.
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Since ¢(—if) # 0, the operator ¢(—if — iD) is invertible on Py. In
(3.7), replacing p by (¢(—if —iD))~1p, we see that (3.7) is equivalent
to

(3.8) qo(D)p = (¢(—i0 —iD))"p,  for all p € Py.
But Py is translation invariant, hence (3.8) is equivalent to
(39)  q(D)p(0) = ($(=if —iD))'p(0),  for all p € Py.

Combining (3.9) with (3.6), we obtain the desired result. o

We close this section by proving a result on the commutativity of
semi-discrete convolution (cf. de Boor [3]).

Theorem 3.6. Under the condition (ii) of Theorem 3.5,

o+ f=f+0o, for all f € H.

Proof. 1t suffices to prove the commutativity for f = egp, where § € ©
and p € Py. Since ¢ is compactly supported, f *' ¢ € egPy. Moreover,
by the assumption, Theorem 3.2 can be applied to ¢, so ¢ ' f € egPs.
Hence, ¢ ' f = egq1, and f *' ¢ = epqo for some ¢q,qz € Py. But the
restrictions of ¢ *' f and f %' ¢ on Z® coincide. It follows that ¢; = ¢
on Z*, and therefore g; = g2, as desired. ]

4. Dual spaces. Let F and F be two linear spaces over the complex
field C. A bilinear function

( )i(@y) = (oY)

from E x F to C is called a scalar product if
(i) (@,y) =0 for all y € F implies « = 0;
(ii) (z,y) =0 for all € E implies y = 0.

If there is a scalar product between E and F, then E and F are said
to be dual spaces with respect to this scalar product. Two dual spaces
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have the same dimension. If £ and F' are dual spaces with respect to
( , ), then for any linear functional A on F, there exists a unique
element x € E such that

Ay) = (z,y), for all y € F.

Let X = (z!,...,2") C R*\{0} and p = (p1,...,1n) € C". Write
po for pj if v =29, For V. C X, let p, v be the polynomial given by

Pu,v = H Puyv = H(pv +Nv)7

veV veEV

where p, is the linear function given by p,(z) ;= z - v, x € R®. Let
Dyu(X) = [ {ker (pu,v(D)) : V C X,span (X\V) # R*}.

Then D, (X) is a linear space of exponential polynomials. When p = 0,
we write py for p, v, and correspondingly write D(X) for D, (X).

If X spans R?, then C,(-|X) is bounded and piecewise in D, (X).
More precisely, we let H(X) be the collection of all (s — 1)-dimensional
subspaces H which are spanned by elements of X. Furthermore, we set

(4.1) c(X):= |J H+zZ.
HEeH(X)

Then on each connected component of R*\¢(X), C,,(-|X) agrees with
some element of D, (X).

Let us now introduce two subspaces F,(X) and G,(X) of 7(R?):

Fu(X) :=span{p,v : V C X,span (X\V) = R%},
Gu(X) :={p e m(R®) : p(D)Cu(-|X) € L=}.

When g = 0, we write F(X) for F,(X), and G(X) for G.(X),
respectively.

For a polynomial p and an exponential polynomial f, we define

(4.2) (p, ) = p(D) f(0).
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In [14], the author introduced two spaces G(X) and F(X) and proved
that G(X) = F(X) and G(X) is dual to D(X) with respect to the
bilinear function ( , ) given in (4.2). It was pointed out in [11] that
the space F'(X) had been also investigated by H. Hakopian.

It was observed by Dyn and Ron [12] that F),(X) = F(X) for all p.
Indeed, for any V' C X, p, v is a linear combination of py, ¥ C V,
because p,, » = Pv + tv. Conversely, since p, = p, » — lv, Pv is also
a linear combination of p,y, Y C V.

Dyn and Ron proved in [12] that for any 4 € C", F(X) is dual to
D, (X) with respect to ( , ). We may apply the technique used in
[14] to give a new proof of their result. In contrast to the proof given
in [12], our proof does not rely on the dimension formula of D,(X).
Instead, our approach enables us to give a very short proof for the
dimension formula of D, (X) (see Theorem 4.2 below). This should be
compared with the fact that both the proofs given in [1, 11] for the
dimension formula of D,(X) are very complicated. Also see [15] for
some topics related to the spaces F(X) and D, (X).

We observe that F(X) = F,(X) is a subspace of G,(X). This
comes from the differentiation formula for exponential box splines given
in [16, Theorem 2.2 (a)]. If V C X and span (X\V) = R, then
Pu,v(D)C,L(-|X) € L*™ by the differentiation formula mentioned above;
hence p, v € G,(X). This shows that F(X) is a subspace of G,,(X).

Theorem 4.1. For any p € C", the space G,,(X) is dual to D,(X)
with respect to the bilinear function ( , ). Moreover, G,(X) = F(X)
for all p e C™.

Proof. If X does not span R?®, then G,(X), F(X) and D,(X) are
all trivial, so there is nothing to prove. Thus, we may assume that
span (X) = R® in what follows.

First, suppose that p € G,(X) satisfies (p, f) = 0 for all f € D,(X).
Since D,,(X) is translation invariant, this implies that p(D) f = 0 for all
f € D,(X). Let A be a connected component of R*\¢(X). The restric-
tion of C,,(-|X) on A is a function in D, (X); hence, p(D)C,(:|X) =0
on A. This shows that p(D)C,(:|X) is a distribution supported on
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¢(X). On the other hand, by the very definition of G, (X),
p(D)CL(|X) € L*.

Hence, p(D)C,(-|X) = 0. It follows that p = 0 because C,(-|X) is
compactly supported.

Secondly, suppose that f € D,(X) satisfies (p,f) = 0 for all
p € F(X). We want to prove f = 0. This will be done by induction
on #X, the number of elements in X. If #X = s, then D,(X) is
spanned by an exponential function ey for some § € C®. But constants
are in F'(X); this implies that f(0) =0 for f € D,(X). Hence, f =0,
as desired. Suppose inductively that our claim has been proved for
any X' with #X’ < #X and we want to establish it for X. Consider
Pp,,w(D)f, where v € X. We have

Pu,v(D)pu, »(D)f(0)=0 for any V C X\v with span (X\v\V)=R".

Hence, by the induction hypothesis, p,, (D)f = 0. This, together
with the fact that f(0) = 0 implies f = 0, since X contains a basis for
RS.

By what has been proved, we have
dim (G, (X)) < dim (D, (X)) < dim (F(X)).

But F(X) is a subspace of G,(X), hence, F(X) = G,(X) for all
p € C". We conclude that G, (X) is dual to D, (X) with respect
to( , ). o

Now Theorem 4.1 tells us that dim (D, (X)) does not depend on .
One would like to identify those simple cases for which dim (D, (X))
can be easily computed. This has already been done by Ben-Artzi
and Ron in [1]. Let us describe their approach. Denote by B(X) the
collection of all bases for R® contained in X. Given Z € B(X), let 6z
be the unique element in C® such that

v-0z 4+ u, =0, for all v € Z.

Given an exponential box spline C,,(-|X), the pair (X, u) is called its
defining set. A defining set (X, ) is called simple, if for any two
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different bases Y and Z contained in X, the corresponding 6y and
0z are different. If (X, p) is simple, then

D, (X) =span{eg, : Z € B(X)}.
It follows that for a simple defining set (X, ),
dim (D, (X)) = #B(X).
Given X C R*®\{0}, it is easily seen that there exists u € C™ such

that (X, u) is simple (see [12]). Thus we have reproved the following
dimension formula, which was first proved in [1,11].

Theorem 4.2. For all p € C”, dim (D, (X)) = #B(X).

5. A dual basis. In this final section we assume that X =
(zl,...,2") C R®\{0}, span (X) = R® and p = (p1,... ,pn) € C™.
Let

Xo={zeX:z-0+ u, =0}, feC?
N(u,X):={0 € C°:span(Xp) = R°}.

Then eg € D,(X) if and only if § € N(u, X). The space D,(X) has
the following decomposition (see [1,11]):

Du(X)= P eoD(Xo).
0EN (p,X)

It follows from [11, (4.8)] that
p(—iD)C,(-|X)"(2mj— i) = 0, for p e D(Xy) and j € Z*\{0}.

For 7 € R?, let
¢r = Cp(- + 7| X).

Then we have

(5.1) ¢ (€) = eTECL(|X)NE),  EeCr
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Since D(Xy) is D-invariant, by the Leibniz formula for differentiation,
we obtain

(5.2) p(—iD)p,(27j — i) =0  for p e D(Xp) and j e Z°\{0}.

Therefore, by Theorem 3.2 and its corollaries, we see that ¢,* is an
invertible mapping on D, (X) if and only if

(5.3) C.(-|X)"(—1i0) #0 for all § € N(u, X).

Theorem 5.1. Suppose that C,,(-|X) satisfies (5.3). Let q- € F(X).
Then the operator (g-(D)¢-)*" is an identity on D, (X) if and only if
q. satisfies the following condition:

(5.4)
(qr,e0p) = (¢-(—iD—if)) *p(0), for 6 € N(u, X) and p € D(Xy).

Such a polynomial q, exists and is unique.

Proof. We observe that ¢, € F(X) implies that ¢.(D)¢, is a nearly
continuous function. Since ¢, satisfies (5.2), by Theorem 3.6 we have

o f=f+ ¢, for all f € D,(X).

It follows that, for any f € D,(X),

(¢-(D)or) ¥ f = ¢+ (D)(¢+ ¥ f)

—qr( )(f + ér)
= (¢ (D)f) ¥ ¢~
= ¢ # (¢-(D)f).

Hence, (¢- (D). )+’ is an identity on D,(X) if and only if

(5.5) b ¥ (@ (D)f) =, forall f € D,(X).

Let A = [0]¢g- (D). Then, by Theorem 3.5, (5.5) is true if and only if

Megp) = (¢-(—iD —i0))~*p(0), for 0 € N(u, X) and p € D(Xp).
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This is just (5.4). The existence and uniqueness of ¢, follow from
Theorem 4.1. O

From now on we assume that X C Z°\{0}. X is called unimodular if
(5.6) |det Z] =1, for any basis Z C X.

It is known that the integer translates of C),(-|X) are linearly indepen-
dent if and only if (X, u) satisfies (5.3) and (5.6). When p = 0, this
fact was proved in [9, 13]. In general, this was proved in [11, 17]. In
fact, it was proved in [11] that the integer translates of C,(-|X) are
locally linearly independent, that is, if A is a nonempty open set of R,
and if

Z aeCu(-—a]X) =0 on A,

a€Zs
then a, = 0, provided that the support of C,(- — a|X) intersects A.
Note that the support of C,(- — | X) is [X] 4+ «, where [X] is as given
in (1.1).

Let A be a connected component of Int [X]\c(X),where Int [X] de-
notes the interior of [X] and ¢(X) is as given in (4.1). Pick up a point
T € A. For each o € Z°, the restriction of C\,(- — a|X) on A is a
function in D, (X), which we shall denote by f,. Note that f, = 0 if
[X]+ a does not intersect A. Suppose now that C,(-|X) satisfies (5.3)
and (5.6). Then the set {fy : ([X] + a) N A # @} is a linearly inde-
pendent subset of D,(X). But F(X) is dual to D, (X) with respect to
the scalar product ( , ), hence there exists a polynomial ¢, € F(X)
such that

qr (D) fa(T) = a0, a € ZP.

It follows that
[a+ T]g-(D)C,(-|X) = ba0, aecZ’.

Now we are in a position to state and prove the main result of this
paper.

Theorem 5.2. Suppose that C,,(-|X) satisfies (5.3) and (5.6). Then
for any 7 € Int [X], there exists a unique polynomial ¢, € F(X) such
that the functionals A\, given by

(5.7) Ao = [+ T]gr (D)
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satisfy
(5.8) AaCp(- — B X) = bas, for all o, B € Z°.

Moreover, the mapping T — g, is continuous from Int [X] to F(X),
where the finite-dimensional linear space F(X) is equipped with any
norm.

Proof. Let g, be an element of F(X) such that the functionals A,
given by (5.7) satisfy (5.8). Then for all a € Z°,

(5-9)  (¢-(D)¢r)(@) = [a + 7lgr (D)Cu(-|X) = AaCpu(-|X) = dao-
Let f € Xy, where § € N(u, X). Then it follows from (5.9) that

(¢-(D)o-) " f(B) = £(B), for all B € Z°.

This shows that the operator (g, (D)@, )+’ is an identity on Xy for every
6 € N(u, X); hence it is an identity on D, (X). By Theorem 5.1, such
a polynomial ¢, is unique. The existence of ¢, has been proved for the
case T ¢ ¢(X). We want to remove this restriction. For this purpose,
we first show that the mapping 7 — ¢, is continuous from Int [X] to
F(X).

From (5.4) and (5.1), we observe that, for any f € D,(X),

(¢r, [) = a-(D)f(0)

is an exponential polynomial function of 7. Choose a basis f1,..., fm
for D, (X), and a basis q1, . .. , ¢m for F(X) such that they are biorthog-
onal, i.e.,

(> fr) = Ojk, 1<jk<m.

Suppose
m
qr = Z aj,rq;-
j=1

Then a;r = (¢r, fj) is an exponential polynomial function of 7. This
proves that the mapping 7 — ¢, is continuous from Int [X] to F(X).

Finally, let 7 € Int [X], and let ¢, be the unique polynomial in F(X)
satisfying (5.4). For simplicity, we write C}, for C,(:|X). Let A, be
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given by (5.7). Since the mapping 7+ ¢, is continuous on Int [X], we
have

Cu(-1X) = (¢-(D)Cp)(a + 7)

e—0 ’ITL(B 0,¢)
1
= lim / Qraiy(D)C ) (a+T74+1y)d
50 ’ITL(B(U,E)) B(O,s)( +y( ) )( )

This implies (5.8), as desired. o
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