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SPECIAL VALUE SET POLYNOMIALS
OVER FINITE FIELDS

JAVIER GOMEZ-CALDERON

ABSTRACT. Let F;; denote the finite field of order ¢ where
q is a prime power. In this paper we prove that if m and n are
two integers dividing ¢ — 1, 2 < m, 2 <n and d = mn < {4q,
then

2q m n .
mtn—1 SHE™ +b)" rz € Fy}
< min{(q —1)/m, (¢ —1)/n} +1

for all 0 # b in Fjy.

1. Introduction. Let F, denote the finite field of order ¢ where
q is a prime power. If f(z) is a polynomial of degree d over Fy, let
Vi ={f(z) : « € Fy} denote the image or value set of f(x) and let |V¢|
denote the cardinality of V. It is clear that if f is of degree d,

(1) [(¢ —1)/d] +1 < |V
where [x] denotes the greatest integer < z. Hence,

(2) [(q—=1)/d]+1<|Vf| <q.

A permutation polynomial over F; has a value set of maximal pos-
sible cardinality so that if f(z) permutes F,, then |Vy| = ¢. Many
papers have been written concerning permutation polynomials over fi-
nite fields, with an excellent survey being given in Lidl and Niederreiter
[6, Chapter 7] and Lidl and Mullen [5].

At the other extreme, a polynomial for which equality is achieved
in (1) is called a minimal value set polynomial. Minimal value set
polynomials over finite fields have been studied in Carlitz, Lewis, Miller
and Straus [1] and Mills [7]. Recently, in [4], Gomez-Calderon and
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Madden considered polynomials with small but not minimal sets. They
gave a complete list of polynomials of degree d < {q which have a value
set of size less than 2¢/d, twice the minimum possible. If d > 15 then
f(z) is one of the following polynomial forms:

a

(a) f(z)=(z+a)?+0b, where d | (¢ —1)
b)) f(z) = ((z + a)¥? +b)? + ¢, where d | (¢> — 1)
(c) f(x)= ((z+a)2+b)¥2% 4 c, where d | (¢*> — 1)
or
(d) f(z) = ga(x + b,a) + ¢, where d | (¢*> — 1) and gq(,a) denotes
the Dickson polynomial of degree d defined by

[d/2] d d_t
aaes) = 3 g% (1) o

t=0

The cardinality of the value set of the power polynomial z¢ over F,
depends only upon (d,q — 1), the greatest common divisor of d and
q — 1. To be more specific,

(3) Veal = (¢ —1)/(d,g—1) + 1.
Thus, if d|(¢ — 1), we have a minimal value set polynomial, while if

(d,q — 1) = 1, we have a set with maximal possible cardinality g.

Now the value set of the Dickson polynomial g4(x,a) has also been
studied in Chou, Gomez-Calderon and Mullen [2]. There, the authors
have shown that

\V |: q—1 q+1
94 = 9(d q—1) ' 2(d,q+1)

+

where a, as a function of d, ¢ and a, takes the values 0, 1, and 1/2.
In the present paper we consider the cardinality of the value set of the
polynomials (2™ +b)™ generalizing those given in (b) and (c). We show
that if d = mn divides ¢ —1,2<m,2<n,d < Ygand 0 #b € F,
then
2q m o pyn
<[4z e Rl

2m + 2n —
< min{(qg —1)/m, (¢ — 1)/n} + 1.
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The improvement of the trivial lower bound,

q—1
—+1< m™bh)" F,
1< @ ) w e R

is an expected result according to [3, 7]. In [3], it is shown that if f(z)
denotes a polynomial of degree d, 3 < d < p, ¢ = p”, and

Vi < [(g—1)/d] + (2(g — 1)/d*) — 1,
then
Vil =g —1)/d] + 1.

Hence, by [7],
f(z) = (z —a) + b,

and d divides g — 1.
2. Theorem and proof. We will need the following two lemmas.

Lemma 1. Let f(z) be a monic polynomial over F, of degree d
less and prime to q. Let N denote the number of linear factors of
[*(z,y) = f(z) — f(y) over Fylz,y]. Then any irreducible factor of
f*(z,y) of degree less than N factors into linear factors over Fyz,y],

where F'y denotes the algebraic closure of Fy.

Proof. Let © — a1y — by, x — asy — ba,... ,x — any — by denote the
linear factors of f*(z,y). Thus,

f(z) = f(y) =0 mod (x — a;y — b;)

fori=1,2,...,N.

At the level of polynomials of one variable, this means that

flaiy +b;) = f(y)

fori=1,2,...,N. Hence,

flaiajy + aibj +bi) = f(azy +b;) = f(y)
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for all 4 and j, 1 <4, 5 < N. Therefore, the set of constants a; form a
cyclic multiplicative group of order N. Hence, f*(z,y) has a factor of
the form

r—cy-+e

where the multiplicative order of ¢ is IN. Thus,
ff(@,y) = (z — cy — e)Hi(z,y)

for some polynomial H;(x,y) in Fy[z,y].

Substituting cy + e for y once, we obtain
fH(z,cy+e) = (x — Py —ce — e)Hy(z,cy +e).
If N > 1, we also have
frz,cy+e)=(z+e/(c—1) = c*(y+e/(c— 1)) Ha(z,y).

Repeating this substitution, we have

i—1
Fr(a,cy+e) = (9«“ —c'y - che>Hi(w,y)
j=0
=(z+e/(c—1) —c(y+e/(c—1)Hi(z,y)
fori=1,2,... ,N.
Therefore,

N

(@te/(c=1))" = (y+e/(c=1))" = [[((z+e/(c=1)=c'(y+e/(c~1)))

i=1

divides f*(z,y). Hence, by a change of variables, we assume without
loss of generality that

S
(4) Fr@y) = @ —y™) ] filzv)

i=1

where f;(z,y) are irreducible polynomials.
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Now, each of the nonlinear factors f;(z,y) can be written uniquely
as a sum of homogeneous polynomials

filz,y) = Z hij(z,y)
§=0
where h;j(z,y) denotes a homogeneous polynomial of degree j. Con-
sidering only the terms of highest degree in (4), we see
s
ot —yt = (@ — y™) [] hini (=, v).
i=1

Thus, the polynomials h;,,(z,y) are relatively prime in pairs, and they
divide 2% — y?. Let w be a primitive N-th root of unity, and suppose
that there is a factor f;(z,y) with degree n; < N. If we substitute z
and y in (4) with w®z and w®y respectively, we obtain

f(@) = fly) = f(wz) = f(wy)
s
= (N —y") H fi(wéz, wy).
i=1
Thus, for any fixed e,

w” e fi(wez, wy) = fi(z,y)

for an appropriate i’. We have already seen that the terms of highest
order are relatively prime in pairs; so i’ must be i. We obtain

hini (LL', y) + Z w_jehini*]‘(xa y) = fi(ma y) = Z hij (37, y)
j=1 j=0

for all e, consequently

fi(wa y) = hznl (517, y)

So, fi(z,y) divides ¢ — y%. Accounting for our change of variables
completes the proof of the lemma. ]
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Lemma 2. Let f(z) be a monic polynomial over Fy of degree d < q.
Let #f*(x,y) be the number of solutions (x,y) in Fgx Fy of the equation
f*(z,y) = 0. Assume

#f(z,y) < cq

for some constant ¢, 1 < ¢ < d. Then

q/c < |Vyl.

Proof. Let R; denote the number of images f(z) that occur exactly ¢
times as x ranges over Fy, not counting multiplicities. Then we have

d d d
ZZRz =q, |Vf| :ZR“ and #f*(xvy) :ZZ2R1
i=1 i=1

i=1

Further, we can apply Cauchy-Schwartz inequality to obtain

Therefore,

Vil > ¢ /#F (z,y) > ¢*/cq = q/c. O

We are ready for the main result.

Theorem 3. Let F; be the finite field with g elements. Let m and n
be two integers dividing q—1,2 <m, 2 <n, and d = mn < ¥q. Then

) < Vi iyel < min{(g = 1)/m, (g — 1)/n} + 1

2m + 2n —
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for allb € Fy.
Proof. Set f(x) = (z™ +b)", b € F;. Then

f*(z,y) = f(x) = f(y)

s
= (@ b (D)

n—1

= H (@ —wiy) [] (=™ — wiy™ + b — wib)

where w, denotes a primitive root of unity of order . Now, by Lemma
1, the factors
Hi(z,y) =2™ —w,y™ +b—w,b

are either: absolutely irreducible or a product of linear factors. Assume
that one of the factors H;(z,y), say

H(z,y) =2™ — Ay™ + B, B #0,

is a product of distinct linear factors. Thus,

—Ay"+B= H(x —ay — ¢),
(6) T

m

— Ay =] - aiy)

i=1

and

m

[(=c)

i=1

B

Therefore, taking z = a1y in (6), we obtain

m
H a; — a;)y — ¢).

Hence, ¢; = 0 and, consequently, B = 0, a contradiction. Therefore,
all the factors H;(z,y) are absolutely irreducible.
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Now, as shown in [6, p. 330-333], we have
#Hi(z,y) — gl < (m —1)(m — 2)/q +m?.
Hence,

|[#f(2,y) —m(g—1)+1)—(n—1)g| < (n—1)(m—1)(m—2)y/g+m*(n—1)
#f(z,y) —q(m+n—1)+m—1| < (n—1)(m—1)(m—2)y/g+m*(n—1).
Combining with d = mn < {/q, we obtain

#f(z,y) < q(m+n—1/2).

Hence, by Lemma 2, we have
2q
——— < |Vigmip)n|.
2m+2n—1 — Viro)-]

Since the second inequality in (5) is a trivial result from (3), the proof
of the theorem has been completed. o
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